Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(19): e2401386121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38696471

ABSTRACT

In the meiotic prophase, programmed DNA double-strand breaks are repaired by meiotic recombination. Recombination-defective meiocytes are eliminated to preserve genome integrity in gametes. BRCA1 is a critical protein in somatic homologous recombination, but studies have suggested that BRCA1 is dispensable for meiotic recombination. Here we show that BRCA1 is essential for meiotic recombination. Interestingly, BRCA1 also has a function in eliminating recombination-defective oocytes. Brca1 knockout (KO) rescues the survival of Dmc1 KO oocytes far more efficiently than removing CHK2, a vital component of the DNA damage checkpoint in oocytes. Mechanistically, BRCA1 activates chromosome asynapsis checkpoint by promoting ATR activity at unsynapsed chromosome axes in Dmc1 KO oocytes. Moreover, Brca1 KO also rescues the survival of asynaptic Spo11 KO oocytes. Collectively, our study not only unveils an unappreciated role of chromosome asynapsis in eliminating recombination-defective oocytes but also reveals the dual functions of BRCA1 in safeguarding oocyte genome integrity.


Subject(s)
BRCA1 Protein , Cell Cycle Proteins , Mice, Knockout , Oocytes , Oocytes/metabolism , Animals , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Female , Mice , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Meiosis/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/deficiency , DNA Breaks, Double-Stranded , Chromosome Pairing/genetics , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Checkpoint Kinase 2/genetics , Checkpoint Kinase 2/metabolism , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Recombination, Genetic , Homologous Recombination , Genomic Instability
2.
Proc Natl Acad Sci U S A ; 121(18): e2311028121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38657052

ABSTRACT

Increased cellular senescence burden contributes in part to age-related organ dysfunction and pathologies. In our study, using mouse models of natural aging, we observed structural and functional decline in the aged retina, which was accompanied by the accumulation of senescent cells and senescence-associated secretory phenotype factors. We further validated the senolytic and senomorphic properties of procyanidin C1 (PCC1) both in vitro and in vivo, the long-term treatment of which ameliorated age-related retinal impairment. Through high-throughput single-cell RNA sequencing (scRNA-seq), we comprehensively characterized the retinal landscape after PCC1 administration and deciphered the molecular basis underlying the senescence burden increment and elimination. By exploring the scRNA-seq database of age-related retinal disorders, we revealed the role of cellular senescence and the therapeutic potential of PCC1 in these pathologies. Overall, these results indicate the therapeutic effects of PCC1 on the aged retina and its potential use for treating age-related retinal disorders.


Subject(s)
Aging , Catechin , Cellular Senescence , Proanthocyanidins , Retina , Animals , Retina/metabolism , Retina/drug effects , Mice , Proanthocyanidins/pharmacology , Proanthocyanidins/metabolism , Aging/drug effects , Aging/metabolism , Cellular Senescence/drug effects , Catechin/pharmacology , Catechin/metabolism , Catechin/chemistry , Biflavonoids/pharmacology , Senotherapeutics/pharmacology , Mice, Inbred C57BL , Humans , Retinal Diseases/drug therapy , Retinal Diseases/metabolism , Retinal Diseases/pathology
3.
BMC Genomics ; 25(1): 648, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943098

ABSTRACT

BACKGROUND: Lotus (Nelumbo nucifera G.) is an important aquatic plant with high ornamental, economic, cultural and ecological values, but abiotic stresses seriously affect its growth and distribution. Q-type C2H2 zinc finger proteins (ZFPs) play an important role in plant growth development and environmental stress responses. Although the Q-type C2H2 gene family has been identified in some plants, limited reports has been carried out it in lotus. RESULTS: In this study, we identified 45 Q-type NnZFP members in lotus. Based on the phylogenetic tree, these Q-type NnZFP gene family members were divided into 4 groups, including C1-1i, C1-2i, C1-3i and C1-4i. Promoter cis-acting elements analysis indicated that most Q-type NnZFP gene family members in lotus were associated with response to abiotic stresses. Through collinearity analyses, no tandem duplication gene pairs and 14 segmental duplication gene pairs were identified, which showed that duplication events might play a key role in the expansion of the Q-type NnZFP gene family. The synteny results suggested that 54 and 28 Q-type NnZFP genes were orthologous to Arabidopsis and rice, respectively. The expression patterns of these Q-type NnZFP genes revealed that 30 Q-type NnZFP genes were expressed in at least one lotus tissue. Nn5g30550 showed relatively higher expression levels in all tested tissues. 12 genes were randomly selected with at least one gene from each phylogenetic clade, and the expression of these selected genes were confirmed by qRT-PCR (quantitative real-time polymerase chain reaction). The results indicated that Q-type NnZFP genes were extensively involved in cadmium, drought, salt and cold stresses responses. Among them, 11 genes responded to at least three different stress treatments, especially Nn2g12894, which induced by all four treatments. CONCLUSIONS: These results could increase our understanding of the characterization of the Q-type NnZFP gene family and provide relevant information for further functional analysis of Q-type NnZFP genes in plant development, and abiotic stress tolerance in lotus.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Nelumbo , Phylogeny , Plant Proteins , Stress, Physiological , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Nelumbo/genetics , CYS2-HIS2 Zinc Fingers/genetics , Lotus/genetics , Lotus/metabolism , Lotus/growth & development , Genome, Plant , Gene Expression Profiling
4.
Immun Ageing ; 21(1): 3, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38169405

ABSTRACT

BACKGROUND: Aging is a holistic change that has a major impact on the immune system, and immunosenescence contributes to the overall progression of aging. The bone marrow is the most important hematopoietic immune organ, while the spleen, as the most important extramedullary hematopoietic immune organ, maintains homeostasis of the human hematopoietic immune system (HIS) in cooperation with the bone marrow. However, the overall changes in the HIS during aging have not been described. Here, we describe a hematopoietic immune map of the spleen and bone marrow of young and old mice using single-cell sequencing and flow cytometry techniques. RESULTS: We observed extensive, complex changes in the HIS during aging. Compared with young mice, the immune cells of aged mice showed a marked tendency toward myeloid differentiation, with the neutrophil population accounting for a significant proportion of this response. In this change, hypoxia-inducible factor 1-alpha (Hif1α) was significantly overexpressed, and this enhanced the immune efficacy and inflammatory response of neutrophils. Our research revealed that during the aging process, hematopoietic stem cells undergo significant changes in function and composition, and their polymorphism and differentiation abilities are downregulated. Moreover, we found that the highly responsive CD62L + HSCs were obviously downregulated in aging, suggesting that they may play an important role in the aging process. CONCLUSIONS: Overall, aging extensively alters the cellular composition and function of the HIS. These findings could potentially give high-dimensional insights and enable more accurate functional and developmental analyses as well as immune monitoring in HIS aging.

5.
Molecules ; 29(16)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39202832

ABSTRACT

Developing novel catalysts with high activity and high stability for the methanol oxidation reaction (MOR) is of great importance for the ever-broader applications of methanol fuel cells. Herein, we present a facile technique for synthesizing Au10Pt1@MnO2 catalysts using a wet chemical method and investigate their catalytic performance for the MOR. Notably, the Au10Pt1@MnO2-M composite demonstrated a significantly high peak mass activity of 15.52 A mg(Pt)-1, which is 35.3, 57.5, and 21.9 times greater than those of the Pt/C (0.44 A mg(Pt)-1), Pd/C (0.27 A mg(Pt)-1), and Au10Pt1 (0.71 A mg(Pt)-1) catalysts, respectively. Comparative analysis with commercial Pt/C and Pd/C catalysts, as well as Au10Pt1 HSNRs, revealed that the Au10Pt1@MnO2-M composite exhibited the lowest initial potential, the highest peak current density, and superior CO anti-poisoning capability. The results demonstrate that the introduction of MnO2 nanosheets, with excellent oxidation capability, not only significantly increases the reactive sites, but also promotes the reaction kinetics of the catalyst. Furthermore, the high surface area of the MnO2 nanosheets facilitates charge transfer and induces modifications in the electronic structure of the composite. This research provides a straightforward and effective strategy for the design of efficient electrocatalytic nanostructures for MOR applications.

6.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 232-241, 2024 Apr.
Article in Zh | MEDLINE | ID: mdl-38686720

ABSTRACT

DNA is susceptible to various factors in vitro and in vivo and experience different forms of damage,among which double-strand break(DSB)is a deleterious form.To maintain the stability of genetic information,organisms have developed multiple mechanisms to repair DNA damage.Among these mechanisms,homologous recombination(HR)is praised for the high accuracy.The MRE11-RAD50-NBS1(MRN)complex plays an important role in HR and is conserved across different species.The knowledge on the MRN complex mainly came from the previous studies in Saccharomyces cerevisiae and Caenorhabditis elegans,while studies in the last decades have revealed the role of mammalian MRN complex in DNA repair of higher animals.In this review,we first introduces the MRN complex regarding the composition,structure,and roles in HR.In addition,we discuss the human diseases such as ataxia-telangiectasia-like disorder,Nijmegen breakage syndrome,and Nijmegen breakage syndrome-like disorder that are caused by dysfunctions in the MRN complex.Furthermore,we summarize the mouse models established to study the clinical phenotypes of the above diseases.


