Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Genomics ; 25(1): 83, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245685

ABSTRACT

BACKGROUND: Protein phosphatases type 2C (PP2C) are heavily involved in plant growth and development, hormone-related signaling pathways and the response of various biotic and abiotic stresses. However, a comprehensive report identifying the genome-scale of PP2C gene family in ginger is yet to be published. RESULTS: In this study, 97 ZoPP2C genes were identified based on the ginger genome. These genes were classified into 15 branches (A-O) according to the phylogenetic analysis and distributed unevenly on 11 ginger chromosomes. The proteins mainly functioned in the nucleus. Similar motif patterns and exon/intron arrangement structures were identified in the same subfamily of ZoPP2Cs. Collinearity analysis indicated that ZoPP2Cs had 33 pairs of fragment duplicated events uniformly distributed on the corresponding chromosomes. Furthermore, ZoPP2Cs showed greater evolutionary proximity to banana's PP2Cs. The forecast of cis-regulatory elements and transcription factor binding sites demonstrated that ZoPP2Cs participate in ginger growth, development, and responses to hormones and stresses. ZoERFs have plenty of binding sites of ZoPP2Cs, suggesting a potential synergistic contribution between ZoERFs and ZoPP2Cs towards regulating growth/development and adverse conditions. The protein-protein interaction network displayed that five ZoPP2Cs (9/23/26/49/92) proteins have robust interaction relationship and potential function as hub proteins. Furthermore, the RNA-Seq and qRT-PCR analyses have shown that ZoPP2Cs exhibit various expression patterns during ginger maturation and responses to environmental stresses such as chilling, drought, flooding, salt, and Fusarium solani. Notably, exogenous application of melatonin led to notable up-regulation of ZoPP2Cs (17/59/11/72/43) under chilling stress. CONCLUSIONS: Taken together, our investigation provides significant insights of the ginger PP2C gene family and establishes the groundwork for its functional validation and genetic engineering applications.


Subject(s)
Zingiber officinale , Zingiber officinale/genetics , Phylogeny , Gene Expression Profiling , Phosphoprotein Phosphatases/genetics , Genome, Plant , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
2.
BMC Cancer ; 24(1): 1069, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210289

ABSTRACT

BACKGROUND: Thyroid cancer is a common thyroid malignancy. The majority of thyroid lesion needs intraoperative frozen pathology diagnosis, which provides important information for precision operation. As digital whole slide images (WSIs) develop, deep learning methods for histopathological classification of the thyroid gland (paraffin sections) have achieved outstanding results. Our current study is to clarify whether deep learning assists pathology diagnosis for intraoperative frozen thyroid lesions or not. METHODS: We propose an artificial intelligence-assisted diagnostic system for frozen thyroid lesions that applies prior knowledge in tandem with a dichotomous judgment of whether the lesion is cancerous or not and a quadratic judgment of the type of cancerous lesion to categorize the frozen thyroid lesions into five categories: papillary thyroid carcinoma, medullary thyroid carcinoma, anaplastic thyroid carcinoma, follicular thyroid tumor, and non-cancerous lesion. We obtained 4409 frozen digital pathology sections (WSI) of thyroid from the First Affiliated Hospital of Sun Yat-sen University (SYSUFH) to train and test the model, and the performance was validated by a six-fold cross validation, 101 papillary microcarcinoma sections of thyroid were used to validate the system's sensitivity, and 1388 WSIs of thyroid were used for the evaluation of the external dataset. The deep learning models were compared in terms of several metrics such as accuracy, F1 score, recall, precision and AUC (Area Under Curve). RESULTS: We developed the first deep learning-based frozen thyroid diagnostic classifier for histopathological WSI classification of papillary carcinoma, medullary carcinoma, follicular tumor, anaplastic carcinoma, and non-carcinoma lesion. On test slides, the system had an accuracy of 0.9459, a precision of 0.9475, and an AUC of 0.9955. In the papillary carcinoma test slides, the system was able to accurately predict even lesions as small as 2 mm in diameter. Tested with the acceleration component, the cut processing can be performed in 346.12 s and the visual inference prediction results can be obtained in 98.61 s, thus meeting the time requirements for intraoperative diagnosis. Our study employs a deep learning approach for high-precision classification of intraoperative frozen thyroid lesion distribution in the clinical setting, which has potential clinical implications for assisting pathologists and precision surgery of thyroid lesions.


Subject(s)
Deep Learning , Frozen Sections , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Thyroid Neoplasms/pathology , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/surgery , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/diagnosis , Thyroid Cancer, Papillary/surgery , Carcinoma, Papillary/pathology , Carcinoma, Papillary/surgery , Carcinoma, Papillary/diagnosis , Adenocarcinoma, Follicular/pathology , Adenocarcinoma, Follicular/diagnosis , Adenocarcinoma, Follicular/surgery , Thyroid Gland/pathology , Thyroid Gland/surgery , Carcinoma, Neuroendocrine/pathology , Carcinoma, Neuroendocrine/diagnosis , Carcinoma, Neuroendocrine/surgery , Female , Male , Middle Aged , Adult , Intraoperative Period , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Carcinoma, Anaplastic/diagnosis , Thyroid Carcinoma, Anaplastic/surgery
3.
Virol J ; 21(1): 154, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978059

ABSTRACT

BACKGROUND: Rabies is a fatal zoonotic disease whose pathogenesis has not been fully elucidated, and vaccination is the only effective method for protecting against rabies virus infection. Most inactivated vaccines are produced using Vero cells, which are African green monkey kidney cells, to achieve large-scale production. However, there is a potential carcinogenic risk due to nonhuman DNA contamination. Thus, replacing Vero cells with human diploid cells may be a safer strategy. In this study, we developed a novel 2BS cell-adapted rabies virus strain and analysed its sequence, virulence and immunogenicity to determine its application potential as a human diploid cell inactivated vaccine. METHODS AND RESULTS: The 2BS cell-adapted rabies virus strain 2aG4-B40 was established by passage for 40 generations and selection of plaques in 2BS cells. RNA sequence analysis revealed that mutations in 2BS cell-adapted strains were not located at key sites that regulate the production of neutralizing antibodies or virulence in the aG strain (GQ412744.1). The gradual increase in virulence (remaining above 7.0 logLD50/ml from the 40th to 55th generation) and antigen further indicated that these mutations may increase the affinity of the adapted strains for human diploid cells. Identification tests revealed that the 2BS cell-adapted virus strain was neutralized by anti-rabies serum, with a neutralization index of 19,952. PrEP and PEP vaccination and the NIH test further indicated that the vaccine prepared with the 2aG4-B40 strain had high neutralizing antibody levels (2.24 to 46.67 IU/ml), immunogenicity (protection index 270) and potency (average 11.6 IU/ml). CONCLUSIONS: In this study, a 2BS cell-adapted strain of the 2aG4 rabies virus was obtained by passage for 40 generations. The results of sequencing analysis and titre determination of the adapted strain showed that the mutations in the adaptive process are not located at key sequence regions of the virus, and these mutations may enhance the affinity of the adapted strain for human diploid cells. Moreover, vaccines made from the adapted strain 2aG4-B40 had high potency and immunogenicity and could be an ideal candidate rabies virus strain for inactivated vaccine preparation.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Rabies Vaccines , Rabies virus , Rabies , Rabies virus/immunology , Rabies virus/genetics , Rabies virus/pathogenicity , Animals , Rabies Vaccines/immunology , Rabies Vaccines/genetics , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Rabies/prevention & control , Rabies/immunology , Rabies/virology , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Chlorocebus aethiops , Virulence , Vaccines, Inactivated/immunology , Vero Cells , China , Mice , Cell Line , Mutation , Female , Immunogenicity, Vaccine
4.
BMC Biol ; 21(1): 203, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37775783

ABSTRACT

BACKGROUND: Homology-based recombination (HR) is the cornerstone of genetic mapping. However, a lack of sufficient sequence homology or the presence of a genomic rearrangement prevents HR through crossing, which inhibits genetic mapping in relevant genomic regions. This is particularly true in species hybrids whose genomic sequences are highly divergent along with various genome arrangements, making the mapping of genetic loci, such as hybrid incompatibility (HI) loci, through crossing impractical. We previously mapped tens of HI loci between two nematodes, Caenorhabditis briggsae and C. nigoni, through the repeated backcrossing of GFP-linked C. briggsae fragments into C. nigoni. However, the median introgression size was over 7 Mb, indicating apparent HR suppression and preventing the subsequent cloning of the causative gene underlying a given HI phenotype. Therefore, a robust method that permits recombination independent of sequence homology is desperately desired. RESULTS: Here, we report a method of highly efficient targeted recombination (TR) induced by CRISPR/Cas9 with dual guide RNAs (gRNAs), which circumvents the HR suppression in hybrids between the two species. We demonstrated that a single gRNA was able to induce efficient TR between highly homologous sequences only in the F1 hybrids but not in the hybrids that carry a GFP-linked C. briggsae fragment in an otherwise C. nigoni background. We achieved highly efficient TR, regardless of sequence homology or genetic background, when dual gRNAs were used that each specifically targeted one parental chromosome. We further showed that dual gRNAs were able to induce efficient TR within genomic regions that had undergone inversion, in which HR-based recombination was expected to be suppressed, supporting the idea that dual-gRNA-induced TR can be achieved through nonhomology-based end joining between two parental chromosomes. CONCLUSIONS: Recombination suppression can be circumvented through CRISPR/Cas9 with dual gRNAs, regardless of sequence homology or the genetic background of the species hybrid. This method is expected to be applicable to other situations in which recombination is suppressed in interspecies or intrapopulation hybrids.


Subject(s)
Caenorhabditis , Animals , Caenorhabditis/genetics , CRISPR-Cas Systems , Chromosome Mapping , Genome , Recombination, Genetic
5.
Int J Mol Sci ; 25(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38256002

ABSTRACT

The domains of unknown function (DUF) superfamilies contain proteins with conserved amino acid sequences without known functions. Among them, DUF668 was indicated widely involving the stress response of plants. However, understanding ZoDUF668 is still lacking. Here, 12 ZoDUF668 genes were identified in ginger by the bioinformatics method and unevenly distributed on six chromosomes. Conserved domain analysis showed that members of the same subfamily had similar conserved motifs and gene structures. The promoter region of ZoDUF668s contained the light, plant hormone and stress-responsive elements. The prediction of miRNA targeting relationship showed that nine ginger miRNAs targeted four ZoDUF668 genes through cleavage. The expression patterns of 12 ZoDUF668 genes under biotic and abiotic stress were analyzed using RT-qPCR. The results showed that the expression of seven ZoDUF668 genes was significantly downregulated under Fusarium solani infection, six ZoDUF668 genes were upregulated under cold stress, and five ZoDUF668 genes were upregulated under waterlogging stress. These results indicate that the ZoDUF668 gene has different expression patterns under different stress conditions. This study provides excellent candidate genes and provides a reference for stress-resistance research in ginger.


Subject(s)
Fusariosis , MicroRNAs , Zingiber officinale , Zingiber officinale/genetics , Amino Acid Sequence , Cold-Shock Response/genetics , Computational Biology , MicroRNAs/genetics
6.
BMC Genomics ; 24(1): 30, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36653780

ABSTRACT

BACKGROUND: The genus Zingiber of the Zingiberaceae is distributed in tropical, subtropical, and in Far East Asia. This genus contains about 100-150 species, with many species valued as important agricultural, medicinal and horticultural resources. However, genomic resources and suitable molecular markers for species identification are currently sparse. RESULTS: We conducted comparative genomics and phylogenetic analyses on Zingiber species. The Zingiber chloroplast genome (size range 162,507-163,711 bp) possess typical quadripartite structures that consist of a large single copy (LSC, 86,986-88,200 bp), a small single copy (SSC, 15,498-15,891 bp) and a pair of inverted repeats (IRs, 29,765-29,934 bp). The genomes contain 113 unique genes, including 79 protein coding genes, 30 tRNA and 4 rRNA genes. The genome structures, gene contents, amino acid frequencies, codon usage patterns, RNA editing sites, simple sequence repeats and long repeats are conservative in the genomes of Zingiber. The analysis of sequence divergence indicates that the following genes undergo positive selection (ccsA, ndhA, ndhB, petD, psbA, psbB, psbC, rbcL, rpl12, rpl20, rpl23, rpl33, rpoC2, rps7, rps12 and ycf3). Eight highly variable regions are identified including seven intergenic regions (petA-pabJ, rbcL-accD, rpl32-trnL-UAG, rps16-trnQ-UUG, trnC-GCA-psbM, psbC-trnS-UGA and ndhF-rpl32) and one genic regions (ycf1). The phylogenetic analysis revealed that the sect. Zingiber was sister to sect. Cryptanthium rather than sect. Pleuranthesis. CONCLUSIONS: This study reports 14 complete chloroplast genomes of Zingiber species. Overall, this study provided a solid backbone phylogeny of Zingiber. The polymorphisms we have uncovered in the sequencing of the genome offer a rare possibility (for Zingiber) of the generation of DNA markers. These results provide a foundation for future studies that seek to understand the molecular evolutionary dynamics or individual population variation in the genus Zingiber.


Subject(s)
Genome, Chloroplast , Zingiberaceae , Phylogeny , Zingiberaceae/genetics , Genomics/methods , Polymorphism, Genetic , Evolution, Molecular
7.
BMC Plant Biol ; 23(1): 215, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37098482

ABSTRACT

BACKGROUND: Melatonin is considered to be a polyfunctional master regulator in animals and higher plants. Exogenous melatonin inhibits plant infection by multiple diseases; however, the role of melatonin in Cucumber green mottle mosaic virus (CGMMV) infection remains unknown. RESULTS: In this study, we demonstrated that exogenous melatonin treatment can effectively control CGMMV infection. The greatest control effect was achieved by 3 days of root irrigation at a melatonin concentration of 50 µM. Exogenous melatonin showed preventive and therapeutic effects against CGMMV infection at early stage in tobacco and cucumber. We utilized RNA sequencing technology to compare the expression profiles of mock-inoculated, CGMMV-infected, and melatonin+CGMMV-infected tobacco leaves. Defense-related gene CRISP1 was specifically upregulated in response to melatonin, but not to salicylic acid (SA). Silencing CRISP1 enhanced the preventive effects of melatonin on CGMMV infection, but had no effect on CGMMV infection. We also found exogenous melatonin has preventive effects against another Tobamovirus, Pepper mild mottle virus (PMMoV) infection. CONCLUSIONS: Together, these results indicate that exogenous melatonin controls two Tobamovirus infections and inhibition of CRISP1 enhanced melatonin control effects against CGMMV infection, which may lead to the development of a novel melatonin treatment for Tobamovirus control.


Subject(s)
Melatonin , Tobamovirus , Plant Growth Regulators , Cysteine , Melatonin/pharmacology , Tobamovirus/genetics , Nicotiana/genetics , Plant Diseases/genetics
8.
J Med Virol ; 95(4): e28752, 2023 04.
Article in English | MEDLINE | ID: mdl-37185836

ABSTRACT

Human parainfluenza viruses (hPIVs)-induced pneumonia is an important cause of pediatric hospitalization, and some develop severe pneumonias requiring pediatric intensive care unit (PICU) admission and mechanical ventilation (MV). The aim of this study is to investigate the value of peripheral blood (PB) parameters available on admission in predicting the need for PICU admission and MV due to pneumonia caused by hPIVs. A total of 331 cases including 277 (83.69%) on the general ward (GW) and 54 (16.31%) on the PICU were enrolled between January 2016 and June 2021. Of 54 patients admitted to the PICU, 24 patients (7.25%) received MV, whereas 30 (9.06%) did not. For both the PICU and GW groups, infants accounted for the highest proportion while school children had the lowest. Compared with the GW group, the PICU group had significantly higher rates of premature birth, fatigue, sore throat, headache, chest pain, tachypnea, dyspnea, and underlying diseases including congenital tracheal stenosis, congenital heart disease (CHD), metabolic disorder, and neurological disorder (ND), but significant lower proportion of exclusive breastfeeding and Z-scores for weight-for-height, weight-for-age, height-for-age, and body-mass-index (BMI)-for-age (BMIZ). Higher levels of some leukocyte differential counts (LDC)-related parameters including counts of neutrophil (N), ratios of neutrophil-to-lymphocyte ratio (NLR), derived neutrophils/(leukocytes minus neutrophils) ratio (dNLR), and platelet-to-lymphocyte ratio (PLR), lower levels of some other LDC-related parameters including lymphocyte (L) and monocyte (M) counts, ratios of lymphocyte-to-monocyte ratio (LMR), lymphocyte-to-C-reactive protein ratio, and prognostic nutritional index (PNI), and lower levels of PB protein (PBP)-related parameters including red blood cell (RBC), hemoglobin, total protein (TP), and serum albumin were observed in the PB of patients in the PICU compared with those in the GW. Notably, higher PLR level and two comorbidities including CHD and ND were identified as independent risk factors for PICU admission, while lower PNI level as well as smaller numbers of RBC and L as good predictors. Low levels of TP might be a useful predictor of the need for MV. Overall, the relative contributions of LDC- and PBP-related factors for accurate identification of patients required PICU admission accounted for 53.69% and 46.31%, respectively. Thus, determination of whether a patient with hPIVs-induced pneumonia is admitted to PICU involves consideration of both the LDC- and PBP-related parameters.


Subject(s)
Pneumonia, Viral , Respiration, Artificial , Infant , Humans , Child , Inpatients , Hospitalization , Intensive Care Units, Pediatric , Retrospective Studies
9.
Opt Lett ; 48(7): 1902-1905, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37221795

ABSTRACT

Image edge processing has widespread adoption in a variety of scientific and industrial scenarios. To date, implementations of image edge processing have mostly been done electronically, but there are still difficulties to achieve real-time, high-throughput, and low power consumption image edge processing. The advantages of optical analog computing include low power consumption, fast transmission speed, and high parallel processing capability, and optical analog differentiators make this process possible. However, the proposed analog differentiators can hardly meet the requirements of broadband, polarization insensitive, high contrast, and high efficiency at the same time. Moreover, they are limited to one-dimensional differentiation or work in reflection mode. To be better compatible with two-dimensional image processing or image recognition systems, two-dimensional optical differentiators that integrate the above advantages are urgently needed. In this Letter, a two-dimensional analog optical differentiator with edge detection operating in transmission mode is proposed. It can cover the visible band, is polarization uncorrelated, and has a resolution that reaches 1.7 µm. The efficiency of the metasurface is higher than 88%.

10.
Environ Res ; 232: 116340, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37290624

ABSTRACT

Since limitedly existing researches suggested Cu(II) had deficiently catalytic ability to PAA, in this work, we tested the oxidation performance of Cu(II)/PAA system on diclofenac (DCF) degradation under neutral conditions. It was found that overwhelming DCF removal could be obtained in Cu(II)/PAA system at pH 7.4 using phosphate buffer solution (PBS) compared to poor loss of DCF without PBS, and the apparent rate constant of DCF removal in PBS/Cu(II)/PAA system was 0.0359 min-1, 6.53 times of that in Cu(II)/PAA system. Organic radicals (i.e., CH3C(O)O• and CH3C(O)OO•) were evidenced as the dominant contributors to DCF destruction in PBS/Cu(II)/PAA system. PBS motivated the reduction of Cu(II) to Cu(I) through chelation effect, and then the activation of PAA by Cu(I) was facilitated. Besides, due to the steric hindrance of Cu(II)-PBS complex (CuHPO4), PAA activation was mediated from non-radical-generating pathway to radical-generating pathway, leading to desirably effective DCF removal by radicals. The transformation of DCF mainly experienced hydroxylation, decarboxylation, formylation and dehydrogenation in PBS/Cu(II)/PAA system. This work proposes the potential of coupling of phosphate and Cu(II) in optimizing PAA activation for organic pollutants elimination.


Subject(s)
Peracetic Acid , Water Pollutants, Chemical , Diclofenac , Phosphates , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Hydrogen Peroxide
11.
Heart Surg Forum ; 26(6): E889-E895, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38178330

ABSTRACT

BACKGROUND: Patients with coronary heart disease (CHD) often have other diseases due to organ dysfunction, among which chronic heart failure (CHF) is the most common. Percutaneous coronary intervention (PCI) is the mainstream method for the treatment of such diseases. Because most of the patients are the elderly and the functions of various organs are declining, it is necessary to implement scientific and efficient management methods. OBJECTIVE: To explore the application value of circulation quality control intervention (CQCI) mode in PCI of patients with CHD and CHF. Time: From June 2021 to June 2023. METHODS: The clinical data of 197 CHD patients with CHF were retrospectively analyzed, and 14 patients who did not meet the inclusion criteria were excluded. According to different perioperative management methods, the remaining cases were divided into the reference group (RG, receiving routine clinical management) and observation group (OG, receiving routine clinical management and CQCI). The cardiac function indexes and emotional state before and after management were compared between the two groups, and the quality of life in two groups was compared. RESULTS: In this study, 100 patients were included in the RG and 83 patients were included in the OG finally. Compared with the RG, the OG had lower levels of left ventricular end systolic diameter and left ventricular end-diastolic diameter after management (p < 0.05), while the OG had significantly higher left ventricular ejection fraction level (p < 0.001). The OG had overtly higher clinical satisfaction than the RG (p < 0.05). After management, the Hospital Anxiety and Depression Scale score in the OG were distinctly lower than those in the RG (p < 0.001). After management, the OG had significantly higher scores of physiological field, psychological field, social relationship and environmental field than the RG (p < 0.001). CONCLUSION: The application of CQCI mode in the perioperative period of PCI has certain benefits for improving the cardiac function of patients. At the same time, this program can also improve the quality of life of patients to a certain extent, which is helpful to accelerate postoperative rehabilitation.


Subject(s)
Coronary Disease , Heart Failure , Percutaneous Coronary Intervention , Humans , Aged , Stroke Volume , Ventricular Function, Left , Quality of Life , Retrospective Studies , Coronary Disease/complications , Coronary Disease/surgery , Heart Failure/complications , Heart Failure/surgery
12.
Heart Surg Forum ; 26(6): E714-E721, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38178351

ABSTRACT

OBJECTIVE: To explore the effect of case management-based extended intervention model on treatment compliance and cardiac function in patients with chronic heart failure. METHODS: This study retrospectively analysed the clinical data of 203 patients with chronic heart failure at Xingtai Third Hospital from January 2019 to January 2022. In accordance with different intervention programs, the patients were divided into a study group (SG, n = 102) and a reference group (RG, n = 101). The SG received the extended intervention model based on case management, and the RG adopted the conventional intervention model. Comparison was conducted on the treatment compliance, cardiac function, activity of daily living scale (ADL) scores and readmission rates in both groups. RESULTS: After intervention, the SG showed higher treatment compliance (p < 0.05), lower heart rate, higher left ventricular ejection fraction, ratio of transmitral peak rapid filling velocity to transmitral peak atrial filling velocity at mitral orifice and six-minute walk distance (p < 0.001) and significantly lower ADL score and readmission rates than the RG (p < 0.05). CONCLUSION: The extended intervention model based on case management positively influences the treatment compliance of patients with chronic heart failure and continuously improves patients' cardiac function, reduces the readmission rate, enhances daily living ability, comprehensively increases clinical efficacy and benefits patients for a long period.


Subject(s)
Heart Failure , Ventricular Function, Left , Humans , Stroke Volume , Retrospective Studies , Case Management , Heart Failure/therapy , Patient Compliance
13.
Int J Mol Sci ; 24(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139237

ABSTRACT

Sugars will eventually be exported transporters (SWEETs) are a novel class of sugar transport proteins that play a crucial role in plant growth, development, and response to stress. However, there is a lack of systematic research on SWEETs in Capsicum annuum L. In this study, 33 CaSWEET genes were identified through bioinformatics analysis. The Ka/Ks analysis indicated that SWEET genes are highly conserved not only among peppers but also among Solanaceae species and have experienced strong purifying selection during evolution. The Cis-elements analysis showed that the light-responsive element, abscisic-acid-responsive element, jasmonic-acid-responsive element, and anaerobic-induction-responsive element are widely distributed in the promoter regions of CaSWEETs. The expression pattern analysis revealed that CaSWEETs exhibit tissue specificity and are widely involved in pepper growth, development, and stress responses. The post-transcription regulation analysis revealed that 20 pepper miRNAs target and regulate 16 CaSWEETs through cleavage and translation inhibition mechanisms. The pathogen inoculation assay showed that CaSWEET16 and CaSWEET22 function as susceptibility genes, as the overexpression of these genes promotes the colonization of pathogens, whereas CaSWEET31 functions as a resistance gene. In conclusion, through systematic identification and characteristic analysis, a comprehensive understanding of CaSWEET was obtained, which lays the foundation for further studies on the biological functions of SWEET genes.


Subject(s)
Capsicum , Capsicum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Genes, Plant , Multigene Family , Gene Expression Regulation, Plant , Phylogeny
14.
Zhongguo Zhong Yao Za Zhi ; 48(3): 823-828, 2023 Feb.
Article in Zh | MEDLINE | ID: mdl-36872246

ABSTRACT

This study aimed to explore the infrared manifestation and role of brown adipose tissue(BAT) in phlegm-dampness me-tabolic syndrome(MS), and to provide objective basis for clinical diagnosis and treatment of phlegm-dampness MS. Subjects were selected from the department of endocrinology and ward in the South District of Guang'anmen Hospital, China Academy of Chinese Medical Sciences from August 2021 to April 2022, including 20 in healthy control group, 40 in non phlegm-dampness MS group and 40 in phlegm-dampness MS group. General information, height and weight of the subjects were collected and body mass index(BMI) was calculated. Waist circumference(WC), systolic blood pressure(SBP) and diastolic blood pressure(DBP) was measured. Triglyceride(TG), high density lipoprotein cholesterol(HDL-C), fasting blood glucose(FBG), fasting insulin(FINS), leptin(LP), adiponectin(ADP) and fibroblast growth factor-21(FGF-21) were detected. The infrared thermal image of the supraclavicular region(SCR) of the subjects before and after cold stimulation test was collected by infrared thermal imager and the changes of infrared thermal image in the three groups were observed. In addition, the differences in the average body surface temperature of SCR among the three groups were compared, and the changes of BAT in SCR were analyzed. The results showed compared with the conditions in healthy control group, the levels of WC, SBP, DBP, TG and FPG in MS groups were increased(P<0.01), and the HDL-C level was decreased(P<0.01). Compared with non phlegm-dampness MS group, phlegm-dampness MS group had higher conversion score of phlegm dampness physique(P<0.01). According to the infrared heat map, there was no difference in the average body surface temperature of SCR among the three groups before cold stimulation. while after cold stimulation, the average body surface temperature of SCR in MS groups was lower than that in healthy control group(P<0.05). After cold stimulation, the maximum temperature of SCR and its arrival time in the three groups were as follows: healthy control group(3 min)>non phlegm-dampness MS group(4 min)>phlegm-dampness MS group(5 min). The thermal deviation of SCR was increased and the average body surface temperature of left and right sides were higher(P<0.01) in healthy control group and non phlegm-dampness MS group, while the thermal deviation of SCR did not change significantly in the phlegm-dampness MS group. Compared with that in healthy control group, the elevated temperature between left and right sides was lower(P<0.01, P<0.05), and compared with that in non phlegm-dampness MS group, the elevated temperature of left side was lower(P<0.05). The changes of the average body surface temperature of SCR in the three groups were in the order of healthy control group>non phlegm-dampness MS group>phlegm-dampness MS group. Compared with the conditions in healthy control group and non phlegm-dampness MS group, FINS, BMI and FGF-21 levels were increased(P<0.01,P<0.05), while ADP level was decreased(P<0.01, P<0.05) in phlegm-dampness MS group. Moreover, the LP level in phlegm-dampness MS group was higher than that in non phlegm-dampness MS group(P<0.01). It was observed in clinical trials that after cold stimulation, the average body surface temperature of SCR in MS patients was lower than that of the healthy people; the thermal deviation of SCR did not change significantly in the phlegm-dampness MS patients, and the difference in their elevated temperature was lower than that in the other two groups. These characteristics provided objective basis for clinical diagnosis and treatment of phlegm-dampness MS. With abnormal BAT related indicators, it was inferred that the content or activity of BAT in SCR of phlegm-dampness MS patients were reduced. There was a high correlation between BAT and phlegm-dampness MS, and thus BAT might become an important potential target for the intervention in phlegm-dampness MS.


Subject(s)
Metabolic Syndrome , Humans , Adipose Tissue, Brown , Mucus , Adiponectin , Body Mass Index
15.
BMC Plant Biol ; 22(1): 362, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35869422

ABSTRACT

BACKGROUND: Soybean is one of the four major crops in China. The occurrence of viruses in soybean causes significant economic losses. RESULTS: In this study, the soybean leaves from stay-green plants showing crinkle were collected for metatranscriptomic sequencing. A novel geminivirus, tentatively named soybean geminivirus A (SGVA), was identified in soybean stay-green plants. Sequence analysis of the full-length SGVA genome revealed a genome of 2762 nucleotides that contain six open reading frames. Phylogenetic analyses revealed that SGVA was located adjacent to the clade of begomoviruses in both the full genome-based and C1-based phylogenetic tree, while in the CP-based phylogenetic tree, SGVA was located adjacent to the clade of becurtoviruses. SGVA was proposed as a new recombinant geminivirus. Agroinfectious clone of SGVA was constructed. Typical systemic symptoms of curly leaves were observed at 11 dpi in Nicotiana benthamiana plants and severe dwarfism was observed after 3 weeks post inoculation. Expression of the SGVA encoded V2 and C1 proteins through a potato virus X (PVX) vector caused severe symptoms in N. benthamiana. The V2 protein inhibited local RNA silencing in co-infiltration assays in GFP transgenic 16C N. benthamiana plants. Further study revealed mild symptoms in N. benthamiana plants inoculated with SGVA-ZZ V2-STOP and SGVA-ZZ V2-3738AA mutants. Both the relative viral DNA and CP protein accumulation levels significantly decreased when compared with SGVA-inoculated plants. CONCLUSIONS: This work identified a new geminivirus in soybean stay-green plants and determined V2 as a pathogenicity factor and silencing suppressor.


Subject(s)
Fabaceae , Geminiviridae , Fabaceae/genetics , Geminiviridae/genetics , Geminiviridae/metabolism , Phylogeny , Plant Diseases/genetics , Plants, Genetically Modified/metabolism , Glycine max/genetics , Glycine max/metabolism , Nicotiana/metabolism , Virulence Factors/metabolism
16.
J Med Virol ; 94(9): 4319-4328, 2022 09.
Article in English | MEDLINE | ID: mdl-35593042

ABSTRACT

The viral etiologies responsible for acute lower respiratory tract infections (ALRI) are a major cause of pediatric hospitalization, and some develop severe diseases requiring pediatric intensive care unit (PICU) admission. The aim of this study is to determine the prevalence of viruses and risk factors associated with PICU admission among patients hospitalized for ALRI. Nasopharyngeal swabs were collected to detect human rhinovirus (HRV), influenza A and B viruses (IAV and IBV), parainfluenza viruses (PIV), and respiratory syncytial virus (RSV) by reverse transcription-polymerase chain reaction (PCR) and adenovirus (ADV) by PCR. Of the 5590 pediatric inpatients enrolled, respiratory viral infection occurred in 2102 (37.60%) patients, including 1846 (33.02%) single and 256 (4.58%) mixed viral infections. Among the nasopharyngeal swabs from pediatric inpatients, HRV accounted for the highest detection rate (16.48%), followed by PIV (8.35%), RSV (7.41%), ADV (4.63%), IAV (3.51%), and IBV (2.08%). The positive rate of viral tests decreased with increasing age and was higher in males (39.29%) than females (34.67%). The prevalence of viral infection was the highest in winter (41.57%) and lowest in autumn (31.78%). Each virus had a seasonal pattern, with peaks occurring in months of their epidemic seasons. RSV infection and the presence of comorbidities including congenital tracheal stenosis, congenital heart disease, metabolic disorder, immunodeficiency, renal disease, gastrointestinal disease, and neurological disorder might be associated with the need for PICU admission. Therefore, this study provides useful information for the prevention and control of virus-related respiratory diseases and the early identification of and intervention in severe cases.


Subject(s)
Enterovirus , Influenza A virus , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Virus Diseases , Adenoviridae , Child , China/epidemiology , Female , Humans , Infant , Influenza B virus , Inpatients , Male , Parainfluenza Virus 1, Human , Respiratory Syncytial Virus, Human/genetics , Seasons
17.
Pediatr Res ; 92(2): 415-423, 2022 08.
Article in English | MEDLINE | ID: mdl-34625655

ABSTRACT

BACKGROUND: Systemic inflammation amplifies neonatal hypoxic-ischemic (HI) brain injury. Azithromycin (AZ), an antibiotic with anti-inflammatory properties, improves sensorimotor function and reduces tissue damage after neonatal rat HI brain injury. The objective of this study was to determine if AZ is neuroprotective in two neonatal rat models of inflammation-amplified HI brain injury. DESIGN/METHODS: Seven-day-old (P7) rats received injections of toll-like receptor agonists lipopolysaccharide (LPS) or Pam3Cys-Ser-(Lys)4 (PAM) prior to right carotid ligation followed by 50 min (LPS + HI) or 60 min (PAM + HI) in 8% oxygen. Outcomes included contralateral forelimb function (forepaw placing; grip strength), survival, %Intact right hemisphere (brain damage), and a composite score incorporating these measures. We compared postnatal day 35 outcomes in controls and groups treated with three or five AZ doses. Then, we compared P21 outcomes when the first (of five) AZ doses were administered 1, 2, or 4 h after HI. RESULTS: In both LPS + HI and PAM + HI models, AZ improved sensorimotor function, survival, brain tissue preservation, and composite scores. Benefits increased with five- vs. three-dose AZ and declined with longer initiation delay. CONCLUSIONS: Perinatal systemic infection is a common comorbidity of neonatal asphyxia brain injury and contributes to adverse outcomes. These data support further evaluation of AZ as a candidate treatment for neonatal neuroprotection. IMPACT: AZ treatment decreases sensorimotor impairment and severity of brain injury, and improves survival, after inflammation-amplified HI brain injury, and this can be achieved even with a 2 h delay in initiation. This neuroprotective benefit is seen in models of inflammation priming by both Gram-negative and Gram-positive infections. This extends our previous findings that AZ treatment is neuroprotective after HI brain injury in neonatal rats.


Subject(s)
Brain Injuries , Hypoxia-Ischemia, Brain , Neuroprotective Agents , Animals , Animals, Newborn , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , Brain , Brain Injuries/drug therapy , Hypoxia-Ischemia, Brain/drug therapy , Inflammation/drug therapy , Lipopolysaccharides/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxygen/therapeutic use , Rats , Rats, Wistar , Toll-Like Receptors
18.
J Appl Microbiol ; 133(4): 2642-2654, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35892189

ABSTRACT

AIMS: The current study aimed to determine the chemical compositions of ginger extract (GE) and to assess the antibacterial activities of GE against the ginger bacterial wilt pathogen Ralstonia solanacearum and to screen their mechanisms of action. METHODS AND RESULTS: A total of 393 compounds were identified by using ultra-performance liquid chromatography and tandem-mass spectrometry. The antibacterial test indicated that GE had strong antibacterial activity against R. solanacearum and that the bactericidal effect exhibited a dose-dependent manner. The minimum inhibitory concentration and minimum bactericidal concentration of R. solanacearum were 3.91 and 125 mg/ml, respectively. The cell membrane permeability and integrity of R. solanacearum were destroyed by GE, resulting in cell content leakage, such as electrolytes, nucleic acids, proteins, extracellular adenosine triphosphate and exopoly saccharides. In addition, the activity of cellular succinate dehydrogenase and alkaline phosphatase of R. solanacearum decreased gradually with an increase in the GE concentration. Scanning electron microscopy analysis revealed that GE treatment changed the morphology of the R. solanacearum cells. Further experiments demonstrated that GE delayed or slowed the occurrence of bacterial wilt on ginger. CONCLUSIONS: GE has a significant antibacterial effect on R. solanacearum, and the antibacterial effect is concentration dependent. The GE treatments changed the morphology, destroyed membrane permeability and integrity, reduced key enzyme activity and inhibit the synthesis of the virulence factor EPS of R. solanacearum. GE significantly controlled the bacterial wilt of ginger during infection. SIGNIFICANCE AND IMPACT OF THE STUDY: This research provides insight into the antimicrobial mechanism of GE against R. solanacearum, which will open a new application field for GE.


Subject(s)
Nucleic Acids , Ralstonia solanacearum , Solanum lycopersicum , Zingiber officinale , Adenosine Triphosphate , Alkaline Phosphatase/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Plant Extracts , Succinate Dehydrogenase/pharmacology , Virulence Factors
19.
Sensors (Basel) ; 22(16)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36015814

ABSTRACT

Tumor segmentation is a fundamental task in histopathological image analysis. Creating accurate pixel-wise annotations for such segmentation tasks in a fully-supervised training framework requires significant effort. To reduce the burden of manual annotation, we propose a novel weakly supervised segmentation framework based on sparse patch annotation, i.e., only small portions of patches in an image are labeled as 'tumor' or 'normal'. The framework consists of a patch-wise segmentation model called PSeger, and an innovative semi-supervised algorithm. PSeger has two branches for patch classification and image classification, respectively. This two-branch structure enables the model to learn more general features and thus reduce the risk of overfitting when learning sparsely annotated data. We incorporate the idea of consistency learning and self-training into the semi-supervised training strategy to take advantage of the unlabeled images. Trained on the BCSS dataset with only 25% of the images labeled (five patches for each labeled image), our proposed method achieved competitive performance compared to the fully supervised pixel-wise segmentation models. Experiments demonstrate that the proposed solution has the potential to reduce the burden of labeling histopathological images.


Subject(s)
Neoplasms , Supervised Machine Learning , Algorithms , Humans , Image Processing, Computer-Assisted/methods , Neoplasms/diagnostic imaging
20.
Angew Chem Int Ed Engl ; 61(20): e202201668, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35218121

ABSTRACT

Sulfide and persulfide are chemically different and one might expect persulfide to be more effective in mediating sulfur signaling because persulfide can directly modify protein cysteine residue. However, rapid scrambling, and interconversions occur among sulfur species. Then there is the question of whether the chemical reactivity differences between sulfide and persulfide would translate into pharmacological differences. Utilizing a delivery system to generate pure hydrogen sulfide (H2 S), hydrogen persulfide (H2 S2 ), and N-acetyl-l-cysteine persulfide (N-CysSSH), we examined the activities of sulfide and persulfide in vitro and in vivo. Persulfide prodrugs exhibited increased activities compared to the H2 S prodrug. In particular, the H2 S2 prodrug offers much-elevated analgesic effects compared to the H2 S prodrug in vivo. Persulfide prodrugs also possess a reduced level of toxicity compared to the H2 S prodrug in vivo, indicating persulfide might represent a better therapeutic paradigm than H2 S.


Subject(s)
Hydrogen Sulfide , Prodrugs , Cysteine/chemistry , Hydrogen Sulfide/chemistry , Prodrugs/chemistry , Sulfides/chemistry , Sulfur/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL