Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Plant Cell ; 36(6): 2201-2218, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38376990

ABSTRACT

In adverse environments, the number of fertilizable female gametophytes (FGs) in plants is reduced, leading to increased survival of the remaining offspring. How the maternal plant perceives internal growth cues and external stress conditions to alter FG development remains largely unknown. We report that homeostasis of the stress signaling molecule nitric oxide (NO) plays a key role in controlling FG development under both optimal and stress conditions. NO homeostasis is precisely regulated by S-nitrosoglutathione reductase (GSNOR). Prior to fertilization, GSNOR protein is exclusively accumulated in sporophytic tissues and indirectly controls FG development in Arabidopsis (Arabidopsis thaliana). In GSNOR null mutants, NO species accumulated in the degenerating sporophytic nucellus, and auxin efflux into the developing FG was restricted, which inhibited FG development, resulting in reduced fertility. Importantly, restoring GSNOR expression in maternal, but not gametophytic tissues, or increasing auxin efflux substrate significantly increased the proportion of normal FGs and fertility. Furthermore, GSNOR overexpression or added auxin efflux substrate increased fertility under drought and salt stress. These data indicate that NO homeostasis is critical to normal auxin transport and maternal control of FG development, which in turn determine seed yield. Understanding this aspect of fertility control could contribute to mediating yield loss under adverse conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Homeostasis , Indoleacetic Acids , Nitric Oxide , Ovule , Stress, Physiological , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Nitric Oxide/metabolism , Indoleacetic Acids/metabolism , Ovule/genetics , Ovule/growth & development , Ovule/metabolism , Aldehyde Oxidoreductases/metabolism , Aldehyde Oxidoreductases/genetics , Glutathione Reductase
2.
Ecotoxicol Environ Saf ; 272: 116050, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38325272

ABSTRACT

Silica nanoparticles (SiNPs) are widely used in the biomedical field and can enter the central nervous system through the blood-brain barrier, causing damage to hippocampal neurons. However, the specific mechanism remains unclear. In this experiment, HT22 cells were selected as the experimental model in vitro, and the survival rate of cells under the action of SiNPs was detected by MTT method, reactive oxygen species (ROS), lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and adenosine triphosphate (ATP) were tested by the kit, the ultrastructure of the cells was observed by transmission electron microscope, membrane potential (MMP), calcium ion (Ca2+) and apoptosis rate were measured by flow cytometry, and the expressions of mitochondrial functional protein, mitochondrial dynein, mitochondrial autophagy protein as well as apoptosis related protein were detected by Western blot. The results showed that cell survival rate, SOD, CAT, GSH-Px, ATP and MMP gradually decreased with the increase of SiNPs concentration, while intracellular ROS, Ca2+, LDH and apoptosis rate increased with the increase of SiNPs concentration. In total cellular proteins,the expressions of mitochondrial functional proteins VDAC and UCP2 gradually increased, the expression of mitochondrial dynamic related protein DRP1 increased while the expressions of OPA1 and Mfn2 decreased. The expressions of mitophagy related proteins PINK1, Parkin and LC3Ⅱ/LC3Ⅰ increased and P62 gradually decreased, as well as the expressions of apoptosis related proteins Apaf-1, Cleaved-Caspase-3, Caspase-3, Caspase-9, Bax and Cyt-C. In mitochondrial proteins, the expressions of mitochondrial dynamic related proteins DRP1 and p-DRP1 were increased, while the expressions of OPA1 and Mfn2 were decreased. Expressions of mitochondrial autophagy associated proteins PINK1, Parkin, LC3II/LC3I increased, P62 decreased gradually, as well as the expressions of apoptosis related proteins Cleaved-Caspase-3, Caspase-3, and Caspase-9 increased, and Cyt-C expressions decreased. To further demonstrate the role of ROS and DRP1 in HT22 cell apoptosis induced by SiNPs, we selected the ROS inhibitor N-Acetylcysteine (NAC) and Dynamin-related protein 1 (DRP1) inhibitor Mdivi-1. The experimental results indicated that the above effects were remarkably improved after the use of inhibitors, further confirming that SiNPs induce the production of ROS in cells, activate DRP1, cause excessive mitochondrial division, induce mitophagy, destroy mitochondrial function and eventually lead to apoptosis.