Subject(s)
Acid Anhydride Hydrolases , Cell Cycle Proteins , DNA Repair Enzymes , DNA-Binding Proteins , MRE11 Homologue Protein , Nuclear Proteins , Humans , Acid Anhydride Hydrolases/metabolism , Acid Anhydride Hydrolases/genetics , MRE11 Homologue Protein/metabolism , MRE11 Homologue Protein/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Animals , DNA Repair , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia/metabolism , Nijmegen Breakage Syndrome/metabolism , Nijmegen Breakage Syndrome/genetics
7.
J Neuroinflammation ; 20(1): 296, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38082266

ABSTRACT

BACKGROUND: Neuroinflammation and mitochondrial dysfunction play crucial roles in retinal ischemia and reperfusion (IR) injury. Recent studies have identified mitochondrial function as a promising target for immunomodulation. Empagliflozin (EMPA), an anti-diabetic drug, has exhibited great potential as both an anti-inflammatory agent and a protector of mitochondrial health. This study aimed to assess the therapeutic efficacy of EMPA in retinal IR injury. METHODS: To evaluate the protective effects of EMPA, the drug was injected into the vitreous body of mice post-retinal IR. Single-cell RNA sequencing (scRNA-seq) analysis was conducted to uncover the underlying mechanisms, and the results were further validated through in vivo and in vitro experiments. RESULTS: EMPA effectively protected retinal ganglion cells (RGCs) from IR injury by attenuating local retinal inflammation. The scRNA-seq analysis revealed that EMPA downregulated the nucleotide-binding domain and leucine-rich repeat containing protein 3 (NLRP3) signaling pathway and restored mitochondrial dynamics by upregulating the expression of mitochondrial fusion-related genes, Mitofusin 1 (Mfn1) and optic atrophy 1 (Opa1). These findings were further corroborated by Western blotting. In vitro experiments provided additional insights, demonstrating that EMPA suppressed lipopolysaccharide (LPS)-induced cell inflammation and NLRP3 inflammasome activation. Moreover, EMPA enhanced mitochondrial fusion, neutralized mitochondrial reactive oxygen species (mtROS), and restored mitochondrial membrane potential (MMP) in BV2 microglia. Notably, genetic ablation of Mfn1 or Opa1 abolished the anti-inflammatory effects of EMPA. CONCLUSIONS: Our findings highlight the positive contribution of Mfn1 and Opa1 to the anti-inflammatory therapeutic effect of EMPA. By restoring mitochondrial dynamics, EMPA effectively mitigates microglia-mediated neuroinflammation and prevents RGC loss in retinal IR injury.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Reperfusion Injury , Mice , Animals , Neuroinflammatory Diseases , Microglia/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Ischemia , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , GTP Phosphohydrolases
8.
J Neuroinflammation ; 20(1): 144, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37344856

ABSTRACT

BACKGROUND: Autoimmune uveitis (AU) is the most common ophthalmic autoimmune disease (AD) and is characterized by a complex etiology, high morbidity, and high rate of blindness. AU remission has been observed in pregnant female patients. However, the effects of progesterone (PRG), a critical hormone for reproduction, on the treatment of AU and the regulatory mechanisms remain unclear. METHODS: To this end, we established experimental autoimmune uveitis (EAU) animal models and constructed a high-dimensional immune atlas of EAU-model mice undergoing PRG treatment to explore the underlying therapeutic mechanisms of PRG using single-cell RNA sequencing. RESULTS: We found that PRG ameliorated retinal lesions and inflammatory infiltration in EAU-model mice. Further single-cell analysis indicated that PRG reversed the EAU-induced expression of inflammatory genes (AP-1 family, S100a family, and Cxcr4) and pathological processes related to inflammatory cell migration, activation, and differentiation. Notably, PRG was found to regulate the Th17/Treg imbalance by increasing the reduced regulatory functional mediators of Tregs and diminishing the overactivation of pathological Th17 cells. Moreover, the Id2/Pim1 axis, IL-23/Th17/GM-CSF signaling, and enhanced Th17 pathogenicity during EAU were reversed by PRG treatment, resulting in the alleviation of EAU inflammation and treatment of AD. CONCLUSIONS: Our study provides a comprehensive single-cell map of the immunomodulatory effects of PRG therapy on EAU and elaborates on the possible therapeutic mechanisms, providing novel insights into its application for treating autoimmune diseases.


Subject(s)
Autoimmune Diseases , Uveitis , Mice , Female , Animals , Progesterone/pharmacology , Progesterone/therapeutic use , Th17 Cells , Virulence , Inflammation , Disease Models, Animal , Mice, Inbred C57BL
9.
J Neuroinflammation ; 20(1): 91, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37029422

ABSTRACT

BACKGROUND: Retinal ischemia-reperfusion (RIR) injury refers to an obstruction in the retinal blood supply followed by reperfusion. Although the molecular mechanism underlying the ischemic pathological cascade is not fully understood, neuroinflammation plays a crucial part in the mortality of retinal ganglion cells. METHODS: Single-cell RNA sequencing (scRNA-seq), molecular docking, and transfection assay were used to explore the effectiveness and pathogenesis of N,N-dimethyl-3ß-hydroxycholenamide (DMHCA)-treated mice with RIR injury and DMHCA-treated microglia after oxygen and glucose deprivation/reoxygenation (OGD/R). RESULTS: DMHCA could suppress inflammatory gene expression and attenuate neuronal lesions, restoring the retinal structure in vivo. Using scRNA-seq on the retina of DMHCA-treated mice, we provided novel insights into RIR immunity and demonstrated nerve injury-induced protein 1 (Ninjurin1/Ninj 1) as a promising treatment target for RIR. Moreover, the expression of Ninj1, which was increased in RIR injury and OGD/R-treated microglia, was downregulated in the DMHCA-treated group. DMHCA suppressed the activation of the nuclear factor kappa B (NF-κB) pathways induced by OGD/R, which was undermined by the NF-κB pathway agonist betulinic acid. Overexpressed Ninj1 reversed the anti-inflammatory and anti-apoptotic function of DMHCA. Molecular docking indicated that for Ninj1, DMHCA had a low binding energy of - 6.6 kcal/mol, suggesting highly stable binding. CONCLUSION: Ninj1 may play a pivotal role in microglia-mediated inflammation, while DMHCA could be a potential treatment strategy against RIR injury.


Subject(s)
NF-kappa B , Reperfusion Injury , Mice , Animals , NF-kappa B/metabolism , Signal Transduction , Molecular Docking Simulation , Oxygen , Retinal Ganglion Cells/pathology , Reperfusion Injury/metabolism , Inflammation/drug therapy , Nerve Growth Factors , Cell Adhesion Molecules, Neuronal
10.
Mov Disord ; 38(7): 1282-1293, 2023 07.
Article in English | MEDLINE | ID: mdl-37148549

ABSTRACT

BACKGROUND: More than 50 loci are associated with spinocerebellar ataxia (SCA), and the most frequent subtypes share nucleotide repeats expansion, especially CAG expansion. OBJECTIVE: The objective of this study was to confirm a novel SCA subtype caused by CAG expansion. METHODS: We performed long-read whole-genome sequencing combined with linkage analysis in a five-generation Chinese family, and the finding was validated in another pedigree. The three-dimensional structure and function of THAP11 mutant protein were predicted. Polyglutamine (polyQ) toxicity of THAP11 gene with CAG expansion was assessed in skin fibroblasts of patients, human embryonic kidney 293 and Neuro-2a cells. RESULTS: We identified THAP11 as the novel causative SCA gene with CAG repeats ranging from 45 to 100 in patients with ataxia and from 20 to 38 in healthy control subjects. Among the patients, the number of CAA interruptions within CAG repeats was decreased to 3 (up to 5-6 in controls), whereas the number of 3' pure CAG repeats was up to 32 to 87 (4-16 in controls), suggesting that the toxicity of polyQ protein was length dependent on the pure CAG repeats. Intracellular aggregates were observed in cultured skin fibroblasts from patients. THAP11 polyQ protein was more intensely distributed in the cytoplasm of cultured skin fibroblasts from patients, which was replicated with in vitro cultured neuro-2a transfected with 54 or 100 CAG repeats. CONCLUSIONS: This study identified a novel SCA subtype caused by intragenic CAG repeat expansion in THAP11 with intracellular aggregation of THAP11 polyQ protein. Our findings extended the spectrum of polyQ diseases and offered a new perspective in understanding polyQ-mediated toxic aggregation. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Spinocerebellar Ataxias , Trinucleotide Repeat Expansion , Humans , Trinucleotide Repeat Expansion/genetics , Spinocerebellar Ataxias/genetics , Proteins/genetics , Pedigree , Repressor Proteins/genetics
11.
Environ Sci Technol ; 57(24): 8943-8953, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37285309

ABSTRACT

The effects and mechanisms of zinc oxide nanoparticles (ZnO NPs) and their aging products, sulfidized (s-) ZnO NPs, on the carbon cycling in the legume rhizosphere are still unclear. We observed that, after 30 days of cultivation, in the rhizosphere soil of Medicago truncatula, under ZnO NP and s-ZnO NP treatments, the dissolved organic carbon (DOC) concentrations were significantly increased by 1.8- to 2.4-fold compared to Zn2+ treatments, although the soil organic matter (SOM) contents did not change significantly. Compared to Zn2+ additions, the additions of NPs significantly induced the production of root metabolites such as carboxylic acids and amino acids and also stimulated the growth of microbes involved in the degradations of plant-derived and recalcitrant SOM, such as bacteria genera RB41 and Bryobacter, and fungi genus Conocybe. The bacterial co-occurrence networks indicated that microbes associated with SOM formation and decomposition were significantly increased under NP treatments. The adsorption of NPs by roots, the generation of root metabolites (e.g., carboxylic acid and amino acid), and enrichment of key taxa (e.g., RB41 and Gaiella) were the major mechanisms by which ZnO NPs and s-ZnO NPs drove DOC release and SOM decomposition in the rhizosphere. These results provide new perspectives on the effect of ZnO NPs on agroecosystem functions in soil-plant systems.


Subject(s)
Fabaceae , Nanoparticles , Soil Pollutants , Zinc Oxide , Fabaceae/metabolism , Rhizosphere , Nanoparticles/chemistry , Plants/metabolism , Bacteria/metabolism , Soil/chemistry
12.
Perfusion ; : 2676591231189941, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37498618

ABSTRACT

BACKGROUND: The effectiveness of a concomitant intra-aortic balloon pump (IABP) with veno-arterial extracorporeal membrane oxygenation (VA-ECMO) intervention in acute myocardial infarction with cardiogenic shock (AMICS) patients is contested in the literature. This study sought to compare short-term mortality weaning rate from VA-ECMOin AMICS cases. METHODS: We conducted a literature review and compared the primary and secondary endpoints in the following treatment groups of AMICS patients: (1) VA-ECMO plus IABP vs. IABP alone and (2) VA-ECMO plus IABP vs. VA-ECMO alone. The primary endpoint was in-hospital all-cause mortality; while 30-days mortality, weaning from VA-ECMO, and vascular complications comprised secondary endpoints. RESULTS: VA-ECMO concomitant with IABP was administered to 3,580 (76.4%) patients, while IABP alone and VA-ECMO alone treatments accounted for 1.7% and 21.9% of the patients, respectively. We found that in-hospital mortality was significantly lower in patients treated with VA-ECMO plus IABP vs. VA-ECMO alone (odds ratio (OR) = 0.52; 95% Confidence Interval (CI) = 0.21-1.31; I-squared statistic (I2 = 30%) or IABP alone (OR = 0.20; 95% CI = 0.08-0.55; I2 = 0%). Additionally, 30-days mortality was significantly lower in patients treated with VA-ECMO plus IABP vs. VA-ECMO alone (OR = 0.31; 95% CI = 0.25-0.40; I2 = 0%) or IABP alone (OR = 0.24; 95% CI = 0.11-0.50; I2 = 0%). A significant difference was observed in weaning from VA-ECMO in patients treated with VA-ECMO plus IABP vs. VA-ECMO alone (OR = 1.91; 95% CI = 1.09-3.33; I2 = 0%). CONCLUSION: In-hospital and 30-days mortality were significantly lower in AMICS patients treated with VA-ECMO plus IABP vs. VA-ECMO alone or IABP alone. VA-ECMO with concomitant IABP could increase the proportion of patients weaned from VA-ECMO, significantly reducing in-hospital mortality, without increasing complications.

13.
Clin Genet ; 101(4): 448-453, 2022 04.
Article in English | MEDLINE | ID: mdl-34988992

ABSTRACT

Retinol dehydrogenase 11 (RDH11) is an 11-cis-retinol dehydrogenase that has a well-characterized, albeit auxiliary role in the retinoid cycle. Diseases caused by mutations in the RDH11 gene are very rare, and only one affected family with eye and intelligence involvement has been reported. In the present study, we describe the clinical and genetic findings in a Chinese patient with retinitis pigmentosa (RP), juvenile cataracts, intellectual disability, and myopathy. Trio-based whole-exome sequencing and whole genomic copy number variation detection were performed in this family, and compound heterozygous mutations were identified in RDH11 of the patient: c.938T>C (p.Leu313Pro) derived from the father and c.75-3C>A derived from the mother. Variant c.75-3C>A was confirmed to be a splice-site mutation by cDNA sequencing. It caused exon 2 skipping, resulting in a frameshift mutation and premature translation termination (p.Lys26Serfs*38). Moreover, we found mislocalization of RDH11 protein in muscle cells of the patient by using immunofluorescence staining. This is the first case reported in the Chinese population harboring mutations in RDH11 and revealing a new phenotype of syndromic RP with myopathy.


Subject(s)
Muscular Diseases , Oxidoreductases/genetics , Retinitis Pigmentosa , Alcohol Oxidoreductases , DNA Copy Number Variations , Eye Proteins/genetics , Humans , Muscular Diseases/genetics , Mutation , Pedigree , Phenotype , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/genetics
14.
Ecotoxicol Environ Saf ; 220: 112370, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34058673

ABSTRACT

A 6 weeks pot culture experiment was carried out to investigate the stabilization effects of a modified biochar (BCM) on metals in contaminated soil and the uptake of these metals by wheat seedlings. The results showed that the application of BCM significantly increased the soil fertility, the biomass of wheat seedling roots increased by more than 50%, and soil dehydrogenase (DHA) and catalase (CAT) activities increased by 369.23% and 12.61%, respectively. In addition, with the application of BCM, the diethylenetriaminepentaacetic acid extractable (DTPA-extractable) Cd, Pb, Cu and Zn in soil were reduced from 2.34 to 0.38 mg/kg, from 49.27 to 25.65 mg/kg, from 3.55 mg/kg to below the detection limit and from 4.05 to 3.55 mg/kg, respectively. Correspondingly, the uptake of these metals in wheat roots and shoots decreased by 62.43% and 79.83% for Cd, 73.21% and 66.32% for Pb, 57.98% and 68.92% for Cu, and 40.42% and 43.66% for Zn. Furthermore, BCM application decreased the abundance and alpha diversity of soil bacteria and changed the soil bacterial community structure dramatically. Overall, BCM has great potential for the remediation of metal-contaminated soils, but its long-term impact on soil metals and biota need further research.


Subject(s)
Bacteria/drug effects , Charcoal/pharmacology , Metals, Heavy/metabolism , Seedlings/metabolism , Soil Pollutants/metabolism , Soil/chemistry , Triticum/drug effects , Biological Availability , Biomass , Cadmium/metabolism , Environmental Pollution , Plant Roots/metabolism , Seedlings/drug effects , Seedlings/growth & development , Soil Microbiology , Triticum/growth & development , Triticum/metabolism
15.
Ecotoxicol Environ Saf ; 207: 111294, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32931971

ABSTRACT

Heavy metal contamination in soil has attracted great attention worldwide. In situ stabilization has been considered an effective way to remediate soils contaminated by heavy metals. In the present research, a multiple-modified biochar (BCM) was prepared to stabilize Cd and Cu contamination in two different soils: a farmland soil (JYS) and a vegetable soil (ZZS). The results showed that BCM was a porous-like flake material and that modification increased its specific surface area and surface functional groups. The incubation experiment indicated that BCM decreased diethylenetriaminepentaacetic (DTPA)-extractable Cd and Cu by 92.02% and 100.00% for JYS and 90.27% and 100.00% for ZZS, respectively. The toxicity characteristic leaching procedure (TCLP)-extractable Cd and Cu decreased 66.46% and 100.00% for JYS and 46.33% and 100.00% for ZZS, respectively. BCM also reduced the mobility of Cd and Cu in soil and transformed them to more stable fractions. In addition, the application of BCM significantly increased the soil dehydrogenase, organic matter content and available K (p < 0.05). These results indicate that BCM has great potential in the remediation of Cd- and Cu-contaminated soil.


Subject(s)
Cadmium/analysis , Charcoal/chemistry , Copper/analysis , Environmental Restoration and Remediation/methods , Soil Pollutants/analysis , Soil/chemistry , Adsorption , China , Surface Properties
16.
Phys Chem Chem Phys ; 22(9): 5090-5104, 2020 Mar 07.
Article in English | MEDLINE | ID: mdl-32073002

ABSTRACT

Multiple theoretical investigations on three new series of donor-bridge-acceptor substituted compounds are employed to aid in the design of NLO-phores with high first-hyperpolarizability ß. The effect of varying the acceptor (rhodanine, thiohydantoin and thiobarbituric acid derivative-based) and bridge parts of these D-π-A systems was analyzed in terms of geometric and optoelectronic parameters such as bond length alternation, ground state dipole moments, HOMO and LUMO energies, UV-vis absorption spectra, transition dipole moments, and electronic absorption energies. Various functionals with the AUG-cc-pVDZ basis set including B3LYP, PBE38, and ωB97XD, and the Hartree-Fock method were employed to calculate ß values, and the solvent effect was also considered by employing the SMD model. The variation of first-hyperpolarizabilities has been explained satisfactorily in terms of the PBE38/AUG-cc-pVDZ level calculated spectroscopic properties in the light of the sum-over-states method and the two-level model. The comprehensive study indicates that the most worthwhile targets for development as NLO-phores are compounds that include a longer π-bridge.

17.
Ecotoxicol Environ Saf ; 197: 110600, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32289632

ABSTRACT

Cadmium (Cd) contamination in agricultural soil is a worldwide environmental problem. In situ stabilization has been considered an effective approach for the remediation of Cd-contaminated agricultural soil. However, information about the long-term effects of amendment on soil properties and stabilization efficiency remains limited. In the present study, mercapto-functionalized nano-silica (MPTS/nano-silica) was used to stabilize Cd in contaminated agricultural soil under field conditions for three years (with application rates of 0%, 0.2%, 0.4%, 0.6%, 0.8% and 1.0%). The application of MPTS/nano-silica reduced the soil aggregate stability (PDA0.25) (14.8%) and available K (24.9%) and significantly increased the soil dehydrogenase (DHA) (43.4%), yield of wheat grains (33.5%) and Si content in wheat tissues (55.2% in leaf, 50.4% in stem, and 37.7% in husk) (p < 0.05). More importantly, MPTS/nano-silica decreased the leachability (36.0%) and bioavailability (54.3%) of Cd in the soil and transformed Cd into a more stable fraction. The content of Cd in wheat grains decreased by 53.9%, 61.9% and 54.1% in 2017, 2018 and 2019, respectively, in comparison with the control. These results indicated that MPTS/nano-silica has long-term stabilization effects on Cd in agricultural soil and is a potential amendment for the remediation of Cd-contaminated agricultural soils.


Subject(s)
Cadmium/analysis , Silicon Dioxide/chemistry , Soil Pollutants/analysis , Agriculture , Biodegradation, Environmental , Cadmium/pharmacokinetics , Nanoparticles/chemistry , Soil/chemistry , Soil Pollutants/pharmacokinetics , Triticum/chemistry , Triticum/metabolism
18.
Int J Neurosci ; 130(11): 1156-1160, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31944864

ABSTRACT

Purpose: Sjögren-Larsson syndrome is a rare, autosomal, recessive neurocutaneous disorder caused by mutations in the ALDH3A2 gene, which encodes the fatty aldehyde dehydrogenase enzyme. Deficiency in fatty aldehyde dehydrogenase results in an abnormal accumulation of toxic fatty aldehydes in the brain and skin, which cause spasticity, intellectual disability, ichthyosis, and other clinical manifestations. We present the clinical features and mutation analyses of a case of SLS.Materials and Methods: The family history and clinical data of the patient were collected. Genomic DNA was extracted from peripheral blood samples of the patient and her parents, and next-generation sequencing was performed. The candidate mutation sites that required further validation were then sequenced by Sanger sequencing. Bioinformatics software PSIPRED and RaptorX were used to predict the secondary and tertiary structures of proteins.Results: The patient, a five-year-old girl with complaints of cough for three days and intermittent convulsions for seven hours, was admitted to the hospital. Other clinical manifestations included spastic paraplegia, mental retardation, tooth defects, and ichthyosis. Brain magnetic resonance imaging showed periventricular leukomalacia. Genetic screening revealed compound heterozygous mutations in the ALDH3A2 gene: a frameshift mutation c.779delA (p.K260Rfs*6) and a missense mutation c.1157A > G (p.N386S). Neither of the ALDH3A2 alleles in the compound heterozygote patient were able to generate normal fatty aldehyde dehydrogenase, which were likely responsible for her phenotype of Sjögren-Larsson syndrome.Conclusion: The compound heterozygous mutations found in the ALDH3A2 gene support the diagnosis of Sjögren-Larsson syndrome in the patient and expand the genotype spectrum of the gene.


Subject(s)
Aldehyde Oxidoreductases/genetics , Sjogren-Larsson Syndrome/diagnosis , Sjogren-Larsson Syndrome/genetics , Child, Preschool , Female , Frameshift Mutation , Humans , Mutation, Missense , Pedigree , Sjogren-Larsson Syndrome/physiopathology
19.
Sensors (Basel) ; 19(24)2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31888303

ABSTRACT

In the shallow-water environment, underwater images often present problems like color deviation and low contrast due to light absorption and scattering in the water body, but for deep-sea images, additional problems like uneven brightness and regional color shift can also exist, due to the use of chromatic and inhomogeneous artificial lighting devices. Since the latter situation is rarely studied in the field of underwater image enhancement, we propose a new model to include it in the analysis of underwater image degradation. Based on the theoretical study of the new model, a comprehensive method for enhancing underwater images under different illumination conditions is proposed in this paper. The proposed method is composed of two modules: color-tone correction and fusion-based descattering. In the first module, the regional or full-extent color deviation caused by different types of incident light is corrected via frequency-based color-tone estimation. And in the second module, the residual low contrast and pixel-wise color shift problems are handled by combining the descattering results under the assumption of different states of the image. The proposed method is experimented on laboratory and open-water images of different depths and illumination states. Qualitative and quantitative evaluation results demonstrate that the proposed method outperforms many other methods in enhancing the quality of different types of underwater images, and is especially effective in improving the color accuracy and information content in badly-illuminated regions of underwater images with non-uniform illumination, such as deep-sea images.

20.
Proc Natl Acad Sci U S A ; 112(39): 12205-10, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26371323

ABSTRACT

Endoplasmic reticulum (ER)-associated degradation (ERAD) is an essential part of an ER-localized protein quality-control system for eliminating terminally misfolded proteins. Recent studies have demonstrated that the ERAD machinery is conserved among yeast, animals, and plants; however, it remains unknown if the plant ERAD system involves plant-specific components. Here we report that the Arabidopsis ethyl methanesulfonate-mutagenized brassinosteroid-insensitive 1 suppressor 7 (EBS7) gene encodes an ER membrane-localized ERAD component that is highly conserved in land plants. Loss-of-function ebs7 mutations prevent ERAD of brassinosteroid insensitive 1-9 (bri1-9) and bri1-5, two ER-retained mutant variants of the cell-surface receptor for brassinosteroids (BRs). As a result, the two mutant receptors accumulate in the ER and consequently leak to the plasma membrane, resulting in the restoration of BR sensitivity and phenotypic suppression of the bri1-9 and bri1-5 mutants. EBS7 accumulates under ER stress, and its mutations lead to hypersensitivity to ER and salt stresses. EBS7 interacts with the ER membrane-anchored ubiquitin ligase Arabidopsis thaliana HMG-CoA reductase degradation 1a (AtHrd1a), one of the central components of the Arabidopsis ERAD machinery, and an ebs7 mutation destabilizes AtHrd1a to reduce polyubiquitination of bri1-9. Taken together, our results uncover a plant-specific component of a plant ERAD pathway and also suggest its likely biochemical function.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Endoplasmic Reticulum/physiology , Membrane Proteins/genetics , Proteolysis , Unfolded Protein Response/genetics , Amino Acid Sequence , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/metabolism , Base Sequence , Cloning, Molecular , Escherichia coli , Ethyl Methanesulfonate , Immunoblotting , Membrane Proteins/metabolism , Microscopy, Confocal , Molecular Sequence Data , Oligonucleotides/genetics , Plants, Genetically Modified , Plasmids/genetics , Protein Kinases , Protein Stability , Sequence Alignment , Sequence Analysis, DNA , Two-Hybrid System Techniques , Unfolded Protein Response/physiology
SELECTION OF CITATIONS
SEARCH DETAIL