Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 278
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Development ; 151(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38814747

ABSTRACT

The shoot apical meristem (SAM) gives rise to the aboveground organs of plants. The size of the SAM is relatively constant due to the balance between stem cell replenishment and cell recruitment into new organs. In angiosperms, the transcription factor WUSCHEL (WUS) promotes stem cell proliferation in the central zone of the SAM. WUS forms a negative feedback loop with a signaling pathway activated by CLAVATA3 (CLV3). In the periphery of the SAM, the ERECTA family receptors (ERfs) constrain WUS and CLV3 expression. Here, we show that four ligands of ERfs redundantly inhibit the expression of these two genes. Transcriptome analysis confirmed that WUS and CLV3 are the main targets of ERf signaling and uncovered new ones. Analysis of promoter reporters indicated that the WUS expression domain mostly overlaps with the CLV3 domain and does not shift along the apical-basal axis in clv3 mutants. Our three-dimensional mathematical model captured gene expression distributions at the single-cell level under various perturbed conditions. Based on our findings, CLV3 regulates cellular levels of WUS mostly through autocrine signaling, and ERfs regulate the spatial expression of WUS, preventing its encroachment into the peripheral zone.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Homeodomain Proteins , Meristem , Signal Transduction , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Meristem/metabolism , Meristem/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Signal Transduction/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Models, Biological
2.
Hum Mol Genet ; 32(7): 1137-1151, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36331344

ABSTRACT

Mitochondrial dynamics is essential for maintaining the physiological function of the mitochondrial network, and its disorders lead to a variety of diseases. Our previous study identified mitochondrial dynamics controlled anti-tumor immune responses and anxiety symptoms. However, how mitochondrial dynamics affects auditory function in the inner ear remains unclear. Here, we show that the deficiency of FAM73a or FAM73b, two mitochondrial outer membrane proteins that mediate mitochondrial fusion, leads to outer hair cells (HCs) damage and progressive hearing loss in FVB/N mice. Abnormal mitochondrial fusion causes elevated oxidative stress and apoptosis of HCs in the early stage. Thereafter, the activation of macrophages and CD4+ T cell is found in the mutant mice with the increased expression of the inflammatory cytokines IL-12 and IFN-γ compared with control mice. Strikingly, a dramatically decreased number of macrophages by Clophosome®-A-Clodronate Liposomes treatment alleviates the hearing loss of mutant mice. Collectively, our finding highlights that FAM73a or FAM73b deficiency affects HCs survival by disturbing the mitochondrial function, and the subsequent immune response in the cochleae worsens the damage of HCs.


Subject(s)
Hearing Loss , Mitochondrial Dynamics , Animals , Mice , Mitochondrial Dynamics/genetics , Hearing , Hearing Loss/genetics , Hearing Loss/metabolism , Hair Cells, Auditory, Outer/metabolism , Immunity
3.
Mol Ther ; 32(5): 1387-1406, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38414247

ABSTRACT

Cisplatin-induced hearing loss is a common side effect of cancer chemotherapy in clinics; however, the mechanism of cisplatin-induced ototoxicity is still not completely clarified. Cisplatin-induced ototoxicity is mainly associated with the production of reactive oxygen species, activation of apoptosis, and accumulation of intracellular lipid peroxidation, which also is involved in ferroptosis induction. In this study, the expression of TfR1, a ferroptosis biomarker, was upregulated in the outer hair cells of cisplatin-treated mice. Moreover, several key ferroptosis regulator genes were altered in cisplatin-damaged cochlear explants based on RNA sequencing, implying the induction of ferroptosis. Ferroptosis-related Gpx4 and Fsp1 knockout mice were established to investigate the specific mechanisms associated with ferroptosis in cochleae. Severe outer hair cell loss and progressive damage of synapses in inner hair cells were observed in Atoh1-Gpx4-/- mice. However, Fsp1-/- mice showed no significant hearing phenotype, demonstrating that Gpx4, but not Fsp1, may play an important role in the functional maintenance of HCs. Moreover, findings showed that FDA-approved luteolin could specifically inhibit ferroptosis and alleviate cisplatin-induced ototoxicity through decreased expression of transferrin and intracellular concentration of ferrous ions. This study indicated that ferroptosis inhibition through the reduction of intracellular ferrous ions might be a potential strategy to prevent cisplatin-induced hearing loss.


Subject(s)
Cisplatin , Ferroptosis , Hearing Loss , Mice, Inbred C57BL , Mice, Knockout , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Cisplatin/adverse effects , Ferroptosis/drug effects , Ferroptosis/genetics , Mice , Hearing Loss/chemically induced , Hearing Loss/genetics , Hearing Loss/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Disease Models, Animal , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics , Reactive Oxygen Species/metabolism , Lipid Peroxidation/drug effects , Hair Cells, Auditory, Outer/metabolism , Hair Cells, Auditory, Outer/drug effects , Hair Cells, Auditory, Outer/pathology , Ototoxicity/etiology , Ototoxicity/metabolism , Antineoplastic Agents/adverse effects , Apoptosis/drug effects
4.
Dev Biol ; 495: 54-62, 2023 03.
Article in English | MEDLINE | ID: mdl-36610533

ABSTRACT

Stickler syndrome is a multisystem collagenopathy with affected individuals exhibiting a high rate of ocular complications. Lysyl oxidase-like 3 (LOXL3) is a human disease gene candidate with a critical role in catalyzing collagen crosslinking. A homozygous missense variant of LOXL3 was reported in Stickler syndrome with severe myopia. However, the underlying mechanisms of the LOXL3 missense mutation that causes Stickler syndrome are unknown. In this study, a mouse model of Stickler syndrome induced by LOXL3 mutation (c.2027G â€‹> â€‹A, p.Cys676Try) was obtained using CRISPR/Cas9 gene editing techniques. The Loxl3 mutant mice exhibited perinatal death, spinal deformity, and cleft palate, and Loxl3 mutation also induced skeletal dysplasia and progressive visual degeneration. Furthermore, we observed the damage of the bruch's membrane (BrM) and an increase in the levels of glial fibrillary acidic protein (GFAP) and Rpe65 in the Loxl3 mutant mice. Thus, we provided the critical in vivo evidence that Loxl3 possibly has a pivotal role in maintaining the eye function.


Subject(s)
Connective Tissue Diseases , Eye Diseases, Hereditary , Retinal Detachment , Female , Pregnancy , Humans , Animals , Mice , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Retinal Detachment/genetics , Connective Tissue Diseases/genetics , Retina/metabolism , Mutation/genetics
5.
Br J Haematol ; 204(4): 1219-1226, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38180132

ABSTRACT

Venetoclax (VEN) in combination with hypomethylating agents (HMAs) is considered the standard of treatment for individuals with newly diagnosed acute myeloid leukaemia (AML) who are ineligible for intensive chemotherapy. We conducted a retrospective analysis that encompassed 16 critically ill patients newly diagnosed with AML who were admitted to the intensive care unit (ICU) and received the VEN and HMA regimen. Among them, 13 were primary AML, and three were MDS-transformed AML. The mean Acute Physiology and Chronic Health Evaluation II (APACHE II) score was 18.9, and the mean sepsis-related organ failure assessment score (SOFA) was 6.2. The average length of the ICU stay was 27.3 days. The median duration of VEN administration was 16 days. After the first course of VEN + HMA, 12 cases (75%) achieved complete remission (CR) or CR with incomplete haematological recovery (CRi). Among the five patients harbouring TP53 mutations, the overall response rate (ORR) was 90%. All patients experienced grade 3-4 haematological adverse events (AEs). With a median follow-up of 9.5 months (range: 0.5-23), the overall survival (OS) rate was 43.75%. TP53-wild patients and CR state after the first course of VEN-HMA indicated better survival. The combination of VEN and HMA has demonstrated a significantly elevated therapeutic response rate in newly diagnosed AML patients with critical illness.


Subject(s)
Critical Illness , Leukemia, Myeloid, Acute , Sulfonamides , Humans , Retrospective Studies , Bridged Bicyclo Compounds, Heterocyclic/adverse effects , Leukemia, Myeloid, Acute/genetics , Pathologic Complete Response , Antineoplastic Combined Chemotherapy Protocols/adverse effects
6.
Inorg Chem ; 63(18): 8206-8214, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38647176

ABSTRACT

The accessibility of multiple valence states of americium (Am) inspired redox-based protocols aimed at efficient separation of trivalent Am (Am3+) from trivalent lanthanides (Ln3+) alternative to the traditional liquid-liquid extraction. This requires an extensive understanding of the coordination chemistry of Am in its various accessible valence states in the aqueous phase. In this work, by means of DFT calculations, the coordination of AmIII-VI with five typical N-donor ligands, i.e., terpyridine (tpy), bispyrazinylpyridine (dpp), bistriazinylpyridine (BTP), bistriazinyl bipyridine (BTBP), and bistrazinyl phenanthroline (BTPhen), was studied in terms of energy and topological analysis. The results show that the exchange of aqua ligands of hydrated ions by N-donor ligands is an entropy-driven process and enthalpically unfavorable. Topological analysis suggests a distinct mechanism of BTP to modulate the redox potential of Am(III) in that BTP can assist the relay of the leaving electron of AmIII, while the other N-donor ligands can detain the oxidation of Am by offering their electron instead. This comparative study enriches our understanding of the coordination chemistry of high-valent Am with N-donor ligands and recommends the ligand design toward the modulation of redox potentials of hydrated Am(III) ions.

7.
Inorg Chem ; 63(2): 923-927, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38156893

ABSTRACT

Plain simulations and enhanced sampling unveil a novel siderocalin (Scn) recognition mode for An-Ent (where An = actinides and Ent = enterobactin) complexes and identify a "seesaw" relationship between actinide affinity to Ent and Scn recognition to an An-Ent complex. Electrostatic interactions predominantly govern competitive binding in both processes. Additionally, hydrolysis-induced negative charge, water expulsion-driven entropy, and Ent's conformational adaptability collectively enhance high-affinity recognition.

8.
Phys Chem Chem Phys ; 26(28): 19543-19553, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38979972

ABSTRACT

Rational design of γ-alumina-based catalysts relies on an extensive understanding of the distribution of hydroxyl groups on the surface of γ-alumina and their physicochemical properties, which remain unclear and challenging to determine experimentally due to the structural complexity. In this work, by means of DFT and thermodynamic calculations, various hydroxylation modes of γ-alumina (110) and (100) surfaces at different OH coverages were evaluated, based on which a thermodynamic model to reflect the relationship between temperature and the surface structure was established and the stable hydroxylation modes under experimental conditions were predicted. This enables us to identify the experimentally measured IR spectra. The effect of hydroxyl coverages on the surface Lewis acidity was then analyzed, showing that the presence of hydroxyl groups could promote the Lewis acidity of neighboring Al sites. This work provides fundamental insights into the molecular level understanding of the surface properties of γ-alumina and benefits the rational design of alumina-based catalysts.

9.
J Phys Chem A ; 128(9): 1656-1664, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38394031

ABSTRACT

Oxidative dehydrogenation (ODH) of light alkanes is a key process in the oxidative conversion of alkanes to alkenes, oxygenated hydrocarbons, and COx (x = 1,2). Understanding the underlying mechanisms extensively is crucial to keep the ODH under control for target products, e.g., alkenes rather than COx, with minimal energy consumption, e.g., during the alkene production or maximal energy release, e.g., during combustion. In this work, deep potential (DP), a neural network atomic potential developed in recent years, was employed to conduct large-scale accurate reactive dynamic simulations. The model was trained on a sufficient data set obtained at the density functional theory level. The intricate reaction network was elucidated and organized in the form of a hierarchical network to demonstrate the key features of the ODH mechanisms, including the activation of propane and oxygen, the influence of propyl reaction pathways on the propene selectivity, and the role of rapid H2O2 decomposition for sustainable and efficient ODH reactions. The results indicate the more complex reaction mechanism of propane ODH than that of ethane ODH and are expected to provide insights in the ODH catalyst optimization. In addition, this work represents the first application of deep potential in the ODH mechanistic study and demonstrates the ample advantages of DP in the study of mechanism and dynamics of complex systems.

10.
Plant Cell Rep ; 43(5): 125, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647720

ABSTRACT

KEY MESSAGE: The interaction network and pathway map uncover the potential crosstalk between sugar and hormone metabolisms as a possible reason for leaf senescence in P. ternata. Pinellia ternata, an environmentally sensitive medicinal plant, undergoes leaf senescence twice a year, affecting its development and yield. Understanding the potential mechanism that delays leaf senescence could theoretically decrease yield losses. In this study, a typical senescent population model was constructed, and an integrated analysis of transcriptomic and metabolomic profiles of P. ternata was conducted using two early leaf senescence populations and two stay-green populations. The result showed that two key gene modules were associated with leaf senescence which were mainly enriched in sugar and hormone signaling pathways, respectively. A network constructed by unigenes and metabolisms related to the obtained two pathways revealed that several compounds such as D-arabitol and 2MeScZR have a higher significance ranking. In addition, a total of 130 hub genes in this network were categorized into 3 classes based on connectivity. Among them, 34 hub genes were further analyzed through a pathway map, the potential crosstalk between sugar and hormone metabolisms might be an underlying reason of leaf senescence in P. ternata. These findings address the knowledge gap regarding leaf senescence in P. ternata, providing candidate germplasms for molecular breeding and laying theoretical basis for the realization of finely regulated cultivation in future.


Subject(s)
Gene Expression Regulation, Plant , Metabolomics , Pinellia , Plant Growth Regulators , Plant Leaves , Transcriptome , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Pinellia/genetics , Pinellia/metabolism , Pinellia/physiology , Pinellia/growth & development , Plant Growth Regulators/metabolism , Transcriptome/genetics , Plant Senescence/genetics , Gene Expression Profiling , Sugars/metabolism , Metabolome/genetics , Gene Regulatory Networks , Carbohydrate Metabolism/genetics
11.
Chem Biodivers ; 21(6): e202400519, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38576052

ABSTRACT

One new highly degraded steroid, namely 21-nor-4-ene-chaxine A (1) furnishing a 5/6/5-tricyclic, along with one known related analogue (2), were isolated from the South China Sea sponge Spongia officinalis. Their structures including absolute configurations were established by extensive spectroscopic data analysis, TDDFT-ECD calculation, and comparison with the spectral data previously reported in the literature. Compound 1 represent the new member of incisterols family with a highly degradation in ring B. In vitro bioassays revealed compound 2 exhibited significant anti-microglial inflammatory effect on lipopolysaccharide (LPS)-induced inflammation in BV-2 microglial cells.


Subject(s)
Anti-Inflammatory Agents , Lipopolysaccharides , Porifera , Steroids , Animals , Porifera/chemistry , Steroids/chemistry , Steroids/isolation & purification , Steroids/pharmacology , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , China , Microglia/drug effects , Microglia/metabolism , Microglia/cytology , Cell Line , Molecular Conformation , Molecular Structure
12.
Molecules ; 29(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38731650

ABSTRACT

The present study investigates the chemical composition variances among Pinelliae Rhizoma, a widely used Chinese herbal medicine, and its common adulterants including Typhonium flagelliforme, Arisaema erubescens, and Pinellia pedatisecta. Utilizing the non-targeted metabolomics technique of employing UHPLC-Q-Orbitrap HRMS, this research aims to comprehensively delineate the metabolic profiles of Pinelliae Rhizoma and its adulterants. Multivariate statistical methods including PCA and OPLS-DA are employed for the identification of differential metabolites. Volcano plot analysis is utilized to discern upregulated and downregulated compounds. KEGG pathway analysis is conducted to elucidate the differences in metabolic pathways associated with these compounds, and significant pathway enrichment analysis is performed. A total of 769 compounds are identified through metabolomics analysis, with alkaloids being predominant, followed by lipids and lipid molecules. Significant differential metabolites were screened out based on VIP > 1 and p-value < 0.05 criteria, followed by KEGG enrichment analysis of these differential metabolites. Differential metabolites between Pinelliae Rhizoma and Typhonium flagelliforme, as well as between Pinelliae Rhizoma and Pinellia pedatisecta, are significantly enriched in the biosynthesis of amino acids and protein digestion and absorption pathways. Differential metabolites between Pinelliae Rhizoma and Arisaema erubescens are mainly enriched in tyrosine metabolism and phenylalanine metabolism pathways. These findings aim to provide valuable data support and theoretical references for further research on the pharmacological substances, resource development and utilization, and quality control of Pinelliae Rhizoma.


Subject(s)
Metabolomics , Pinellia , Rhizome , Chromatography, High Pressure Liquid/methods , Metabolomics/methods , Pinellia/metabolism , Pinellia/chemistry , Rhizome/metabolism , Rhizome/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism , Mass Spectrometry/methods , Drug Contamination , Metabolome , Metabolic Networks and Pathways
13.
Molecules ; 29(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38999191

ABSTRACT

Organic pollutants were one of the main sources of environmental pollutants. The degradation of organic pollutants through photocatalytic technology was one of the effective solutions. By preparing zinc oxide(ZnO) nanowires modified with sodium-doped conjugated 2,4,6-triaminopyrimidin-g-C3N4 (NaTCN) heterojunction (ZnO/NaTCN), the photocatalytic performance of NaTCN modified with different ratios of ZnO was systematically studied. The photocatalytic performance was studied through the degradation performance of methyl blue (MB) dye. The results showed that 22.5 wt% ZnO/NaTCN had the best degradation effect on MB dye. The degradation rate of MB reached 98.54% in 70 min. After three cycles, it shows good cycling stability (degradation rate is 96.99%) for dye degradation. It was found that there are two types of active species: ·OH and h+, of which h+ is the main active species produced by photocatalytic degradation of dyes. The excellent degradation performance was attributed to the fact that ZnO facilitated the extraction and transport of photogenerated carriers. The doping of sodium facilitated charge transfer. The NaTCN conjugated system promoted the extraction and transfer of photogenerated carriers. It provided guidance for designing efficient composite catalysts for use in other renewable energy fields.

14.
Angew Chem Int Ed Engl ; 63(18): e202402236, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38357746

ABSTRACT

Environmentally friendly electrocatalytic coupling of CO2 and N2 for urea synthesis is a promising strategy. However, it is still facing problems such as low yield as well as low stability. Here, a new carbon-coated liquid alloy catalyst, Ga79Cu11Mo10@C is designed for efficient electrochemical urea synthesis by activating Ga active sites. During the N2 and CO2 co-reduction process, the yield of urea reaches 28.25 mmol h-1 g-1, which is the highest yield reported so far under the same conditions, the Faraday efficiency (FE) is also as high as 60.6 % at -0.4 V vs. RHE. In addition, the catalyst shows excellent stability under 100 h of testing. Comprehensive analyses showed that sequential exposure of a high density of active sites promoted the adsorption and activation of N2 and CO2 for efficient coupling reactions. This coupling reaction occurs through a thermodynamic spontaneous reaction between *N=N* and CO to form a C-N bond. The deformability of the liquid state facilitates catalyst recovery and enhances stability and resistance to poisoning. Moreover, the introduction of Cu and Mo stimulates the Ga active sites, which successfully synthesises the *NCON* intermediate. The reaction energy barrier of the third proton-coupled electron transfer process rate-determining step (RDS) *NHCONH→*NHCONH2 was lowered, ensuring the efficient synthesis of urea.

15.
Small ; 19(15): e2207202, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36683197

ABSTRACT

As an important multiferroic material, pure and low-dimensional phase-stable bismuth ferrite has wide applications. Herein, one-pot hydrothermal method was used to synthesize bismuth ferrite. Almost pure Bi2 Fe4 O9 , BiFeO3 , and their mixture were successfully obtained by controlling the KOH concentration in the hydrothermal solutions. The as-prepared Bi2 Fe4 O9 products were crystalline with Pbam space group, had nanosheet morphology, and tended to aggregate into nanofloret or random stacking. Each Bi2 Fe4 O9 nanosheet was a single crystal with (001) plane as its exposed surface. Single unit-cell layered Bi2 Fe4 O9 nanosheets had a uniform thickness of 1 nm. The surface energies of various (100), (010), and (001) planes were 3.6-4.0, 5.6-15.1, and 1.7-3.0 J m-2 , respectively, in the Bi2 Fe4 O9 crystal. The formation mechanism and structural model of the as-prepared single unit-cell layered Bi2 Fe4 O9 nanosheets have been given. The growth of Bi2 Fe4 O9 nanosheets was discussed. Thermal analysis showed that the Bi2 Fe4 O9 phase was stable up to 1260 K. The thermal expansion behavior of the Bi2 Fe4 O9 nanosheet was nonlinear. The thermal expansion coefficients of the ultrathin Bi2 Fe4 O9 nanosheets on the a-, b-, c-axes, and on the unit-cell volume V were determined, showing an anisotropic thermal expansion behavior. This study is helpful for the controllable synthesis of ultrathin Bi2 Fe4 O9 nanosheets.

16.
Opt Express ; 31(5): 8384-8392, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36859953

ABSTRACT

Bound states in the continuum (BICs) have been widely observed in many symmetric geometries in the optical system during the last decade. Here, we consider a scenario in which the structure is designed asymmetrically with anisotropic birefringent material embedded in one-dimensional photonic crystals. This kind of new shape opens the possibility of obtaining symmetry-protected BICs (SP-BICs) and Friedrich-Wintgen BICs (FW-BICs) form in tunable anisotropy axis tilt. Interestingly, these BICs can be observed as high-Q resonances by variation of the system's parameters, such as the incident angle, which means the structure without being injected at Brewster's angle can also achieve BICs. Our findings might achieve active regulation and are easy to manufacture.

17.
Respir Res ; 24(1): 299, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017476

ABSTRACT

OBJECTIVES: Parametric response mapping (PRM) enables the evaluation of small airway disease (SAD) at the voxel level, but requires both inspiratory and expiratory chest CT scans. We hypothesize that deep learning PRM from inspiratory chest CT scans can effectively evaluate SAD in individuals with normal spirometry. METHODS: We included 537 participants with normal spirometry, a history of smoking or secondhand smoke exposure, and divided them into training, tuning, and test sets. A cascaded generative adversarial network generated expiratory CT from inspiratory CT, followed by a UNet-like network predicting PRM using real inspiratory CT and generated expiratory CT. The performance of the prediction is evaluated using SSIM, RMSE and dice coefficients. Pearson correlation evaluated the correlation between predicted and ground truth PRM. ROC curves evaluated predicted PRMfSAD (the volume percentage of functional small airway disease, fSAD) performance in stratifying SAD. RESULTS: Our method can generate expiratory CT of good quality (SSIM 0.86, RMSE 80.13 HU). The predicted PRM dice coefficients for normal lung, emphysema, and fSAD regions are 0.85, 0.63, and 0.51, respectively. The volume percentages of emphysema and fSAD showed good correlation between predicted and ground truth PRM (|r| were 0.97 and 0.64, respectively, p < 0.05). Predicted PRMfSAD showed good SAD stratification performance with ground truth PRMfSAD at thresholds of 15%, 20% and 25% (AUCs were 0.84, 0.78, and 0.84, respectively, p < 0.001). CONCLUSION: Our deep learning method generates high-quality PRM using inspiratory chest CT and effectively stratifies SAD in individuals with normal spirometry.


Subject(s)
Asthma , Deep Learning , Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Tomography, X-Ray Computed/methods , Lung/diagnostic imaging
18.
FASEB J ; 36(6): e22373, 2022 06.
Article in English | MEDLINE | ID: mdl-35621716

ABSTRACT

Cisplatin is a widely used chemotherapeutic agent. However, its clinical utility is limited because of cisplatin-induced ototoxicity. Glutathione S-transferase (GST) was found to play a vital role in reducing cisplatin ototoxicity in mice. Deletion polymorphisms of GSTM1 and GSTT1, members of the GST family, are common in humans and are presumed to be associated with cisplatin-induced hearing impairment. However, the specific roles of GSTM1 and GSTT1 in cisplatin ototoxicity are not completely clear. Here, under cisplatin treatment, simultaneous deletion of Gstm1 and Gstt1 lead to a more profound hearing loss in CBA/CaJ mice (Gstm1/Gstt1-DKO) than in wild-type mice. The Gstm1/Gstt1-DKO mice, in which phase II detoxification genes were upregulated, exhibited more severe oxidative stress and higher outer hair cell apoptosis in the cochleae than the control mice. Thus, our study revealed that Gstm1 and Gstt1 protect auditory hair cells from cisplatin-induced ototoxicity in the CBA/CaJ mice, and genetic screening for GSTM1 and GSTT1 polymorphisms could help determine a standard cisplatin dose for cancer patients undergoing chemotherapy.


Subject(s)
Cisplatin , Glutathione Transferase , Ototoxicity , Animals , Cisplatin/toxicity , Glutathione Transferase/genetics , Humans , Mice , Mice, Inbred CBA , Mice, Inbred Strains , Ototoxicity/etiology , Ototoxicity/genetics , Ototoxicity/prevention & control , Polymorphism, Genetic
19.
Langmuir ; 39(46): 16415-16421, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37933492

ABSTRACT

Non-noble metal oxides have emerged as potential candidate electrocatalysts for acidic oxygen evolution reactions (OERs) due to their earth abundance; however, improving their catalytic activity and stability simultaneously in strong acidic electrolytes is still a major challenge. In this work, we report Co3O4@carbon core-shell nanoparticles on 2D graphite sheets (Co3O4@C-GS) as mixed-dimensional hybrid electrocatalysts for acidic OER. The obtained Co3O4@C-GS catalyst exhibits a low overpotential of 350 mV and maintains stability for 20 h at a current density of 10 mA cm-2 in H2SO4 (pH = 1) electrolyte. X-ray photoelectron and X-ray absorption spectroscopies illustrate that the higher content of Co3+ sites boosts acidic OER. Operando Raman spectroscopy reveals that the catalytic stability of Co3O4@C nanoparticles during the acidic OER is enhanced by the introduction of graphite sheets. This interface engineering of non-noble metal sites with high valence states provides an efficient approach to boost the catalytic activity and enhance the stability of noble-metal-free electrocatalysts for acidic OER.

20.
J Pineal Res ; 75(1): e12890, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37226314

ABSTRACT

Melatonin (MLT) protects cells by reducing reactive oxygen species (ROS) levels, which are key for inducing cellular autophagy. The aim of this study was to investigate the molecular mechanisms underlying MLT regulation of autophagy in granulosa cells (GCs) with BMPR-1B homozygous (FecB BB) and wild type (FecB ++) mutations. GCs collected from small-tailed Han sheep with different FecB genotypes were typed using a TaqMan probe assay, and autophagy levels were found to be significantly higher in GCs with FecB BB than the levels in those with FecB ++. Autophagy-related 2 homolog B (ATG2B) was associated with cell autophagy and was highly expressed in GCs with the FecB BB genotype in small-tailed Han sheep. Overexpression of ATG2B in the GCs of sheep with both FecB genotypes promoted GC autophagy, and the contrary was observed after the inhibition of ATG2B expression. Subsequently, treatment of GCs with different genotypes of FecB and MLT revealed a significant decrease in cellular autophagy and an increase in ATG2B expression. Addition of MLT to GCs with inhibited ATG2B expression revealed that MLT could protect GCs by decreasing ROS levels, especially in GCs with FecB ++ genotype. In conclusion, this study determined that autophagy levels were significantly higher in sheep GCs with FecB BB genotype than the levels in those with FecB ++ genotype, which may have contributed to the difference in lambing numbers between the two FecB genotypes. Autophagy was regulated by ATG2B and was able to protect GCs by reducing the high levels of ROS produced following inhibition of ATG2B through the addition of MLT in vitro.


Subject(s)
Melatonin , Female , Animals , Sheep , Melatonin/pharmacology , Melatonin/metabolism , Reactive Oxygen Species/metabolism , Granulosa Cells , Genotype , Autophagy
SELECTION OF CITATIONS
SEARCH DETAIL