Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Cell ; 175(5): 1213-1227.e18, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30318147

ABSTRACT

Neurons use two main schemes to encode information: rate coding (frequency of firing) and temporal coding (timing or pattern of firing). While the importance of rate coding is well established, it remains controversial whether temporal codes alone are sufficient for controlling behavior. Moreover, the molecular mechanisms underlying the generation of specific temporal codes are enigmatic. Here, we show in Drosophila clock neurons that distinct temporal spike patterns, dissociated from changes in firing rate, encode time-dependent arousal and regulate sleep. From a large-scale genetic screen, we identify the molecular pathways mediating the circadian-dependent changes in ionic flux and spike morphology that rhythmically modulate spike timing. Remarkably, the daytime spiking pattern alone is sufficient to drive plasticity in downstream arousal neurons, leading to increased firing of these cells. These findings demonstrate a causal role for temporal coding in behavior and define a form of synaptic plasticity triggered solely by temporal spike patterns.


Subject(s)
Neuronal Plasticity , Sleep/physiology , Action Potentials , Animals , Circadian Clocks/physiology , Drosophila , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Models, Neurological , Neurons/metabolism , Optogenetics , Potassium Channels/genetics , Potassium Channels/metabolism , Potassium Channels, Calcium-Activated/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Synaptic Transmission
2.
Cell ; 165(6): 1347-1360, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27212237

ABSTRACT

Prolonged wakefulness leads to an increased pressure for sleep, but how this homeostatic drive is generated and subsequently persists is unclear. Here, from a neural circuit screen in Drosophila, we identify a subset of ellipsoid body (EB) neurons whose activation generates sleep drive. Patch-clamp analysis indicates these EB neurons are highly sensitive to sleep loss, switching from spiking to burst-firing modes. Functional imaging and translational profiling experiments reveal that elevated sleep need triggers reversible increases in cytosolic Ca(2+) levels, NMDA receptor expression, and structural markers of synaptic strength, suggesting these EB neurons undergo "sleep-need"-dependent plasticity. Strikingly, the synaptic plasticity of these EB neurons is both necessary and sufficient for generating sleep drive, indicating that sleep pressure is encoded by plastic changes within this circuit. These studies define an integrator circuit for sleep homeostasis and provide a mechanism explaining the generation and persistence of sleep drive.


Subject(s)
Neuronal Plasticity , Neurons/physiology , Sleep/physiology , Animals , Calcium/metabolism , Drive , Drosophila , Homeostasis , Models, Neurological , Receptors, N-Methyl-D-Aspartate/metabolism
3.
Nature ; 596(7872): 353-356, 2021 08.
Article in English | MEDLINE | ID: mdl-34408333

ABSTRACT

On Earth's surface, there are only a handful of high-quality astronomical sites that meet the requirements for very large next-generation facilities. In the context of scientific opportunities in time-domain astronomy, a good site on the Tibetan Plateau will bridge the longitudinal gap between the known best sites1,2 (all in the Western Hemisphere). The Tibetan Plateau is the highest plateau on Earth, with an average elevation of over 4,000 metres, and thus potentially provides very good opportunities for astronomy and particle astrophysics3-5. Here we report the results of three years of monitoring of testing an area at a local summit on Saishiteng Mountain near Lenghu Town in Qinghai Province. The altitudes of the potential locations are between 4,200 and 4,500 metres. An area of over 100,000 square kilometres surrounding Lenghu Town has a lower altitude of below 3,000 metres, with an extremely arid climate and unusually clear local sky (day and night)6. Of the nights at the site, 70 per cent have clear, photometric conditions, with a median seeing of 0.75 arcseconds. The median night temperature variation is only 2.4 degrees Celsius, indicating very stable local surface air. The precipitable water vapour is lower than 2 millimetres for 55 per cent of the night.

4.
Plant Cell Environ ; 47(7): 2410-2425, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38517937

ABSTRACT

Bainong sterility (BNS) is a thermo-sensitive genic male sterile wheat line, characterised by anther fertility transformation in response to low temperature (LT) stress during meiosis, the failure of vacuole decomposition and the absence of starch accumulation in sterile bicellular pollen. Our study demonstrates that the late microspore (LM) stage marks the transition from the anther growth to anther maturation phase, characterised by the changes in anther structure, carbohydrate metabolism and the main transport pathway of sucrose (Suc). Fructan is a main storage polysaccharide in wheat anther, and its synthesis and remobilisation are crucial for anther development. Moreover, the process of pollen amylogenesis and the fate of the large vacuole in pollen are closely intertwined with fructan synthesis and remobilisation. LT disrupts the normal physiological metabolism of BNS anthers during meiosis, particularly affecting carbohydrate metabolism, thus determining the fate of male gametophytes and pollen abortion. Disruption of fructan synthesis and remobilisation regulation serves as a decisive event that results in anther abortion. Sterile pollen exhibits common traits of pollen starvation and impaired starch accumulation due to the inhibition of apoplastic transport starting from the LM stage, which is regulated by cell wall invertase TaIVR1 and Suc transporter TaSUT1.


Subject(s)
Carbohydrate Metabolism , Flowers , Plant Infertility , Pollen , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/metabolism , Triticum/physiology , Plant Infertility/genetics , Pollen/growth & development , Pollen/genetics , Pollen/metabolism , Flowers/growth & development , Flowers/genetics , Flowers/physiology , Flowers/metabolism , Starch/metabolism , Sucrose/metabolism , Fructans/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Proteins/genetics
5.
Food Microbiol ; 120: 104484, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431329

ABSTRACT

Trichothecium roseum is a typical necrotrophic fungal pathogen that not only bring about postharvest disease, but contribute to trichothecenes contamination in fruit and vegetables. Phospholipase D (PLD), as an important membrane lipid degrading enzyme, can produce phosphatidic acid (PA) by hydrolyzing phosphatidylcholine (PC) and phosphatidylinositol (PI). PA can promote the production of reactive oxygen species (ROS) by activating the activity of NADPH oxidase (NOX), thereby increasing the pathogenicity to fruit. However, the ROS mediated by TrPLD3 how to influence T. roseum infection to fruit by modulating phosphatidic acid metabolism, which has not been reported. In this study, the knockout mutant and complement strain of TrPLD3 were constructed through homologous recombination, TrPLD3 was tested for its effect on the colony growth and pathogenicity of T. roseum. The experimental results showed that the knockout of TrPLD3 inhibited the colony growth of T. roseum, altered the mycelial morphology, completely inhibited the sporulation, and reduced the accumulation of T-2 toxin. Moreover, the knockout of TrPLD3 significantly decreased pathogenicity of T. roseum on apple fruit. Compared to inoculated apple fruit with the wide type (WT), the production of ROS in apple infected with ΔTrPLD3 was slowed down, the relative expression and enzymatic activity of NOX, and PA content decreased, and the enzymatic activity and gene expression of superoxide dismutase (SOD) increased. In addition, PLD, lipoxygenase (LOX) and lipase activities were considerably decreased in apple fruit infected with ΔTrPLD3, the changes of membrane lipid components were slowed down, the decrease of unsaturated fatty acid content was alleviated, and the accumulation of saturated fatty acid content was reduced, thereby maintaining the cell membrane integrity of the inoculated apple fruit. We speculated that the decreased PA accumulation in ΔTrPLD3-inoculated apple fruit further weakened the interaction between PA and NOX on fruit, resulting in the reduction of ROS accumulation of fruits, which decreased the damage to the cell membrane and maintained the cell membrane integrity, thus reducing the pathogenicity to apple. Therefore, TrPLD3-mediated ROS plays a critical regulatory role in reducing the pathogenicity of T. roseum on apple fruit by influencing phosphatidic acid metabolism.


Subject(s)
Fruit , Hypocreales , Malus , Fruit/microbiology , Malus/microbiology , Reactive Oxygen Species/metabolism , Cell Membrane/metabolism , Membrane Lipids/metabolism
6.
Food Microbiol ; 119: 104434, 2024 May.
Article in English | MEDLINE | ID: mdl-38225046

ABSTRACT

Ypt GTPases are the largest subfamily of small GTPases involved in membrane transport. Here, a PeYpt7 gene deletion mutant of P. expansum was constructed. The ΔPeYpt7 mutant showed reduced colony growth with abnormal mycelial growth, reduced conidiation, and insufficient spore development. The mutation rendered the pathogen susceptible to osmotic stress and cell wall stressors. In addition, the absence of PeYpt7 reduced patulin production in P. expansum and significantly limited gene expression (PatG, PatH, PatI, PatD, PatF, and PatL). In addition, the mutant showed attenuated virulence in infected fruit and reduced expression of pathogenic factors was (PMG, PG, PL, and GH1). Thus, PeYpt7 modulates the growth, morphology, patulin accumulation, and pathogenicity of P. expansum by limiting the expression of related genes.


Subject(s)
Malus , Monomeric GTP-Binding Proteins , Patulin , Penicillium , Virulence/genetics , Monomeric GTP-Binding Proteins/metabolism , Fruit/metabolism
7.
Food Microbiol ; 121: 104496, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637067

ABSTRACT

Phospholipase D plays a critical regulatory role in the pathogenicity of filamentous fungi. However, the molecular mechanism of PLD regulating the pathogenicity of filamentous fungi has not been reported. In this research, the previously constructed TrPLD1 and TrPLD2 (TrPLDs) mutants were used as test strains. Firstly, the function of TrPLDs in Trichothecium roseum was studied. Then, the effects of TrPLDs on the pathogenicity of T. roseum and the quality of the inoculated apples were verified. The results suggested that the deletion of TrPLD1 delayed the spore germination of ΔTrPLD1 and inhibited germ tube elongation by down-regulating the expressions of TrbrlA, TrabaA and TrwetA. By down-regulating the extracellular enzyme-coding gene expressions, ΔTrPLD1 inhibited the degradation of apple fruit cell wall and the change of fatty acid content during infection, reduced the cell membrane permeability and malondialdehyde (MDA) content of apple fruit, thereby maintaining the integrity of fruit cell membrane, and reduced the pathogenicity of ΔTrPLD1 to apple and kept the quality of apple. However, ΔTrPLD2 did not have a significant effect on the infection process of apple fruit by the pathogen.


Subject(s)
Hypocreales , Malus , Malus/microbiology , Fruit/microbiology , Virulence/genetics
8.
Arch Virol ; 167(3): 995-998, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35133479

ABSTRACT

The complete genome sequence of peony leafroll-associated virus (PLRaV) was determined by deep sequencing of ribosomal-RNA-depleted total RNA extracted from a peony plant exhibiting leafroll symptoms. Further PCR and RACE analysis showed that the PLRaV genome consists of 15,406 nucleotides and contains 10 putative open reading frames, with an organization typical of members of the genus Ampelovirus, family Closteroviridae. Amino acid sequence comparisons showed that the viral heat shock protein 70 homolog (HSP70h) shared the highest sequence identity (41.7%) with the corresponding region of grapevine leafroll-associated virus 1, and the coat protein (CP) and RNA-dependent RNA polymerase (RdRp) shared the highest sequence identity (32.1% and 52.3%, respectively) with grapevine leafroll-associated virus 13. Phylogenetic analysis of the HSP70h, CP, and RdRp aa sequences showed that PLRaV clustered with members of subgroup I of the genus Ampelovirus.


Subject(s)
Closteroviridae , Genome, Viral , Paeonia , Closteroviridae/genetics , High-Throughput Nucleotide Sequencing , Open Reading Frames , Paeonia/virology , Phylogeny , Plant Diseases/virology , RNA, Viral/genetics
9.
BMC Plant Biol ; 21(1): 545, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34800968

ABSTRACT

BACKGROUND: Virus-induced gene silencing (VIGS) is one of the most convenient and powerful methods of reverse genetics. In vitro-inoculation of plant virus is an important method for studying the interactions between viruses and plants. Agrobacterium-based infiltration has been widely adopted as a tool for VIGS and in vitro-inoculation of plant virus. Most agrobacterium-based infiltration methods applied to VIGS and virus inoculation have the characteristics of low transformation efficiencies, long plant growth time, large amounts of plant tissue, large test spaces, and complex preparation procedures. Therefore, a rapid, simple, economical, and highly efficient VIGS and virus inoculation method is in need. Previous studies have shown that the selection of suitable plant tissues and inoculation sites is the key to successful infection. RESULTS: In this study, Tobacco rattle virus (TRV) mediated VIGS and Tomato yellow leaf curl virus (TYLCV) for virus inoculation were developed in tomato plants based on the agrobacterium tumefaciens-based infiltration by injection of the no-apical-bud stem section (INABS). The no-apical-bud stem section had a "Y- type" asymmetric structure and contained an axillary bud that was about 1-3 cm in length. This protocol provides high transformation (56.7%) and inoculation efficiency (68.3%), which generates VIGS transformants or diseased plants in a very short period (8 dpi). Moreover, it greatly reduces the required experimental space. This method will facilitate functional genomic studies and large-scale disease resistance screening. CONCLUSIONS: Overall, a rapid, simple, and highly efficient method for VIGS and virus inoculation by INABS was developed in tomato. It was reasonable to believe that it can be used as a reference for the other virus inoculation methods and for the application of VIGS to other crops (such as sweet potato, potato, cassava and tobacco) that develop axillary buds and can survive from cuttings.


Subject(s)
Agrobacterium/pathogenicity , Begomovirus/pathogenicity , Gene Silencing , Plant Breeding/methods , Plant Viruses/pathogenicity , Solanum lycopersicum/growth & development , Solanum lycopersicum/genetics , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/virology , Gene Expression Regulation, Plant , Solanum lycopersicum/virology , Plant Diseases/virology
10.
Phytopathology ; 111(12): 2309-2316, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34058858

ABSTRACT

Fusarium head blight (FHB), mainly caused by Fusarium graminearum, has become one of the most serious diseases that damage wheat. The TaPFT (pore-forming toxin-like) and TaHRC (histidine-rich calcium-binding protein) genes at the quantitative trait locus Fhb1 were identified to confer resistance to FHB in the wheat cultivar Sumai 3. In this study, a wheat ricin B-like lectin gene (designated TaRBL) that interacted with TaPFT was isolated by a yeast two-hybrid screen of a wheat cDNA library. A yeast two-hybrid and bimolecular fluorescence complementation study further verified that TaRBL interacted with TaPFT but not with TaHRC. Gene expression studies showed that upon F. graminearum infection, TaRBL expression was upregulated in resistant cultivars but downregulated in susceptible cultivars. Furthermore, knockdown of TaRBL expression by barley stripe mosaic virus-induced gene silencing significantly reduced the resistance of wheat to FHB in both the resistant cultivar Sumai 3 and the susceptible cultivar Jimai 22. Thus, we conclude that TaRBL encodes a ricin B-like lectin protein that interacts with TaPFT and is involved in resistance to FHB in wheat.


Subject(s)
Fusarium , Ricin , Disease Resistance/genetics , Plant Diseases , Quantitative Trait Loci , Triticum/genetics
11.
Ann Vasc Surg ; 74: 389-399, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33819580

ABSTRACT

OBJECTIVES: To explore the key genes, and correlated pathways in venous thromboembolism (VTE) via bioinformatic analysis, and expected our findings could contribute to the development of new biomarkers and therapeutic target for VTE. METHODS: Two VTE-related microarray expression profiles (GSE48000 and GSE19151) were downloaded from the Gene Expression Ominibus (GEO) database. Differentially expressed genes (DEGs) were analyzed using limma package, and overlapping DEGs were identified form the above two expression profiles. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEEG) pathway enrichment analyses were performed by DAVID. Protein-protein interaction (PPI) network was constructed by using STRING and visualized with Cytoscape. Furthermore, module analysis plus centrality analysis of the PPI network were executed to identify the potential key genes. Finally, the pathway analysis was performed using GenCLiP 3.0. RESULTS: A total of 173 DEGs (125 upregulated and 48 downregulated) were identified. GO analysis demonstrated that DEGs were mainly enriched in viral life cycle, ribosome and structural constituent of ribosome. Meanwhile, KEGG pathway analysis showed that these genes were enriched in ribosome, Parkinson's disease and cell cycle. Additionally, one most significant module and 12 hub genes were found. Finally, 6 key genes, namely ISG15, RPS15A, MRPL13, ICT1, MRPL15 and RPLP0, with high centrality features were identified. These key genes were mainly involved in translation, metabolism of proteins and ribosome pathway. CONCLUSIONS: In summary, these 6 identified genes and correlated pathways should play an important role in VTE, which can provide new insight into the molecular mechanism, potential biomarkers and therapeutic targets associated with VTE.


Subject(s)
Gene Expression , Metabolic Networks and Pathways , Protein Interaction Maps , Venous Thromboembolism/genetics , Venous Thromboembolism/metabolism , Biomarkers , Computational Biology , Gene Expression Profiling , Gene Ontology , Humans , Oligonucleotide Array Sequence Analysis
12.
Plant Dis ; 104(4): 1041-1047, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31999220

ABSTRACT

The gray mold caused by Botrytis cinerea has a significant impact on tomato production throughout the world. Although the synthetic fungicide fludioxonil can effectively control B. cinerea, there have been several reports of resistance to this fungicide. This study indicated that all of the fludioxonil-resistant strains tested, including one field-resistant isolate and four laboratory strains, had reduced fitness relative to sensitive isolates. In addition to having reduced growth, sporulation, and pathogenicity, the resistant strains were more sensitive to osmotic stress and had significantly (P < 0.05) higher peroxidase activity. BOs1, a kinase in the high-osmolarity glycerol stress response signal transduction pathway, is believed to harbor mutations related to fludioxonil resistance. Sequence analysis of their BOs1 sequences indicated that the fludioxonil-resistant field isolate, XXtom1806, had four point mutations resulting in four amino acid changes (I365S, S531G, T565N, and T1267A) and three amino acids (I365S, S531G, and T565N) in the histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis receptors, and phosphatases domain, which associated with fludioxonil binding. Similarly, two of the laboratory strains, XXtom-Lab1 and XXtom-Lab4, had three (Q846S, I1126S, and G415D) and two (P1051S and V1241M) point mutations, respectively. A third strain, XXtom-lab3, had a 52-bp insertion that included a stop codon at amino acid 256. Interestingly, the BOs1 sequence of the fourth laboratory strain, XXtom-lab5, was identical to those of the sensitive isolates, indicating that an alternative resistance mechanism exists. The study also found evidence of positive cross-resistance between fludioxonil and the dicarboximide fungicides procymidone and iprodione, but no cross-resistance was detected with any other fungicides tested, including boscalid, carbendazim, tebuconazole, and fluazinam.


Subject(s)
Botrytis , Drug Resistance, Fungal , China , Dioxoles , Fungal Proteins , Plant Diseases , Pyrroles
13.
Plant Dis ; 101(12): 2098-2103, 2017 Dec.
Article in English | MEDLINE | ID: mdl-30677378

ABSTRACT

Sweepoviruses (a group of begomoviruses that infect plants in the family Convolvulaceae) have monopartite genomes that consist of a circular, single-stranded DNA molecule. Seventy-three complete genomic sequences of sweepoviruses were characterized from the sweet potato samples collected in China. Eight sweepovirus species, including two novel species with proposed names of Sweet potato leaf curl China virus 2 and Sweet potato leaf curl Sichuan virus 2, were identified among these samples. One species, Sweet potato leaf curl Canary virus, was first identified in China. Among the 13 identified strains of Chinese sweepoviruses, 4 were newly discovered. Sweet potato leaf curl virus had the highest frequency (53.4%) of occurrence in the sweet potato samples from China. The similarities among the 73 sweepovirus genomic sequences were between 77.6 and 100.0%. Multiple recombination events were identified, and 16 recombinant sequences were determined. Recombination was observed between different species and between different strains of the same species. Recombination breakpoints were mainly localized on the intergenic region and in three open reading frames (AC1, AV1, and AV2). This study is the first comprehensive report on the genetic diversity of sweepoviruses in China.


Subject(s)
Begomovirus , Genetic Variation , Genome, Viral , Ipomoea batatas , Begomovirus/classification , Begomovirus/genetics , China , Genome, Viral/genetics , Ipomoea batatas/virology , Phylogeny , Recombination, Genetic
14.
Arch Virol ; 159(6): 1537-40, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24378821

ABSTRACT

The complete genome sequence of a novel monopartite begomovirus, isolate G-YU-12-10, was obtained from sweet potato samples exhibiting severe leaf curl symptoms in Xinxiang, Henan Province, China. The genome sequence consisted of 2766 nucleotides and encoded two open reading frames (ORFs) (AV1 and AV2) in the viral-sense strand and four ORFs (AC1-AC4) in the complementary-sense strand. The genome of isolate G-YU-12-10 was closely related to other sweet-potato-infecting begomoviruses (sweepoviruses) and shared the highest nucleotide sequence identity (89.0 %) with sweet potato leaf curl China Sichuan virus (SPLCCSV, KC488316). Thus, the G-YU-12-10 isolate represents a novel species according to the demarcation criteria of species in the genus Begomovirus, for which the name Sweet potato leaf curl Henan virus (SPLCHnV) is proposed. Interspecific recombination analysis supported the recombination hypothesis, indicating that recombination with other begomoviruses had taken place within AC2 and AC3 ORFs of SPLCHnV and also in the non-coding intergenic region (IR).


Subject(s)
Begomovirus/genetics , DNA, Viral/chemistry , DNA, Viral/genetics , Genome, Viral , Ipomoea batatas/virology , Begomovirus/isolation & purification , China , Cluster Analysis , Molecular Sequence Data , Open Reading Frames , Phylogeny , Plant Diseases/virology , Recombination, Genetic , Sequence Analysis, DNA , Sequence Homology
15.
J Fungi (Basel) ; 10(3)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38535172

ABSTRACT

Penicillium expansum is the predominant causal agent causing blue mold in postharvest fresh Codonopsis pilosula during storage. The pathogen reduces the yield and affects the quality of C. pilosula and even generates patulin, threatening human health. In this study, postharvest fresh, healthy C. pilosula was sprayed with P. expansum, and the control effect of ozone on postharvest diseases of C. pilosula was studied, and the effect of ozone on the contents in the main active ingredients of C. pilosula was compared; finally, the effect of ozone on reactive oxygen species (ROS) metabolism in C. pilosula was analyzed. The results showed that 2 mg L-1 ozone application significantly inhibited the occurrence of postharvest blue mold caused by P. expansum, reduced weight loss rate, controlled the accumulation of patulin and maintained the contents of the main active components in C. pilosula. The study will provide a theoretical basis for ozone treatment to control the occurrence of postharvest diseases of C. pilosula.

16.
Biomed Pharmacother ; 172: 116313, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38377736

ABSTRACT

The aim of this article is to introduce the roles and mechanisms of the JAK2/STAT3 pathway in various cardiovascular diseases, such as myocardial fibrosis, cardiac hypertrophy, atherosclerosis, myocardial infarction, and myocardial ischemiareperfusion. In addition, the effects of phytochemical ingredients and different natural plants, mainly traditional Chinese medicines, on the regulation of different cardiovascular diseases via the JAK2/STAT3 pathway are discussed. Surprisingly, the JAK2 pathway has dual roles in different cardiovascular diseases. Future research should focus on the dual regulatory effects of different phytochemical ingredients and natural plants on JAK2 to pave the way for their use in clinical trials.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Myocardial Infarction , Humans , Cardiovascular Diseases/drug therapy , Medicine, Chinese Traditional , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Janus Kinase 2 , STAT3 Transcription Factor
17.
Cell Rep ; 43(6): 114282, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38795342

ABSTRACT

The suppressive effect of insulin on food intake has been documented for decades. However, whether insulin signals can encode a certain type of nutrients to regulate nutrient-specific feeding behavior remains elusive. Here, we show that in female Drosophila, a pair of dopaminergic neurons, tritocerebrum 1-dopaminergic neurons (T1-DANs), are directly activated by a protein-intake-induced insulin signal from insulin-producing cells (IPCs). Intriguingly, opto-activating IPCs elicits feeding inhibition for both protein and sugar, while silencing T1-DANs blocks this inhibition only for protein food. Elevating insulin signaling in T1-DANs or opto-activating these neurons is sufficient to mimic protein satiety. Furthermore, this signal is conveyed to local neurons of the protocerebral bridge (PB-LNs) and specifically suppresses protein intake. Therefore, our findings reveal that a brain-derived insulin signal encodes protein satiety and suppresses feeding behavior in a nutrient-specific manner, shedding light on the functional specificity of brain insulin signals in regulating behaviors.


Subject(s)
Drosophila Proteins , Insulin , Signal Transduction , Animals , Female , Brain/metabolism , Dopaminergic Neurons/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Feeding Behavior , Insulin/metabolism , Nutrients/metabolism , Satiety Response
18.
Nanoscale ; 16(4): 1742-1750, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38197428

ABSTRACT

Phosphorene nanoribbons (PNRs) can be synthesised in intrinsically scalable methods from intercalation of black phosphorus (BP), however, the mechanism of ribbonisation remains unclear. Herein, to investigate the point at which nanoribbons form, we decouple the two key synthesis steps: first, the formation of the BP intercalation compound, and second, the dissolution into a polar aprotic solvent. We find that both the lithium intercalant and the negative charge on the phosphorus host framework can be effectively removed by addition of phenyl cyanide to return BP and investigate whether fracturing to ribbons occurred after the first step. Further efforts to exfoliate mechanically with or without solvent reveal that the intercalation step does not form ribbons, indicating that an interaction between the amidic solvent and the intercalated phosphorus compound plays an important role in the formation of nanoribbons.

19.
Virus Genes ; 47(3): 591-4, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24057883

ABSTRACT

The complete genome sequence of a new monopartite begomovirus isolate SC-1 was obtained from sweet potato samples in Sichuan province, China. The viral genome consists of 2,764 nucleotides (nt) and encodes two open reading frames (ORFs) called AV1 and AV2 genes in the viral-sense strand and four ORFs (AC1-AC4) in the complementary-sense strand. Sequence comparisons revealed that it shared the highest level of nt sequence identity (81.2 %) with Sweet potato leaf curl Georgia virus (AF326775). Phylogenetic analysis showed that the SC-1 genome was in a separate clade from other 29 begomovirus isolates. Thus, the SC-1 isolate is a novel species according to the demarcation criteria of species in the genus Begomovirus, for which the name "Sweet potato leaf curl China Sichuan Virus" (SPLCCSV) is proposed. Recombination analysis suggests that SPLCCSV has sequences derived from recombination between Sweet potato leaf curl virus (SPLCV) isolate GZ01 (JX286653) and SPLCV isolate Merremia N4 (DQ644563).


Subject(s)
Begomovirus/isolation & purification , Genome, Viral , Ipomoea batatas/virology , Plant Diseases/virology , Base Sequence , Begomovirus/classification , Begomovirus/genetics , China , Molecular Sequence Data , Open Reading Frames , Phylogeny
20.
J Fungi (Basel) ; 9(8)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37623614

ABSTRACT

Fusarium dry rot is one of the major potato diseases during storage after harvest, which not only results in quality degradation but also causes great economic losses. The disease can be elicited by some species of Fusarium, and the pathogenic fungi of Fusarium causing potato dry rot are considerably diverse in various countries and regions. The disease caused by Fusarium spp. is associated with mycotoxins accumulation, which has phytotoxic and mycotoxic effects on humans and animals. Chemical synthetic fungicide is considered the main control measure for the Fusarium dry rot of potato; nevertheless, it is unfortunate that persistent application inevitably results in the emergency of a resistant strain and environmental contamination. A comprehensive disease control strategy includes potato cultivar selection, appropriate cultural practices (crop rotation, cultivate pattern, fertilization, and irrigation), harvesting processes and postharvest treatments (harvesting, classification, packaging, wound healing), and storage conditions (environmental disinfection, temperature, humidity and gas composition) along with the application of fungicide pre-harvest or post-harvest. Recently, emerging studies have indicated that eco-friendly strategies include physical control, chemical methods (such as the application of generally-recognised-as-safe (GRAS) compounds or chemical (elicitors) and biological control have been introduced to combat the Fusarium dry rot of potato.

SELECTION OF CITATIONS
SEARCH DETAIL