Subject(s)
Dynamins , Mitophagy , Nanoparticles , Silicon Dioxide , Adenosine Triphosphate , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Dynamins/metabolism , Nanoparticles/toxicity , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Silicon Dioxide/pharmacology , Superoxide Dismutase/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Mice , Cell Line, Tumor
3.
J Environ Manage ; 364: 121430, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38875983

ABSTRACT

Optimization and control of wastewater treatment process (WTP) can contribute to cost reduction and efficiency. A wastewater treatment process multi-objective optimization (WTPMO) framework is proposed in this paper to provide suggestions for decision-making in setting parameters of WTP. Firstly, the prediction models based on Extreme Gradient Boosting (XGB) with Bayesian optimization (BO) are developed for predicting effluent water quality (EQ) and energy consumption (EC) for different influent quality and process parameter settings. Then, the SHapley Additive exPlanations (SHAP) algorithm is used to complement the interpretability of machine learning to quantitatively evaluate the impact of different features on the predicted targets. Finally, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with the Technique for Ordering Preferences on Similarity of Ideal Solutions (TOPSIS) is introduced to solve and make decisions on the multi-objective optimization problem. The WTPMO applicability is validated on Benchmark Simulation Model 1 (BSM1). The results show that BOXGB achieves accurate prediction for EQ and EC with R2 values of 0.923 and 0.965, respectively, indicating that BO can effectively select the model hyperparameters in XGB. Based on SHAP supplemented the interpretability of the model to fully explain how the influent water quality and decision variables affect the EQ and EC of the WTP. In addition, the optimized process parameters are determined based on NSGA-II and TOPSIS, and the EC optimization rate is 1.552% while guaranteeing water quality compliance. Overall, this research can effectively achieve the optimization of WTP, ensure that the effluent water quality meets the standards while reducing energy consumption, assist Wastewater treatment plants (WWTPs) to achieve more intelligent and efficient operation and maintenance management, and provide strong support for environmental protection and sustainable development goals.


Subject(s)
Algorithms , Bayes Theorem , Machine Learning , Waste Disposal, Fluid , Wastewater , Water Quality , Waste Disposal, Fluid/methods , Water Purification/methods , Models, Theoretical
4.
Environ Res ; 224: 115560, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36842699

ABSTRACT

Accurate prediction of effluent total nitrogen (E-TN) can assist in feed-forward control of wastewater treatment plants (WWTPs) to ensure effluent compliance with standards while reducing energy consumption. However, multivariate time series prediction of E-TN is a challenge due to the complex nonlinearity of WWTPs. This paper proposes a novel prediction framework that combines a two-stage feature selection model, the Golden Jackal Optimization (GJO) algorithm, and a hybrid deep learning model, CNN-LSTM-TCN (CLT), aiming to effectively capture the nonlinear relationships of multivariate time series in WWTPs. Specifically, convolutional neural network (CNN), long short-term memory (LSTM), and temporal convolutional network (TCN) combined to build a hybrid deep learning model CNN-LSTM-TCN (CLT). A two-stage feature selection method is utilized to determine the optimal feature subset to reduce the complexity and improve the accuracy of the prediction model, and then, the feature subset is input into the CLT. The hyperparameters of the CLT are optimized using GJO to further improve the prediction performance. Experiments indicate that the two-stage feature selection model learns the optimal feature subset to predict best, and the GJO-CLT achieves the best performance for different backtracking windows and prediction steps. These results demonstrate that the prediction system excels in the task of multivariate water quality time series prediction of WWTPs.


Subject(s)
Deep Learning , Water Quality , Algorithms , Intelligence , Neural Networks, Computer , Nitrogen
5.
Environ Res ; 237(Pt 1): 116938, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37619626

ABSTRACT

The prediction of effluent quality for wastewater treatment plants (WWTPs) has caused widespread concern due to its essential role in ensuring water quality standards and reducing energy consumption. However, the complex nonlinearity of WWTPs leads to difficulties in forecasting and less attention to forecast uncertainty. A novel ensemble water quality forecasting (EWQF) system is proposed that incorporates data preprocessing, point prediction and interval prediction. The system provides an accurate prediction of effluent quality and analyses this uncertainty, for enabling feed-forward control of WWTPs. Specifically, the original water quality data is decomposed into subsequences containing more information and less noise based on improved variational modal decomposition (IVMD). The optimal sub-model for each sub-series is selected from six prediction models based on the sub-model selection strategy, and the point prediction results for water quality are obtained by combining the prediction results of the sub-models. Robust and reliable prediction interval construction based on adaptive kernel density estimation. The results demonstrate that the EWQF achieves optimal point prediction results (R2 = 0.955). The EWQF interval prediction achieves the optimal coverage width criterion (CWC) for different confidence intervals and decision objectives. These results demonstrate that EWQF systems can perform excellent point and interval prediction.


Subject(s)
Water Quality , Forecasting , Uncertainty
6.
Sensors (Basel) ; 23(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36904754

ABSTRACT

Medical images are used as an important basis for diagnosing diseases, among which CT images are seen as an important tool for diagnosing lung lesions. However, manual segmentation of infected areas in CT images is time-consuming and laborious. With its excellent feature extraction capabilities, a deep learning-based method has been widely used for automatic lesion segmentation of COVID-19 CT images. However, the segmentation accuracy of these methods is still limited. To effectively quantify the severity of lung infections, we propose a Sobel operator combined with multi-attention networks for COVID-19 lesion segmentation (SMA-Net). In our SMA-Net method, an edge feature fusion module uses the Sobel operator to add edge detail information to the input image. To guide the network to focus on key regions, SMA-Net introduces a self-attentive channel attention mechanism and a spatial linear attention mechanism. In addition, the Tversky loss function is adopted for the segmentation network for small lesions. Comparative experiments on COVID-19 public datasets show that the average Dice similarity coefficient (DSC) and joint intersection over union (IOU) of the proposed SMA-Net model are 86.1% and 77.8%, respectively, which are better than those in most existing segmentation networks.


Subject(s)
COVID-19 , Labor, Obstetric , Pregnancy , Female , Humans , Image Processing, Computer-Assisted
7.
Sensors (Basel) ; 23(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37050768

ABSTRACT

Concentric tube robots (CTRs) are a promising prospect for minimally invasive surgery due to their inherent compliance and ability to navigate in constrained environments. Existing mechanics-based kinematic models typically neglect friction, clearance, and torsion between each pair of contacting tubes, leading to large positioning errors in medical applications. In this paper, an improved kinematic modeling method is developed. The effect of clearance on tip position during concentric tube assembly is compensated by the database method. The new kinematic model is mechanic-based, and the impact of friction moment and torsion on tubes is considered. Integrating the infinitesimal torsion of the concentric tube robots eliminates the errors caused by the interaction force between the tubes. A prototype is built, and several experiments with kinematic models are designed. The results indicate that the error of tube rotations is less than 2 mm. The maximum error of the feeding experiment does not exceed 0.4 mm. The error of the new modeling method is lower than that of the previous kinematic model. This paper has substantial implications for the high-precision and real-time control of concentric tube robots.

8.
Plant J ; 107(3): 713-726, 2021 08.
Article in English | MEDLINE | ID: mdl-33974298

ABSTRACT

As rapid changes in climate threaten global crop yields, an understanding of plant heat stress tolerance is increasingly relevant. Heat stress tolerance involves the coordinated action of many cellular processes and is particularly energy demanding. We acquired a knockout mutant and generated knockdown lines in Arabidopsis thaliana of the d subunit of mitochondrial ATP synthase (gene name: ATPQ, AT3G52300, referred to hereafter as ATPd), a subunit of the peripheral stalk, and used these to investigate the phenotypic significance of this subunit in normal growth and heat stress tolerance. Homozygous knockout mutants for ATPd could not be obtained due to gametophytic defects, while heterozygotes possess no visible phenotype. Therefore, we used RNA interference to create knockdown plant lines for further studies. Proteomic analysis and blue native gels revealed that ATPd downregulation impairs only subunits of the mitochondrial ATP synthase (complex V). Knockdown plants were more sensitive to heat stress, had abnormal leaf morphology, and were severely slow growing compared to wild type. These results indicate that ATPd plays a crucial role in proper function of the mitochondrial ATP synthase holoenzyme, which, when reduced, leads to wide-ranging defects in energy-demanding cellular processes. In knockdown plants, more hydrogen peroxide accumulated and mitochondrial dysfunction stimulon (MDS) genes were activated. These data establish the essential structural role of ATPd and support the importance of complex V in normal plant growth, and provide new information about its requirement for heat stress tolerance.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/growth & development , Heat-Shock Response/physiology , Mitochondrial Proton-Translocating ATPases/metabolism , Plant Stems/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Down-Regulation , Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Plant/physiology , Gene Knockdown Techniques , Mitochondria/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Plant Stems/enzymology , Protein Subunits , RNA Interference , Signal Transduction
9.
Plant J ; 106(5): 1468-1483, 2021 06.
Article in English | MEDLINE | ID: mdl-33768632

