Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Angiogenesis ; 26(1): 19-36, 2023 02.
Article in English | MEDLINE | ID: mdl-35829860

ABSTRACT

Tumor-induced lymphangiogenesis promotes the formation of new lymphatic vessels, contributing to lymph nodes (LNs) metastasis of tumor cells in both mice and humans. Vessel sprouting appears to be a critical step in this process. However, how lymphatic vessels sprout during tumor lymphangiogenesis is not well-established. Here, we report that S100A4 expressed in lymphatic endothelial cells (LECs) promotes lymphatic vessel sprouting in a growing tumor by regulating glycolysis. In mice, the loss of S100A4 in a whole body (S100A4-/-), or specifically in LECs (S100A4ΔLYVE1) leads to impaired tumor lymphangiogenesis and disrupted metastasis of tumor cells to sentinel LNs. Using a 3D spheroid sprouting assay, we found that S100A4 in LECs was required for the lymphatic vessel sprouting. Further investigations revealed that S100A4 was essential for the position and motility of tip cells, where it activated AMPK-dependent glycolysis during lymphatic sprouting. In addition, the expression of S100A4 in LECs was upregulated under hypoxic conditions. These results suggest that S100A4 is a novel regulator of tumor-induced lymphangiogenesis. Targeting S100A4 in LECs may be a potential therapeutic strategy for lymphatic tumor metastasis.


Subject(s)
Endothelial Cells , Lymphatic Vessels , Mice , Humans , Animals , Endothelial Cells/metabolism , Lymphatic Vessels/metabolism , Lymphangiogenesis/physiology , Lymphatic Metastasis/pathology , S100 Calcium-Binding Protein A4/genetics , S100 Calcium-Binding Protein A4/metabolism
2.
Eur J Immunol ; 52(6): 978-993, 2022 06.
Article in English | MEDLINE | ID: mdl-35340022

ABSTRACT

Progressive loss of effector functions, especially IFN-γ secreting capability, in effector memory CD8+ T (CD8+ TEM ) cells plays a crucial role in asthma worsening. However, the mechanisms of CD8+ TEM cell dysfunction remain elusive. Here, we report that S100A4 drives CD8+ TEM cell dysfunction, impairing their protective memory response and promoting asthma worsening in an ovalbumin (OVA)-induced asthmatic murine model. We find that CD8+ TEM cells contain two subsets based on S100A4 expression. S100A4+ subsets exhibit dysfunctional effector phenotypes with increased proliferative capability, whereas S100A4- subsets retain effector function but are more inclined to apoptosis, giving rise to a dysfunctional CD8+ TEM cell pool. Mechanistically, S100A4 upregulation of mitochondrial metabolism results in a decrease of acetyl-CoA levels, which impair the transcription of effector genes, especially ifn-γ, facilitating cell survival, tolerance, and memory potential. Our findings thus reveal general insights into how S100A4+ CD8+ TEM cells reprogram into dysfunctional and less protective phenotypes to aggravate asthma.


Subject(s)
Asthma , CD8-Positive T-Lymphocytes , Animals , Asthma/metabolism , CD8-Positive T-Lymphocytes/metabolism , Immune Tolerance , Immunologic Memory/genetics , Interferon-gamma/metabolism , Mice , Ovalbumin/metabolism
3.
Health Commun ; : 1-9, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37941368

ABSTRACT

Many people like to share their physical activity (PA) experiences on social network sites (SNSs). Drawing on social cognitive theory, we examined in two studies whether observing others' workouts on SNSs could improve the observer's PA via the mediation of workout self-efficacy. In study 1, a two-wave longitudinal online survey of 461 participants, exposure to SNS workout posts was positively associated with PA through workout self-efficacy. In study 2, an online experimental study with 124 participants, manipulating perceived similarity revealed that it moderates between exposure to SNS workout posts and workout self-efficacy. Moreover, moderation of the indirect effect between exposure to SNS workout posts and PA via workout self-efficacy was supported. These findings reveal the mechanisms and boundary conditions of social media exposure improving workout self-efficacy and promoting PA.

4.
Pestic Biochem Physiol ; 196: 105589, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945240

ABSTRACT

UDP-glycosyltransferase (UGT) is the major detoxification enzymes of phase II involved in xenobiotics metabolism, which potentially mediates the formation of insect resistance. Previous transcriptome sequencing studies have found that several UGT genes were upregulated in indoxacarb resistant strains of Spodoptera litura, but whether these UGT genes were involved in indoxacarb resistance and their functions in resistance were unclear. In this study, the UGTs inhibitor, 5-nitrouracil, enhanced the toxicity of indoxacarb against S. litura, preliminarily suggesting that UGTs were participated in indoxacarb resistance. Two UGT genes, UGT33J17 and UGT41D10 were upregulated in the resistant strains and could be induced by indoxacarb. Alignment of UGT protein sequences revealed two conserved donor-binding regions with several key residues that interact with catalytic sites and sugar donors. Further molecular modeling and docking analysis indicated that two UGT proteins were able to stably bind indoxacarb and N-decarbomethoxylated metabolite (DCJW). Furthermore, knockdown of UGT33J17 and UGT41D10 decreased viability of Spli-221 cells and enhanced susceptibility of larvae to indoxacarb. Transgenic overexpression of these genes reduced the toxicity of indoxacarb in Drosophila melanogaster. This work revealed that upregulation of UGT genes significantly contributes to indoxacarb resistance in S. litura, and is of great significance for the development of integrated and sustainable management strategies for resistant pests in the field.


Subject(s)
Insecticides , Animals , Spodoptera/genetics , Spodoptera/metabolism , Insecticides/pharmacology , Drosophila melanogaster/metabolism , Larva/genetics , Larva/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Uridine Diphosphate
5.
Proteomics ; 22(18): e2200020, 2022 09.
Article in English | MEDLINE | ID: mdl-35779011

ABSTRACT

Somatic cell nuclear transfer (SCNT) shows great application value in the generation of transgenic animals, protection of endangered species, and therapeutic cloning. However, the cloning efficiency is still very low, which greatly restricts its application. Compared to fertilized embryos, cloned embryos lack the sperm proteins, which are considered to play an important role in embryonic development. Here, we compared the sperm proteome, with that of donor fibroblasts and oocytes, and identified 342 proteins unique to sperm, with 42 being highly expressed. The 384 proteins were mainly enriched in the categories of post-translational modification and cytoskeletal arrangement. Extracts of soluble sperm or fibroblast proteins were injected into cloned embryos, and the result showed that injection of sperm protein significantly inhibited abnormal embryonic cleavage, significantly decreased the level of trimethylated histone H3 Lys9 (H3K9me3) and the apoptotic index, and increased the inner cell mass (ICM)-to-trophectoderm (TE) ratio. More importantly, the sperm proteins also significantly enhanced the birthrate. The results of in vitro and in vivo experiments demonstrate that sperm-derived proteins improve embryo cloning efficiency. Our findings not only provide new insights into ways to overcome low cloning efficiency, but also add to the understanding of sperm protein function.


Subject(s)
Cloning, Organism , Semen , Animals , Blastocyst , Cloning, Molecular , Cloning, Organism/methods , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Epigenesis, Genetic , Female , Male , Pregnancy , Rabbits , Spermatozoa
6.
J Antimicrob Chemother ; 77(2): 391-399, 2022 02 02.
Article in English | MEDLINE | ID: mdl-34747464

ABSTRACT

OBJECTIVES: The msr(E)-mph(E) operon exists widely in diverse species of bacteria and msr(E) and mph(E) genes confer high resistance to macrolides. We aimed to explore whether macrolides regulate the transcription of the operon. METHODS: Antibiotic resistance genes in clinical isolates of Klebsiella pneumoniae were analysed by WGS. The transcription of the msr(E)-mph(E) operon was investigated by quantitative PCR. Construction of enhanced green fluorescent protein (eGFP) reporter plasmids, gene knockout and complementation experiments were used to further explore the induction mechanism of macrolides for the operon. Sequence analysis was finally used to investigate whether the operon exists widely in diverse species of bacteria. RESULTS: We originally found that the treatment of a pandrug-resistant isolate of K. pneumoniae (KP1517) with macrolides obviously up-regulated the msr(E)-mph(E) operon, which was further confirmed in another nine clinical isolates of K. pneumoniae. The induction mechanism of macrolides for the operon was partly elucidated. Macrolides could activate the operon promoter, and the J10/J35 regions (J10: 5'-AGTTATCAT-3'; J35: 5'-TTGTCT-3') of the promoter were determined. Histone-like nucleoid-structuring protein (HNS) and cAMP receptor protein (CRP) were involved in the erythromycin-mediated activation of the operon promoter. The 476 strains of bacteria carrying the msr(E)-mph(E) operon currently in the NCBI database are mainly Acinetobacter baumannii (158; 33%), K. pneumoniae (95; 20%), Escherichia coli (26; 5%) and Proteus mirabilis (25; 5%). They were mainly isolated from human clinical samples (287; 60%) and had a wide geographical distribution. CONCLUSIONS: Macrolides could activate transcription of the msr(E)-mph(E) operon through HNS and CRP in K. pneumoniae and E. coli, and this might occur in diverse species of bacteria.


Subject(s)
Bacterial Proteins , Cyclic AMP Receptor Protein , Macrolides , Operon , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyclic AMP Receptor Protein/genetics , Cyclic AMP Receptor Protein/metabolism , DNA-Binding Proteins , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli Proteins , Histones/genetics , Histones/metabolism , Humans , Klebsiella pneumoniae/genetics , Macrolides/pharmacology , Transcriptional Activation
7.
PLoS Pathog ; 16(12): e1009019, 2020 12.
Article in English | MEDLINE | ID: mdl-33315931

ABSTRACT

Testicular invasion and persistence are features of Zika virus (ZIKV), but their mechanisms are still unknown. Here, we showed that S100A4+ macrophages, a myeloid macrophage subpopulation with susceptibility to ZIKV infection, facilitated ZIKV invasion and persistence in the seminiferous tubules. In ZIKV-infected mice, S100A4+ macrophages were specifically recruited into the interstitial space of testes and differentiated into interferon-γ-expressing M1 macrophages. With interferon-γ mediation, S100A4+ macrophages down-regulated Claudin-1 expression and induced its redistribution from the cytosol to nucleus, thus increasing the permeability of the blood-testis barrier which facilitated S100A4+ macrophages invasion into the seminiferous tubules. Intraluminal S100A4+ macrophages were segregated from CD8+ T cells and consequently helped ZIKV evade cellular immunity. As a result, ZIKV continued to replicate in intraluminal S100A4+ macrophages even when the spermatogenic cells disappeared. Deficiencies in S100A4 or interferon-γ signaling both reduced ZIKV infection in the seminiferous tubules. These results demonstrated crucial roles of S100A4+ macrophages in ZIKV infection in testes.


Subject(s)
Macrophages/metabolism , S100 Calcium-Binding Protein A4/immunology , Zika Virus Infection/immunology , Animals , Claudin-1/genetics , Claudin-1/metabolism , Interferon-gamma/metabolism , Male , Mice , Mice, Inbred C57BL , RNA, Viral , S100 Calcium-Binding Protein A4/metabolism , Seminiferous Tubules/virology , Testis/immunology , Testis/virology , Virus Replication/immunology , Virus Replication/physiology , Zika Virus/immunology , Zika Virus Infection/virology
8.
Molecules ; 27(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36500444

ABSTRACT

Photothermal therapy (PTT), as a noninvasive and local treatment, has emerged as a promising anti-tumor strategy with minimal damage to normal tissue under spatiotemporally controllable irradiation. However, the necrosis of cancer cells during PTT will induce an inflammatory reaction, which may motivate tumor regeneration and resistance to therapy. In this study, polyoxometalates and a chloroquine diphosphate (CQ) co-loaded metal-organic framework nanoplatform with hyaluronic acid coating was constructed for efficient ovarian cancer therapy and anti-inflammation. Our results demonstrated that this nanoplatform not only displayed considerable photothermal therapeutic capacity under 808 nm near-infrared laser, but also had an impressive anti-inflammatory capacity by scavenging reactive oxygen species in the tumor microenvironment. CQ with pH dependence was used for the deacidification of lysosomes and the inhibition of autophagy, cutting off a self-protection pathway induced by cell necrosis-autophagy, and achieving the synergistic treatment of tumors. Therefore, we combined the excellent properties of these materials to synthesize a nanoplatform and explored its therapeutic effects in various aspects. This work provides a promising novel prospect for PTT/anti-inflammation/anti-autophagy combinations for efficient ovarian cancer treatment through the fine tuning of material design.


Subject(s)
Hyperthermia, Induced , Metal-Organic Frameworks , Nanoparticles , Ovarian Neoplasms , Humans , Female , Phototherapy/methods , Metal-Organic Frameworks/pharmacology , Nanoparticles/chemistry , Ovarian Neoplasms/therapy , Anti-Inflammatory Agents , Necrosis , Cell Line, Tumor , Tumor Microenvironment
9.
Int J Mol Sci ; 23(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35008738

ABSTRACT

The aim of the present investigation was to determine the active ingredients in Amaranthus tricolor L. leaves and develop a biological pesticide. Organic solvent extraction, column chromatography, liquid chromatography, ODS-C18 reverse elution, Sephadex LH-20 gel filtration, H spectrum, and C spectrum were used to isolate the pure product for an assessment of the agricultural activity and bacteriostatic mechanisms. The results showed that the activity of the crude extract following carbon powder filtration was 1.63-fold that of the non-filtered extract. Further isolation was performed to obtain two pure products, namely, hydroxybenzoic acid (HBA) and benzo[b]furan-2-carboxaldehyde (BFC), and their molecular formulas and molecular weights were C7H6O3 and 138.12, and C9H6O2 and 146.12, respectively. Our study is the first to determine that HBA has bacteriostatic activity (MIC 125 µg/mL) and is also the first to isolate BFC from A. tricolor. The ultrastructure observation results showed that HBA caused the bacteria to become shriveled, distorted, and deformed, as well as exhibit uneven surfaces. After HBA treatment, 70 differentially expressed metabolites were detected in the bacteria, of which 9 were downregulated and 61 were upregulated. The differentially expressed metabolites were mainly strigolactones, organic acids and derivatives, fatty acids, benzene and substituted benzene derivatives, amino acids and associated metabolites, and alcohols and amines. Among all of the downregulated differentially expressed metabolites, MEDP1280 was the most critical, as it participates in many physiological and biochemical processes. The enrichment analysis showed that the differentially expressed metabolites mainly participate in tyrosine metabolism, biosynthesis of amino acids, cysteine and methionine metabolism, and arginine and proline metabolism. Additionally, HBA was found to disrupt cell membrane permeability and integrity, causing the leakage of substances and apoptosis. The physiological and biochemical test results showed that HBA could increase the pyruvate levels in bacteria but could decrease the activities of respiratory enzymes (malate dehydrogenase (MDH) and NADH oxidase) and antioxidant enzymes (superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX)). Inverse molecular docking was used to study the binding between HBA and respiratory and antioxidant enzymes. The results showed that HBA could bind to MDH, NADH oxidase, SOD, and GSH-PX, suggesting that these enzymes may be the effector targets of HBA. Conclusion: The optimal active ingredient in A. tricolor that can inhibit Acidovorax avenae subsp. citrulli was identified as HBA. HBA mainly disrupts the cell membrane, damages the metabolic system, and inhibits respiration and antioxidant enzyme activity to control bacterial growth. These results provide a reference for the further development of biological pesticides.


Subject(s)
Acetates/chemistry , Amaranthus/chemistry , Anti-Bacterial Agents/pharmacology , Comamonadaceae/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Antifungal Agents/pharmacology , Antioxidants/metabolism , Bacteria/drug effects , Bacteria/ultrastructure , Carbon-13 Magnetic Resonance Spectroscopy , Cell Membrane Permeability/drug effects , Esters/isolation & purification , Hydroxybenzoates/chemistry , Hydroxybenzoates/pharmacology , Metabolome/drug effects , Microbial Sensitivity Tests , Models, Molecular , Proton Magnetic Resonance Spectroscopy , Pyruvic Acid/metabolism
10.
J Cell Mol Med ; 24(11): 5973-5983, 2020 06.
Article in English | MEDLINE | ID: mdl-32307910

ABSTRACT

Fibrosis is characterized by fibroblast activation, extracellular matrix (ECM) accumulation and infiltration of inflammatory cells that sometimes leads to irreversible organ dysfunction. Considerable evidence now indicates that inflammation plays a critical role in the initiation and progression of organ fibrosis. S100A4 protein, a ubiquitous member of the S100 family, has recently been discovered as a potential factor implicated in fibrotic diseases. S100A4 protein is released at inflammatory site and has a certain biological function to promote cell motility, invasion, ECM remodelling, autophagy and angiogenesis. In addition, extracellular S100A4 is also a potential causation of inflammatory processes and induces the release of cytokines and growth factors under different pathological conditions. Elevated S100A4 level in patients' serum closely correlates with disease activity in several fibrotic diseases and serves as a useful biomarker for diagnosis and monitoring disease progression. Analyses of knockout mouse models have identified a functional role of extracellular S100A4 protein in fibrotic diseases, suggesting that suppressing its expression, release or function might be a promising therapeutic strategy. This review will focus on the role of extracellular S100A4 as a key regulator of pro-inflammatory signalling pathways and its relative biological processes involved in the pathogenesis of fibrosis.


Subject(s)
Disease , Extracellular Space/metabolism , S100 Calcium-Binding Protein A4/metabolism , Animals , Fibrosis , Humans , Models, Biological , Molecular Targeted Therapy
11.
Amino Acids ; 52(8): 1139-1147, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32789611

ABSTRACT

Sepsis is a severe clinical condition that is a result of the cellular and biochemical response to infection. The present study evaluated the therapeutic potential of tryptophan against lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats. Rats were grouped into sham, control (ALI), and ALI + 1, 25, and 50 mg/kg body weight L-tryptophan. Supplementation with 1, 25, and 50 mg/kg L-tryptophan reduced the total protein content by 4.9%, 33.4%, and 64.5%; the levels of neutrophils (12.5%, 31.8%, and 65.1%), lymphocytes (15.1%, 41.7%, and 63.3%), total cells (12.6%, 42.4%, and 65.7%); lipid peroxidation (9.4%, 28.4%, and 68.7%); myeloperoxidase levels (12.1%, 33.4%, and 68.2%); migration inhibitory factor (12.7%, 39.5%, and 68.2%), interleukin (IL)-8 (5.5%, 46.8%, and 78.5%), tumor necrosis factor (TNF)-α (10.8%, 39.8%, and 72.2%), respectively. Supplementation with 1, 25, and 50 mg/kg L-tryptophan reduced mRNA expression of TNF-α (4.5%, 21.8%, and 41.8%), IL-1ß (5.2%, 17.9%, and 46.2%); and the protein expression of TNF-α (2.8%, 15.2%, and 35.7%) and IL-1ß (5.2%, 15.6%, and 28.6%), respectively. It also reduced glutathione (to near normal levels), neutrophilic infiltration and edema, and the wet/dry ratio of lung tissue. It significantly increased catalase, superoxide dismutase, glutathione peroxidase levels, as well as the partial pressure of oxygen (PaO2) by 21.9%, 52.8%, and 87.4%, respectively. Altogether, our results suggest that supplementation with L-tryptophan has a strong protective effect against LPS-induced ALI.


Subject(s)
Acute Lung Injury/drug therapy , Tryptophan/therapeutic use , Animals , Disease Models, Animal , Interleukin-8/blood , Lipid Peroxidation/drug effects , Lipopolysaccharides , Lung/metabolism , Lymphocytes/drug effects , Macrophage Migration-Inhibitory Factors/blood , Male , Neutrophils/drug effects , Peroxidase/metabolism , Rats , Rats, Wistar , Tryptophan/pharmacology , Tumor Necrosis Factor-alpha/blood
12.
Pestic Biochem Physiol ; 147: 32-39, 2018 May.
Article in English | MEDLINE | ID: mdl-29933990

ABSTRACT

The purpose of this research was to explore the effect of phenazine-1-carboxamide (PCN) on Rhizoctonia solani and to elucidate its mechanisms of action. The toxicity of PCN to R. solani was measured using a growth rate method. The results indicated that PCN inhibited R. solani with a 50% effective concentration (EC50) of 9.0934µg/mL. The mycelia of R. solani were then exposed to 18.18µg/mL (2EC50) of PCN. Optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to observe the effects of PCN on mycelial morphology and ultrastructure. Following the PCN treatment, the optical microscopy observations revealed that the mycelia appeared twisted; the branching mycelia grew, but the main mycelia did not grow following branching; and the mycelial roots possessed more vacuoles. SEM observations revealed that the mycelia were locally swollen and exhibited a sharp decrease in prominence. TEM observations showed that the cell wall became thin and deformed; the mitochondria disappeared; the septum twisted; and most of the organelles were difficult to discern. Conversely, all of the organelles could be clearly observed in the control. We then used real-time quantitative PCR and an enzyme activity testing kit to further explore the effects of PCN on the cell wall and mitochondria. Physiological and biochemical results demonstrated that both the cell wall and mitochondria constitute are PCN targets. PCN inhibited the activities of chitin synthetase and complex I of the mitochondria electron transport chain. Molecular experiments demonstrated that PCN controlled the growth of R. solani mycelia by inhibiting the expression level of chitin synthetase genes. Future research on PCN should investigate its influence on metabolic pathways, thereby aiding in the potential development of novel pesticides.


Subject(s)
Antifungal Agents/toxicity , Mycelium/drug effects , Phenazines/toxicity , Rhizoctonia/drug effects , Cell Wall/drug effects , Chitin Synthase/antagonists & inhibitors , Chitin Synthase/genetics , Crops, Agricultural/microbiology , Electron Transport Complex I/antagonists & inhibitors , Genes, Fungal , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Mitochondria/drug effects , Mitochondria/enzymology , Mycelium/growth & development , Mycelium/ultrastructure , Plant Diseases/prevention & control , Plant Roots/microbiology , Real-Time Polymerase Chain Reaction , Rhizoctonia/enzymology , Rhizoctonia/growth & development , Rhizoctonia/ultrastructure
13.
Biochem Biophys Res Commun ; 474(2): 277-283, 2016 05 27.
Article in English | MEDLINE | ID: mdl-27103440

ABSTRACT

AICAR (5-Aminoimidazole-4-carboxamide riboside or acadesine) is an AMP-activated protein kinase (AMPK) agonist, which induces cytotoxic effect to several cancer cells. Its potential activity in prostate cancer cells and the underlying signaling mechanisms have not been extensively studied. Here, we showed that AICAR primarily induced programmed necrosis, but not apoptosis, in prostate cancer cells (LNCaP, PC-3 and PC-82 lines). AICAR's cytotoxicity to prostate cancer cells was largely attenuated by the necrosis inhibitor necrostatin-1. Mitochondrial protein cyclophilin-D (CYPD) is required for AICAR-induced programmed necrosis. CYPD inhibitors (cyclosporin A and sanglifehrin A) as well as CYPD shRNAs dramatically attenuated AICAR-induced prostate cancer cell necrosis and cytotoxicity. Notably, AICAR-induced cell necrosis appeared independent of AMPK, yet requiring reactive oxygen species (ROS) production. ROS scavengers (N-acetylcysteine and MnTBAP), but not AMPKα shRNAs, largely inhibited prostate cancer cell necrosis and cytotoxicity by AICAR. In summary, the results of the present study demonstrate mechanistic evidences that AMPK-independent programmed necrosis contributes to AICAR's cytotoxicity in prostate cancer cells.


Subject(s)
AMP-Activated Protein Kinases/antagonists & inhibitors , AMP-Activated Protein Kinases/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Reactive Oxygen Species/metabolism , Ribonucleotides/administration & dosage , Aminoimidazole Carboxamide/administration & dosage , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Male , Necrosis/pathology , Prostatic Neoplasms/drug therapy , Treatment Outcome
14.
Yao Xue Xue Bao ; 50(9): 1101-6, 2015 Sep.
Article in Zh | MEDLINE | ID: mdl-26757545

ABSTRACT

This study is to evaluate the therapeutic effect of fibroblast growth factor 21 (FGF21) on type 2 diabetic mice model and to provide mechanistic insights into its therapeutic effect. Type 2 diabetic animal model was established with high calorie fat diet and low dose streptozotocin (STZ) injection. Mice were then randomized into 5 groups: model control, FGF21 0.25 and 0.05 µmol x kg(-1) x d(-1) groups, insulin treatment group. Ten age-matched normal KM mouse administered with saline were used as normal controls. Serum glucose, insulin, lipid products and the change of serum and liver tissue inflammation factor levels between five groups of mouse were determined. The results showed that blood glucose, insulin, free fatty acids (FFAs), triglycerides, and inflammatory factor average FGF-21 of type 2 diabetes model group and normal control group were significantly higher (P < 0.01), while compared with insulin group, no difference was significant. Average blood glucose, insulin, blood lipid and inflammatory factor of FGF-21 treatment group compared with type 2 diabetes group was significantly lower (P < 0.01) and insulin group has no difference with the model control group. The results of OGTT and HOMA-IR showed that insulin resistance state was significantly relieved in a dose-dependent manner. Thus, this study demonstrates that FGF-21 significantly remits type 2 diabetic mice model's insulin resistance state and participates in the regulation of inflammatory factor levels and type 2 diabetes metabolic disorders.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Fibroblast Growth Factors/pharmacology , Insulin Resistance , Animals , Blood Glucose , Diet, High-Fat , Fatty Acids, Nonesterified/blood , Insulin/blood , Mice , Streptozocin , Triglycerides/blood
15.
Food Chem ; 457: 140158, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38936133

ABSTRACT

Synergistic effect of dimethomorph (DIM) and pyrimethanil (PYM) was evaluated using the Wadley method and the molecular mechanism of the antifungal effects of the combined treatment was systematically investigated. DIM+PYM had a synergistic effect on Phytophthora capsici, with the synergistic effect being observed at 5:1, at which the synergy coefficient was 1.8536. The mycelia of the pathogen treated with DIM+PYM were branched, uneven in thickness, and swollen. Moreover, scanning electron microscopy (SEM) revealed that DIM+PYM caused mycelium breaks, swelling, and apex enlargement, while transmission electron microscopy (TEM) revealed structural damage, cavities, and cell membrane morphological abnormalities. DIM+PYM inhibited the growth of mycelia, destroyed the cell membrane, interfered with energy metabolism, reduced protein and sugar content. Additionally, the transcriptome and metabolome of fungi treated with DIM+PYM changed significantly; specifically, there were 1571 differentially expressed genes and 802 differential metabolites. DIM+PYM may mainly damage the cell membrane, energy, protein, soluble sugar pathways.

16.
Environ Pollut ; 344: 123402, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38272164

ABSTRACT

Phenazine-1-carboxylic acid (PCA) is a new type of agrochemical used to prevent plant diseases, but its effects on aquatic organisms are unclear. To comprehensively assess the impacts of PCA for aquatic organisms and its associated environmental risks, this study investigated, taking zebrafish as the research object, the toxicological mechanism of PCA by means of optical microscopy, hematoxylin and eosin (HE) staining, ultrastructural observation, physiological and biochemical testing, transcriptome sequencing, metabolome analysis, fluorescence quantitative PCR and molecular simulation. The results indicated that PCA was detrimental to zebrafish embryos, larvae and adults, with LC50 values at 96 h of 3.9093 mg/L, 8.5075 mg/L, and 13.6388 mg/L, respectively. PCA caused abnormal spontaneous movement, slowed the heart rate, delayed hatching, shortened the body length, slowed growth, and caused malformations. PCA mainly affected the brain, liver, heart, and ovaries. PCA distorted cell morphology, damaged mitochondrial membranes, disintegrated mitochondrial ridges, and dissociated nuclear membranes. PCA inhibited the enzyme activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX), decreased the malondialdehyde (MDA) content and disrupted antioxidant effects. The results of omics studies confirmed that PCA interfered with the transcriptional and metabolic network of zebrafish, downregulating most genes and metabolites. PCA mainly affected functions related to mitochondrial steroids, lipids, sterols, oxidoreductase activity and pathways involving cofactors, steroids, porphyrin, cytochromes, which specifically bound to targets such as panx3, agmat, and ace2. PCA was moderately toxic to zebrafish, and its usage should be strictly controlled to reduce toxic effects on aquatic organisms. The results of this study provide a new insights for ecotoxicology research.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/metabolism , Oxidative Stress , Transcriptome , Catalase/metabolism , Metabolome , Steroids/metabolism , Water Pollutants, Chemical/metabolism , Superoxide Dismutase/metabolism , Embryo, Nonmammalian , Phenazines
17.
Adv Healthc Mater ; 13(16): e2303939, 2024 06.
Article in English | MEDLINE | ID: mdl-38447111

ABSTRACT

Nanoplatforms with high Mn2+ coordination can display efficient T1 magnetic resonance imaging (MRI) contrast enhancement. Herein, an earth gravity-like method for enhanced interaction between Ferritin (Fn) and Mn2+ by the growth of platinum nanoparticles (PNs) in Fn's cage structure via a biomineralization method is first proposed. Fn has good biocompatibility and can provide a suitable growth site for PNs. PNs with negative charge have certain attraction to Mn2+ with positive charge, improving Fn's loading capacity of Mn2+ by attraction force; and thus, achieving efficient MRI contrast enhancement. In addition, PNs can be applied for efficient photothermal therapy (PTT) under near infrared ray (NIR) irradiation. Systemic delivery of this nanoplatform shows obvious MRI contrast enhancement and tumor progression inhibition after NIR irradiation, as well as no obvious side effects. Therefore, this nanoplatform has the potential to contribute to nanotheranostic for clinical transformation.


Subject(s)
Contrast Media , Ferritins , Magnetic Resonance Imaging , Manganese , Metal Nanoparticles , Photothermal Therapy , Platinum , Platinum/chemistry , Platinum/pharmacology , Photothermal Therapy/methods , Animals , Magnetic Resonance Imaging/methods , Ferritins/chemistry , Ferritins/metabolism , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Manganese/chemistry , Humans , Mice , Contrast Media/chemistry , Infrared Rays , Cell Line, Tumor , Mice, Inbred BALB C , Neoplasms/therapy , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Mice, Nude
18.
Clinics (Sao Paulo) ; 78: 100298, 2023.
Article in English | MEDLINE | ID: mdl-37897936

ABSTRACT

OBJECTIVES: Abdominal Aortic Aneurysm (AAA) is a complex disease with both genetic and environmental risk factors. This study aimed to examine the potential association of the +276G/T and -420C>G polymorphisms in the resistin gene with AAA susceptibility and progression. METHOD: We performed a retrospective study involving AAA patients and healthy controls, assessing the distribution of the +276G/T and -420C>G genotypes in both groups. Hardy-Weinberg equilibrium was assessed for both polymorphisms. Logistic regression was used to explore the influence of these genotypes on AAA occurrence and progression, adjusting for relevant confounders. RESULTS: The distribution of +276G/T polymorphism did not significantly differ between AAA patients and controls. Conversely, a significant difference was observed in the genotype distribution of -420C>G polymorphism between the two groups. The CC genotype and CC/CG genotypes of -420C>G polymorphism were found to be associated with an increased risk and progression of AAA. CONCLUSIONS: The -420C>G polymorphism, particularly the CC genotype and CC/CG genotypes, might play a substantial role in AAA susceptibility and progression. The present findings underscore the need for further investigations to confirm these associations and fully elucidate the role of the resistin gene in AAA.


Subject(s)
Adiponectin , Aortic Aneurysm, Abdominal , Humans , Adiponectin/genetics , Aortic Aneurysm, Abdominal/genetics , Gene Frequency/genetics , Genetic Predisposition to Disease/genetics , Genotype , Polymorphism, Single Nucleotide/genetics , Resistin/genetics , Retrospective Studies
19.
Infect Drug Resist ; 16: 5077-5084, 2023.
Article in English | MEDLINE | ID: mdl-37576518

ABSTRACT

Purpose: The E. coli ST167 clone is the globally dominant ST among extraintestinal pathogenic E. coli (ExPEC) and is frequently associated with carbapenem resistance. This study reports genomic characterization of a pandrug-resistant E. coli ST167 isolate (ECO3183) and the possibility of the type strains' transmission. Materials and Methods: Antibiotic susceptibility testing was performed using disk diffusion and the VITEK 2 automated system. The E. coli ECO3183 genome was sequenced. We used the genome to analyze the phylogenetic relationship, phylogenetic group, sequence type (ST), acquired antibiotic resistance genes (ARGs), IS elements, genomics islands, the replicon type and transferability of the plasmids. The conjugative transfer of plasmids was assessed using filter mating experiments. Results: ECO3183 contained a 4.87-Mb chromosome and two plasmids [pECO3183-1 (167.63 Kb) and pECO3183-2 (46.16 Kb)]. It belonged to phylogenetic group A, clonal complex 10 (CC10), and ST167. ECO3183 is a pandrug-resistant strain nonsusceptible to 24 tested antimicrobials representing 8 different antimicrobial classes. Among 55 E. coli isolates phylogenetically related to ECO3183, 47% (26/55) were from humans, while 35% (19/55) were from animals. Further analysis revealed that among 1140 ST167 isolates (in the EnteroBase database), 4% (47/1140) originated from environments, 17% (192/1140) were isolated from humans, and 78% (890/1140) were obtained from animals. The pECO3183-1 contained two identical repeats of a 9633 bp region (IS6100-sul1-ΔaadA16-dfrA27-arr-3-aac(6')-Ib-cr-IS26) and a 17.88-kb resistance island (sul2-aph(3″)-Ib-aph(6)-Id-IS26-Δaph(3')-Ia-IS26-tet(A)-ΔfloR-ΔISVsa3-IS26-Δaac(3)-IId-IS26-mph(A)), and these three regions contained most of ECO3183 carrying ARGs. It was identified as a conjugative plasmid, which confers MDR resistance and has the potential to spread. Conclusion: ECO3183 exhibited pandrug-resistance phenotype that was mediated by pECO3183-1 carrying MDR ARGs and pECO3183-2 carrying blaNDM-5. Source analysis of strains indicated that ST167 E. coli might be transmitted between species from animals to humans, which needs continued monitoring.

20.
Nanoscale ; 15(10): 4694-4724, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36786157

ABSTRACT

The shape effect is an important parameter in the design of novel nanomaterials. Engineering the shape of nanomaterials is an effective strategy for optimizing their bioactive performance. Nanomaterials with a unique shape are beneficial to blood circulation, tumor targeting, cell uptake, and even improved magnetism properties. Therefore, magnetic resonance imaging (MRI) nanoprobes with different shapes have been extensively focused on in recent years. Different from other multimodal imaging techniques, dual-mode MRI can provide imaging simultaneously by a single instrument, which can avoid differences in penetration depth, and the spatial and temporal resolution of multiple imaging devices, and ensure the accurate matching of spatial and temporal imaging parameters for the precise diagnosis of early tumors. This review summarizes the latest developments of nanomaterials with various shapes for T1-T2 dual-mode MRI, and highlights the mechanism of how shape intelligently affects nanomaterials' longitudinal or transverse relaxation, namely sphere, hollow, core-shell, cube, cluster, flower, dumbbell, rod, sheet, and bipyramid shapes. In addition, the combination of T1-T2 dual-mode MRI nanoprobes and advanced therapeutic strategies, as well as possible challenges from basic research to clinical transformation, are also systematically discussed. Therefore, this review will help others quickly understand the basic information on dual-mode MRI nanoprobes and gather thought-provoking ideas to advance the subfield of cancer nanomedicine.


Subject(s)
Nanostructures , Neoplasms , Humans , Precision Medicine , Contrast Media/therapeutic use , Neoplasms/therapy , Neoplasms/drug therapy , Magnetic Resonance Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL