ABSTRACT
As the primary site for the biotransformation of drugs, the liver is the most focused on organ type in pharmaceutical research. However, despite being widely used in pharmaceutical research, animal models have inherent species differences, while two-dimensional (2D) liver cell monocultures or co-cultures and three-dimensional (3D) liver cell monoculture in vitro liver models do not sufficiently represent the complexity of the human liver's structure and function, making the evaluation results from these tools less reliable. Therefore, there is a pressing need to develop more representative in vitro liver models for pharmaceutical research. Fortunately, an exciting new development in recent years has been the emergence of 3D liver cell co-culture models. These models hold great promise as in vitro pharmaceutical research tools, because they can reproduce liver structure and function more practically. This review begins by explaining the structure and main cell composition of the liver, before introducing the potential advantages of 3D cell co-culture liver models for pharmaceutical research. We also discuss the main sources of hepatocytes and the 3D cell co-culture methods used in constructing these models. In addition, we explore the applications of 3D cell co-culture liver models with different functional states and suggest prospects for their further development.
Subject(s)
Pharmaceutical Research , Animals , Humans , Coculture Techniques , Liver , Hepatocytes/metabolism , Cell Culture Techniques/methodsABSTRACT
The global spread of severe acute respiratory syndrome coronavirus 2 has resulted in a significant number of individuals developing pulmonary fibrosis (PF), an irreversible lung injury. This condition can manifest within a short interval following the onset of pneumonia symptoms, sometimes even within a few days. While lung transplantation is a potentially lifesaving procedure, its limited availability, high costs, intricate surgeries, and risk of immunological rejection present significant drawbacks. The optimal timing of medication administration for coronavirus disease 2019 (COVID-19)-induced PF remains controversial. Despite this, it is crucial to explore pharmacotherapy interventions, involving early and preventative treatment as well as pharmacotherapy options for advanced-stage PF. Additionally, studies have demonstrated disparities in anti-fibrotic treatment based on race and gender factors. Genetic mutations may also impact therapeutic efficacy. Enhancing research efforts on pharmacotherapy interventions, while considering relevant pharmacological factors and optimizing the timing and dosage of medication administration, will lead to enhanced, personalized, and fair treatment for individuals impacted by COVID-19-related PF. These measures are crucial in lessening the burden of the disease on healthcare systems and improving patients' quality of life.
ABSTRACT
Total saikosaponins (TSS) form a group of chemically and biologically active components that can be extracted from Bupleurum, with reported antidepressive, anti-inflammatory, antiviral, antiendotoxin, antitumor, anti-pulmonary fibrosis and anti-gastric ulcer effects. Bupleurum or TSS is frequently utilized in clinical practice alongside other medications (such as entecavir, lamivudine, compound paracetamol and amantadine hydrochloride capsules), leading to an increased risk of drug-drug interactions. The cytochrome P450 (CYP) family serves a critical role in the metabolism of numerous essential drugs (such as tamoxifen, ibuprofen and phenytoin), where the majority of drug interactions involve CYP-mediated metabolism. It is therefore essential to understand the effects of key components of Bupleurum on CYPs when administering combination therapies containing TSS or Bupleurum. The present study aimed to investigate the effects of TSS on the mRNA and protein expression of CYP3A4 and CYP1A2 in HepaRG cells. The effects of TSS on the survival of HepaRG cells was investigated using the Cell Counting Kit-8 (CCK-8) method. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot (WB) analysis were used to assess the effects of different concentrations of TSS (0, 5, 10 and 15 µg/ml) on CYP3A4 and CYP1A2 mRNA and protein expression in HepaRG cells. Based on the CCK-8 assay results, it was observed that the cell viability remained above 80% when treated with 1, 5, 10 and 15 µg/ml TSS. Although there was a statistically significant reduced cell viability at TSS concentrations of 10 and 15 µg/ml compared with the control group, the findings indicated that TSS did not exhibit notable cytotoxic effects at these concentrations. Furthermore, RT-qPCR results revealed that compared with those in the control group, TSS at concentrations of 10 and 15 µg/ml reduced CYP3A4 mRNA expression but increased CYP1A2 mRNA expression in HepaRG cells at concentrations of 15 µg/ml. WB analysis found that TSS at concentrations of 10 and 15 µg/ml downregulated CYP3A4 protein expression in HepaRG cells while increasing CYP1A2 protein expression at concentrations of 15 µg/ml. Results in the present study suggest that TSS can inhibit CYP3A4 mRNA and protein expression, but exerts opposite effects on their CYP1A2 counterparts. These findings suggest that it is necessary to consider drug interactions between clinical preparations containing TSS or Bupleurum and drugs metabolized by CYP3A4 and CYP1A2 to avoid potential adverse drug reactions in clinical practice.
ABSTRACT
This editorial provides insights from a case report by Sun et al published in the World Journal of Clinical Cases. The case report focuses on a case where a multilocular thymic cyst (MTC) was misdiagnosed as a thymic tumor, resulting in an unnecessary surgical procedure. Both MTCs and thymic tumors are rare conditions that heavily rely on radiological imaging for accurate diagnosis. However, the similarity in their imaging presentations can lead to misinterpretation, resulting in unnecessary surgical procedures. Due to the ongoing lack of comprehensive knowledge about MTCs and thymic tumors, we offer a summary of diagnostic techniques documented in recent literature and examine potential causes of misdiagnosis. When computer tomography (CT) values surpass 20 Hounsfield units and display comparable morphology, there is a risk of misdiagnosing MTCs as thymic tumors. Employing various differential diagnostic methods like biopsy, molecular biology, multi-slice CT, CT functional imaging, positron emission tomography/CT molecular functional imaging, magnetic resonance imaging and radiomics, proves advantageous in reducing clinical misdiagnosis. A deeper understanding of these conditions requires increased attention and exploration by healthcare providers. Moreover, the continued advancement and utilization of various diagnostic methods are expected to enhance precise diagnoses, provide appropriate treatment options, and improve the quality of life for patients with thymic tumors and MTCs in the future.
ABSTRACT
Ion-complementary self-assembling peptides have been studied in many fields for their distinct advantages, mainly due to their self-assembly properties. However, their shortcomings, such as insufficient specific activity and poor mechanical properties, also limited their application. For the better and wider application of these promising biomaterials, ion-complementary self-assembling peptides can be modified with their self-assembly properties not being destroyed to the greatest extent. The modification strategies were reviewed by taking RADA16-I as an example. For insufficient specific activity, RADA16-I can be structurally modified with active motifs derived from the active domain of the extracellular matrix or other related active factors. For weak mechanical properties, materials with strong mechanical properties or that can undergo chemical crosslinking were used to mix with RADA16-I to enhance the mechanical properties of RADA16-I. To improve the performance of RADA16-I as drug carriers, appropriate adjustment of the RADA16-I sequence and/or modification of the RADA16-I-related delivery system with polymer materials or specific molecules can be considered to achieve sustained and controlled release of specific drugs or active factors. The modification strategies reviewed in this paper may provide some references for further basic research and clinical application of ion-complementary self-assembling peptides and their derivatives.