ABSTRACT

Suberin is a complex hydrophobic polymer of aliphatic and phenolic compounds which controls the movement of gases, water, and solutes and protects plants from environmental stresses and pathogenic infection. The synthesis and regulatory pathways of suberin remain unknown in Brachypodium distachyon. Here we describe the identification of a B. distachyon gene, BdFAR4, encoding a fatty acyl-coenzyme A reductase (FAR) by a reverse genetic approach, and investigate the molecular relevance of BdFAR4 in the root suberin synthesis of B. distachyon. BdFAR4 is specifically expressed throughout root development. Heterologous expression of BdFAR4 in yeast (Saccharomyces cerevisiae) afforded the production of C20:0 and C22:0 fatty alcohols. The loss-of-function knockout of BdFAR4 by CRISPR/Cas9-mediated gene editing significantly reduced the content of C20:0 and C22:0 fatty alcohols associated with root suberin. In contrast, overexpression of BdFAR4 in B. distachyon and tomato (Solanum lycopersicum) resulted in the accumulation of root suberin-associated C20:0 and C22:0 fatty alcohols, suggesting that BdFAR4 preferentially accepts C20:0 and C22:0 fatty acyl-CoAs as substrates. The BdFAR4 protein was localized to the endoplasmic reticulum in Arabidopsis thaliana protoplasts and Nicotiana benthamiana leaf epidermal cells. BdFAR4 transcript levels can be increased by abiotic stresses and abscisic acid treatment. Furthermore, yeast one-hybrid, dual-luciferase activity, and electrophoretic mobility shift assays indicated that the R2R3-MYB transcription factor BdMYB41 directly binds to the promoter of BdFAR4. Taken together, these results imply that BdFAR4 is essential for the production of root suberin-associated fatty alcohols, especially under stress conditions, and that its activity is transcriptionally regulated by the BdMYB41 transcription factor.


Subject(s)
Aldehyde Oxidoreductases/metabolism , Brachypodium/genetics , Fatty Alcohols/metabolism , Gene Expression Regulation, Plant , Lipids/biosynthesis , Aldehyde Oxidoreductases/genetics , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/physiology , Brachypodium/enzymology , Brachypodium/physiology , Gene Editing , Gene Knockout Techniques , Loss of Function Mutation , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/physiology , Polyesters/metabolism , Stress, Physiological , Nicotiana/enzymology , Nicotiana/genetics , Nicotiana/physiology
10.
Planta ; 256(4): 65, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36036331

ABSTRACT

MAIN CONCLUSION: TaATLa1 was identified to respond to nitrogen deprivation through transcriptome analysis of wheat seedlings. TaATLa1 specifically transports Gln, Glu, and Asp, and affects the biomass of Arabidopsis and wheat. Nitrogen is an essential macronutrient and plays a crucial role in wheat production. Amino acids, the major form of organic nitrogen, are remobilized by amino acid transporters (AATs) in plants. AATs are commonly described as central components of essential developmental processes and yield formation via taking up and transporting amino acids in plants. However, few studies have reported the detailed biochemical properties and biological functions of these AATs in wheat. In this study, key genes encoding AATs were screened from transcriptome analysis of wheat seedlings treated with normal nitrogen (NN) and nitrogen deprivation (ND). Among them, 21 AATs were down-regulated and eight AATs were up-regulated under ND treatment. Among the homoeologs, TaATLa1.1-3A, TaATLa1.1-3B, and TaATLa1.1-3D (TaATLa1.1-3A, -3B, and -3D), belonging to amino acid transporter-like a (ATLa) subfamily, were significantly down-regulated in response to ND in wheat, and accordingly were selected for functional analyses. The results demonstrated that TaATLa1.1-3A, -3B, and -3D effectively transported glutamine (Gln), glutamate (Glu), and aspartate (Asp) in yeast. Overexpression of TaAILa1.1-3A, -3B, and -3D in Arabidopsis thaliana L. significantly increased amino acid content in leaves, storage protein content in seeds and the plant biomass under NN. Knockdown of TaATLa1.1-3A, -3B, and -3D in wheat seedlings resulted in a significant block of amino acid remobilization and growth inhibition. Taken together, TaATLa1.1-3A, -3B, and -3D contribute substantially to Arabidopsis and wheat growth. We propose that TaATLa1.1-3A, -3B, and -3D may participate in the source-sink translocation of amino acid, and they may have profound implications for wheat yield improvement.


Subject(s)
Arabidopsis , Triticum , Amino Acid Transport Systems , Amino Acids , Gene Expression Regulation, Plant , Nitrogen , Plant Proteins , Seedlings
11.
Int J Mol Sci ; 23(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35742892

ABSTRACT

Broomcorn millet (Panicum miliaceum L.) is a water-efficient and highly salt-tolerant plant. In this study, the salt tolerance of 17 local species of broomcorn millet was evaluated through testing based on the analysis of the whitening time and the germination rate of their seeds. Transcriptome sequencing revealed that PmbZIP131, PmbZIP125, PmbZIP33, PmABI5, PmbZIP118, and PmbZIP97 are involved in seed germination under salt stress. Seedling stage expression analysis indicates that PmABI5 expression was induced by treatments of high salt (200 mM NaCl), drought (20% W/V PEG6000), and low temperature (4 °C) in seedlings of the salt-tolerant variety Y9. The overexpression of PmABI5 significantly increases the germination rate and root traits of Arabidopsis thaliana transgenic lines, with root growth and grain traits significantly enhanced compared to the wild type (Nipponbare). BiFC showed that PmABI5 undergoes homologous dimerization in addition to forming a heterodimer with either PmbZIP33 or PmbZIP131. Further yeast one-hybrid experiments showed that PmABI5 and PmbZIP131 regulate the expression of PmNAC1 by binding to the G-box in the promoter. These results indicate that PmABI5 can directly regulate seed germination and seedling growth and indirectly improve the salt tolerance of plants by regulating the expression of the PmNAC1 gene through the formation of heterodimers with PmbZIP131.


Subject(s)
Arabidopsis , Panicum , Arabidopsis/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant , Germination/genetics , Panicum/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Seedlings/metabolism , Seeds/metabolism , Stress, Physiological/genetics
12.
Plant Cell Environ ; 42(11): 3077-3091, 2019 11.
Article in English | MEDLINE | ID: mdl-31306498

ABSTRACT

To protect above-ground plant organs from excessive water loss, their surfaces are coated by waxes. The genes involved in wax formation have been investigated in detail in Arabidopsis but scarcely in crop species. Here, we aimed to isolate and characterize a CER1 enzyme responsible for formation of the very long-chain alkanes present in high concentrations especially during late stages of wheat development. On the basis of comparative wax and transcriptome analyses of various wheat organs, we selected TaCER1-1A as a primary candidate and demonstrated that it was located to the endoplasmic reticulum, the subcellular compartment for wax biosynthesis. A wheat nullisomic-tetrasomic substitution line lacking TaCER1-1A had significantly reduced amounts of C33 alkane, whereas rice plants overexpressing TaCER1-1A showed substantial increases of C25 -C33 alkanes relative to wild type control. Similarly, heterologous expression of TaCER1-1A in Arabidopsis wild type and the cer1 mutant resulted in increased levels of unbranched alkanes, iso-branched alkanes and alkenes. Finally, the expression of TaCER1-1A was found activated by abiotic stresses and abscisic acid treatment, resulting in increased production of alkanes in wheat. Taken together, our results demonstrate that TaCER1-1A plays an important role in wheat wax alkane biosynthesis and involved in responding to drought and other environmental stresses.


Subject(s)
Alkanes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/physiology , Triticum/genetics , Triticum/metabolism , Waxes/metabolism , Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Droughts , Gene Expression Profiling , Gene Expression Regulation, Plant , Oryza/genetics , Permeability , Plant Leaves/metabolism , Polyploidy , Sequence Alignment , Sequence Analysis
13.
J Exp Bot ; 69(10): 2555-2567, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29562292

ABSTRACT

Purple pericarps of bread wheat (Triticum aestivum L.) are a useful source of dietary anthocyanins. Previous mapping results indicated that the purple pericarp trait is controlled by two complementary genes located on chromosomes 7D and 2A. However, the identity of the genes and the mechanisms by which they regulate the trait are unknown. In this study, two transcription factors were characterised as anthocyanin activators in purple pericarps: TaPpm1 (purple pericarp-MYB 1) and TaPpb1 (purple pericarp-bHLH 1). Three non-functional variants were detected in the coding sequence of TaPpm1 from non-purple seed lines, in which the function of TaPpm1 was destroyed either by insertion-induced frame shifts or truncated peptides. There were six 261-bp tandem repeats in the promoter region of TaPpb1 in the purple-grained varieties, while there was only one repeat unit present in the non-purple varieties. Furthermore, using yeast two-hybrid, dual luciferase, yeast one-hybrid, and transient assays, we were able to demonstrate that the interaction of TaPpm1 and TaPpb1 co-regulates the synthesis of anthocyanin. Overall, our results provide a better understanding of the molecular basis of anthocyanin synthesis in the wheat pericarp and indicate the existence of an integrated regulatory mechanism that controls production.


Subject(s)
Anthocyanins/biosynthesis , Gene Expression Regulation, Plant , Plant Proteins/genetics , Transcription Factors/genetics , Triticum/genetics , Color , Pigments, Biological/genetics , Pigments, Biological/metabolism , Plant Proteins/metabolism , Seeds/chemistry , Seeds/metabolism , Transcription Factors/metabolism , Triticum/metabolism
14.
Molecules ; 23(12)2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30544638

ABSTRACT

Chestnut is a popular food in many countries and is also an important starch source. In previous studies, physicochemical properties of starches have been compared among different Chinese chestnut varieties growing under different conditions. In this study, nine Chinese chestnut varieties from the same farm were investigated for starch physicochemical properties to exclude the effects of growing conditions. The dry kernels had starch contents from 42.7 to 49.3%. Starches from different varieties had similar morphologies and exhibited round, oval, ellipsoidal, and polygonal shapes with a central hilum and smooth surface. Starch had bimodal size distribution and the volume-weighted mean diameter ranged from 7.2 to 8.2 µm among nine varieties. The starches had apparent amylose contents from 23.8 to 27.3% but exhibited the same C-type crystalline structure and similar relative crystallinity, ordered degree, and lamellar structure. The gelatinization onset, peak, and conclusion temperatures ranged from 60.4 to 63.9 °C, from 64.8 to 68.3 °C, and from 70.5 to 74.5 °C, respectively, among nine starches; and the peak, hot, breakdown, final, and setback viscosities ranged from 5524 to 6505 mPa s, from 3042 to 3616 mPa s, from 2205 to 2954 mPa s, from 4378 to 4942 mPa s, and from 1326 to 1788 mPa s, respectively. The rapidly digestible starch, slowly digestible starch, and resistant starch ranged from 2.6 to 3.7%, from 5.7 to 12.7%, and from 84.4 to 90.7%, respectively, for native starch, and from 79.6 to 89.5%, from 1.3 to 3.8%, and from 7.1 to 17.4%, respectively, for gelatinized starch.


Subject(s)
Chemical Phenomena , Hippocastanaceae/chemistry , Starch/chemistry , Amylose/analysis , Calorimetry, Differential Scanning , Iodine/chemistry , Molecular Weight , Nuts/chemistry , Principal Component Analysis , Scattering, Small Angle , Spectroscopy, Fourier Transform Infrared , Temperature , Thermogravimetry , X-Ray Diffraction
15.
Molecules ; 23(9)2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30149569

ABSTRACT

Different-colored sweet potatoes have different contents of pigments and phenolic compounds in their root tubers, which influence the isolation of starch. It is important to justify the identification of the most suitable isolation medium of starch from different colored root tubers. In this study, starches were isolated from root tubers of purple, yellow and white sweet potatoes using four different extraction media, including H2O, 0.5% Na2S2O5, 0.2% NaOH, and both 0.5% Na2S2O5 and 0.2% NaOH. Their structural and functional properties were investigated and compared among different extraction media. The results showed that the granule size, apparent amylose content, lamellar peak intensity, thermal properties, and pasting properties were different among different-colored sweet potatoes due to their different genotype backgrounds. The four extraction media had no significant effects on starch structural properties, including apparent amylose content, crystalline structure, ordered degree, and lamellar peak intensity, except that the NaOH and Na2S2O5 treatment were able to increase the whiteness of purple and yellow sweet potato starches. The different extraction media had some effects on starch functional properties, including thermal properties, swelling power, water solubility, and pasting properties. The above results indicated that the H2O was the most suitable extraction medium to simply and fast isolate starch from root tubers of different-colored sweet potatoes.


Subject(s)
Ipomoea batatas/chemistry , Plant Tubers/chemistry , Starch/chemistry , Amylose/chemistry , Iodine/chemistry , Molecular Structure , Particle Size , Solubility , Spectroscopy, Fourier Transform Infrared , Water , X-Ray Diffraction
16.
bioRxiv ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38559097

ABSTRACT

Current knowledge in three-dimensional (3D) chromatin regulation in normal and disease states was mostly accumulated through Hi-C profiling in in vitro cell culture system. The limitations include failing to recapitulate disease-specific physiological properties and often lacking clinically relevant disease microenvironment. In this study, we conduct tissue-specific Hi-C profiling in a pilot cohort of 12 breast tissues comprising of two normal tissues (NTs) and ten ER+ breast tumor tissues (TTs) including five primary tumors (PTs), and five tamoxifen-treated recurrent tumors (RTs). We find largely preserved compartments, highly heterogeneous topological associated domains (TADs) and intensively variable chromatin loops among breast tumors, demonstrating 3D chromatin-regulated breast tumor heterogeneity. Further cross-examination identifies RT-specific looping-mediated biological pathways and suggests CA2, an enhancer-promoter looping (EPL)-mediated target gene within the bicarbonate transport metabolism pathway, might play a role in driving the tamoxifen resistance. Remarkably, the inhibition of CA2 not only impedes tumor growth both in vitro and in vivo , but also reverses chromatin looping. Our study thus yields significant mechanistic insights into the role and clinical relevance of 3D chromatin architecture in breast cancer endocrine resistance.

17.
Plant Sci ; 338: 111901, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37865209

ABSTRACT

Sunflowers are well-known ornamental plants, while sunflowers with red corolla are rare and the mechanisms underlying red coloration remain unclear. Here, a comprehensive analysis of metabolomics and transcriptomics on flavonoid pathway was performed to investigate the molecular mechanisms underlying the differential color formation between red sunflower Pc103 and two yellow sunflowers (Yr17 and Y35). Targeted metabolomic analysis revealed higher anthocyanin levels but lower flavonol content in Pc103 compared to the yellow cultivars. RNA-sequencing and phylogenetic analysis identified multiple genes involved in the flavonoid pathway, including series of structural genes and three MYB and bHLH genes. Specifically, HaMYBA and HabHLH1 were up-regulated in Pc103, whereas HaMYBF exhibited reduced expression. HaMYBA was found to interact with HabHLH1 in vivo and in vitro, while HaMYBF does not. Transient expression analysis further revealed that HabHLH1 and HaMYBA cooperatively regulate increased expression of dihydroflavonol 4-reductase (DFR), leading to anthocyanin accumulation. On the other hand, ectopic expression of HaMYBF independently modulates flavonol synthase (FLS) expression, but hindered anthocyanin production. Collectively, our findings suggest that the up-regulation of HaMYBA and HabHLH1, as well as the down-regulation of HaMYBF, contribute to the red coloration in Pc103. It offers a theoretical basis for improving sunflower color through genetic engineering.


Subject(s)
Anthocyanins , Helianthus , Anthocyanins/metabolism , Helianthus/genetics , Helianthus/metabolism , Phylogeny , Flowers/genetics , Flowers/metabolism , Flavonoids/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant
18.
Environ Int ; 186: 108631, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38588609

ABSTRACT

Methylmercury (MeHg) is a global environmental pollutant with neurotoxicity, which can easily crosses the blood-brain barrier and cause irreversible damage to the human central nervous system (CNS). CNS inflammation and autophagy are known to be involved in the pathology of neurodegenerative diseases. Meanwhile, MeHg has the potential to induce microglia-mediated neuroinflammation as well as autophagy. This study aims to further explore the exact molecular mechanism of MeHg neurotoxicity. We conducted in vitro studies using BV2 microglial cell from the central nervous system of mice. The role of inflammation and autophagy in the damage of BV2 cells induced by MeHg was determined by detecting cell viability, cell morphology and structure, reactive oxygen species (ROS), antioxidant function, inflammatory factors, autophagosomes, inflammation and autophagy-related proteins. We further investigated the relationship between the inflammatory response and autophagy induced by MeHg by inhibiting them separately. The results indicated that MeHg could invade cells, change cell structure, activate NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and autophagosome, release a large amount of inflammatory factors and trigger the inflammatory response and autophagy. It was also found that MeHg could disrupt the antioxidant function of cells. In addition, the inhibition of NLRP3 inflammasome alleviated both cellular inflammation and autophagy, while inhibition of autophagy increased cellular inflammation. Our current research suggests that MeHg might induce BV2 cytotoxicity through inflammatory response and autophagy, which may be mediated by the NLRP3 inflammasome activated by oxidative stress.


Subject(s)
Autophagy , Inflammasomes , Inflammation , Methylmercury Compounds , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein , Methylmercury Compounds/toxicity , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Microglia/drug effects , Microglia/metabolism , Autophagy/drug effects , Mice , Inflammasomes/metabolism , Animals , Inflammation/chemically induced , Reactive Oxygen Species/metabolism , Cell Line , Cell Survival/drug effects
19.
Nat Genet ; 56(5): 1006-1017, 2024 May.
Article in English | MEDLINE | ID: mdl-38658793

ABSTRACT

Large-scale genomic variations are fundamental resources for crop genetics and breeding. Here we sequenced 1,904 genomes of broomcorn millet to an average of 40× sequencing depth and constructed a comprehensive variation map of weedy and cultivated accessions. Being one of the oldest cultivated crops, broomcorn millet has extremely low nucleotide diversity and remarkably rapid decay of linkage disequilibrium. Genome-wide association studies identified 186 loci for 12 agronomic traits. Many causative candidate genes, such as PmGW8 for grain size and PmLG1 for panicle shape, showed strong selection signatures during domestication. Weedy accessions contained many beneficial variations for the grain traits that are largely lost in cultivated accessions. Weedy and cultivated broomcorn millet have adopted different loci controlling flowering time for regional adaptation in parallel. Our study uncovers the unique population genomic features of broomcorn millet and provides an agronomically important resource for cereal crops.


Subject(s)
Crops, Agricultural , Genetic Variation , Genome, Plant , Genome-Wide Association Study , Linkage Disequilibrium , Crops, Agricultural/genetics , Panicum/genetics , Phenotype , Quantitative Trait Loci , Polymorphism, Single Nucleotide , Domestication , Genomics/methods , Plant Breeding
20.
J Laparoendosc Adv Surg Tech A ; 33(1): 74-80, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35723625

ABSTRACT

Background: Endoscopic submucosal dissection (ESD) for early gastric cancer (EGC) has advantages over traditional radical gastrectomy. We investigated whether enhanced recovery after surgery (ERAS) protocols are appropriate in the ESD perioperative period. Materials and Methods: We screened 129 consecutive patients, and 12 were excluded. All study patients underwent ESD for EGC. Of the 117 included patients, 57 received traditional perioperative care between January 2017 and December 2018, and 60 patients received perioperative care according to ERAS protocols between January 2019 and September 2020. The primary study endpoint was ESD-related complications. Secondary endpoints included the following postoperative parameters: anal exhaust time, incidence of nausea or vomiting, length of hospitalization, fever rate, abdominal pain on the visual analog scale (VAS), and reported perioperative satisfaction. Results: Complications were comparable between the 2 groups. In the ERAS group, no patients experienced delayed bleeding or perforation. One traditional group patient bled, and one perforated. Postoperative anal exhaust time, nausea or vomiting incidence, hospitalization, fever rate, and VAS pain scores were significantly lower, and perioperative satisfaction rate was significantly higher in the ERAS group. Conclusions: ERAS protocols are both feasible and safe for patients undergoing ESD. ERAS protocols enhance the advantages of ESD for EGC without increasing complications.


Subject(s)
Endoscopic Mucosal Resection , Enhanced Recovery After Surgery , Stomach Neoplasms , Humans , Retrospective Studies , Endoscopic Mucosal Resection/methods , Stomach Neoplasms/surgery , Feasibility Studies , Gastric Mucosa/surgery , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL