ABSTRACT
The assessment of human health hazards posed by chemicals traditionally relies on toxicity studies in experimental animals. However, most chemicals currently in commerce do not meet the minimum data requirements for hazard identification and dose-response analysis in human health risk assessment. Previously, we introduced a read-across framework designed to address data gaps for screening-level assessment of chemicals with insufficient in vivo toxicity information (Wang et al., 2012). It relies on inference by analogy from suitably tested source analogues to a target chemical, based on structural, toxicokinetic, and toxicodynamic similarity. This approach has been used for dose-response assessment of data-poor chemicals relevant to the U.S. EPA's Superfund program. We present herein, case studies of the application of this framework, highlighting specific examples of the use of biological similarity for chemical grouping and quantitative read-across. Based on practical knowledge and technological advances in the fields of read-across and predictive toxicology, we propose a revised framework. It includes important considerations for problem formulation, systematic review, target chemical analysis, analogue identification, analogue evaluation, and incorporation of new approach methods. This work emphasizes the integration of systematic methods and alternative toxicity testing data and tools in chemical risk assessment to inform regulatory decision-making.
Subject(s)
Risk Assessment , Animals , Humans , Risk Assessment/methodsABSTRACT
This paper provides a systematic weight-of-evidence method for read-across analyses of data-poor chemicals. The read-across technique extrapolates toxicity from analogous chemicals for which suitable test data are available to a target chemical. To determine that a candidate analogue is the 'best' and is sufficiently similar, the evidence for similarity of each candidate analogue to the target is weighed. We present a systematic weight of evidence method that provides transparency and imposes a consistent and rigorous inferential process. The method assembles relevant information concerning structure, physicochemical attributes, toxicokinetics, and toxicodynamics of the target and analogues. The information is then organized by evidence types and subtypes and weighted in terms of properties: relevance, strength, and reliability into weight levels, expressed as symbols. After evidence types are weighted, the bodies of evidence are weighted for collective properties: number, diversity, and coherence. Finally, the weights for the types and bodies of evidence are weighed for each analogue, and, if the overall weight of evidence is sufficient for one or more analogues, the analogue with the greatest weight is used to estimate the endpoint effect. We illustrate this WoE approach with a read-across analysis for screening the organochlorine contaminant, p,p'-dichlorodiphenyldichloroethane (DDD), for noncancer oral toxicity.
Subject(s)
Toxicology/methods , Reproducibility of Results , Risk Assessment , ToxicokineticsABSTRACT
Deriving human health risk estimates for environmental chemicals has traditionally relied on in vivo toxicity databases to characterize potential adverse health effects and associated dose-response relationships. In the absence of in vivo toxicity information, new approach methods (NAMs) such as read-across have the potential to fill the required data gaps. This case study applied an expert-driven read-across approach to identify and evaluate analogues to fill non-cancer oral toxicity data gaps for p,p'-dichlorodiphenyldichloroethane (p,p'-DDD), an organochlorine contaminant known to occur at contaminated sites in the U.S. The source analogue p,p'-dichlorodiphenyltrichloroethane (DDT) and its no-observed-adverse-effect level of 0.05â¯mg/kg-day were proposed for the derivation of screening-level health reference values for the target chemical, p,p'-DDD. Among the primary similarity contexts (structure, toxicokinetics, and toxicodynamics), toxicokinetic considerations were instrumental in separating p,p'-DDT as the best source analogue from other potential candidates (p,p'-DDE and methoxychlor). In vitro high-throughput screening (HTS) assays from ToxCast were used to evaluate similarity in bioactivity profiles and make inferences toward plausible mechanisms of toxicity to build confidence in the read-across approach. This work demonstrated the value of NAMs such as read-across and in vitro HTS in human health risk assessment of environmental contaminants with the potential to inform regulatory decision-making.
Subject(s)
Dichlorodiphenyldichloroethane/adverse effects , Environmental Pollutants/adverse effects , Insecticides/adverse effects , Environmental Monitoring , High-Throughput Screening Assays , Humans , Risk AssessmentABSTRACT
Read-across is a well-established data gap-filling technique applied for regulatory purposes. In US Environmental Protection Agency's New Chemicals Program under TSCA, read-across has been used extensively for decades, however the extent of application and acceptance of read-across among U.S. federal agencies is less clear. In an effort to build read-across capacity, raise awareness of the state of the science, and work towards a harmonization of read-across approaches across U.S. agencies, a new read-across workgroup was established under the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM). This is one of several ad hoc groups ICCVAM has convened to implement the ICCVAM Strategic Roadmap. In this article, we outline the charge and scope of the workgroup and summarize the current applications, tools used, and needs of the agencies represented on the workgroup for read-across. Of the agencies surveyed, the Environmental Protection Agency had the greatest experience in using read-across whereas other agencies indicated that they would benefit from gaining a perspective of the landscape of the tools and available guidance. Two practical case studies are also described to illustrate how the read-across approaches applied by two agencies vary on account of decision context.
Subject(s)
Toxicity Tests , United States Government Agencies , Humans , United States , United States Environmental Protection Agency/organization & administrationABSTRACT
The endosperm of cereal grains is one of the most valuable products of modern agriculture. Cereal endosperm development comprises different phases characterized by mitotic cell proliferation, endoreduplication, the accumulation of storage compounds, and programmed cell death. Although manipulation of these processes could maximize grain yield, how they are regulated and integrated is poorly understood. We show that the Retinoblastoma-related (RBR) pathway controls key aspects of endosperm development in maize. Down-regulation of RBR1 by RNAi resulted in up-regulation of RBR3-type genes, as well as the MINICHROMOSOME MAINTENANCE 2-7 gene family and PROLIFERATING CELL NUCLEAR ANTIGEN, which encode essential DNA replication factors. Both the mitotic and endoreduplication cell cycles were stimulated. Developing transgenic endosperm contained 42-58% more cells and â¼70% more DNA than wild type, whereas there was a reduction in cell and nuclear sizes. In addition, cell death was enhanced. The DNA content of mature endosperm increased 43% upon RBR1 down-regulation, whereas storage protein content and kernel weight were essentially not affected. Down-regulation of both RBR1 and CYCLIN DEPENDENT KINASE A (CDKA);1 indicated that CDKA;1 is epistatic to RBR1 and controls endoreduplication through an RBR1-dependent pathway. However, the repressive activity of RBR1 on downstream targets was independent from CDKA;1, suggesting diversification of RBR1 activities. Furthermore, RBR1 negatively regulated CDK activity, suggesting the presence of a feedback loop. These results indicate that the RBR1 pathway plays a major role in regulation of different processes during maize endosperm development and suggest the presence of tissue/organ-level regulation of endosperm/seed homeostasis.
Subject(s)
Arabidopsis Proteins/metabolism , Endosperm/physiology , Retinoblastoma Protein/metabolism , Zea mays/metabolism , Cell Cycle , Cell Death , Cell Proliferation , Cyclin-Dependent Kinases/metabolism , Gene Expression Regulation, Plant , Genotype , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , RNA Interference , Seeds/physiology , Zea mays/geneticsABSTRACT
Understanding the metabolic fate of a xenobiotic substance can help inform its potential health risks and allow for the identification of signature metabolites associated with exposure. The need to characterize metabolites of poorly studied or novel substances has shifted exposure studies towards non-targeted analysis (NTA), which often aims to profile many compounds within a sample using high-resolution liquid-chromatography mass-spectrometry (LCMS). Here we evaluate the suitability of suspect screening analysis (SSA) liquid-chromatography mass-spectrometry to inform xenobiotic chemical metabolism. Given a lack of knowledge of true metabolites for most chemicals, predictive tools were used to generate potential metabolites as suspect screening lists to guide the identification of selected xenobiotic substances and their associated metabolites. Thirty-three substances were selected to represent a diverse array of pharmaceutical, agrochemical, and industrial chemicals from Environmental Protection Agency's ToxCast chemical library. The compounds were incubated in a metabolically-active in vitro assay using primary hepatocytes and the resulting supernatant and lysate fractions were analyzed with high-resolution LCMS. Metabolites were simulated for each compound structure using software and then combined to serve as the suspect screening list. The exact masses of the predicted metabolites were then used to select LCMS features for fragmentation via tandem mass spectrometry (MS/MS). Of the starting chemicals, 12 were measured in at least one sample in either positive or negative ion mode and a subset of these were used to develop the analysis workflow. We implemented a screening level workflow for background subtraction and the incorporation of time-varying kinetics into the identification of likely metabolites. We used haloperidol as a case study to perform an in-depth analysis, which resulted in identifying five known metabolites and five molecular features that represent potential novel metabolites, two of which were assigned discrete structures based on in silico predictions. This workflow was applied to five additional test chemicals, and 15 molecular features were selected as either reported metabolites, predicted metabolites, or potential metabolites without a structural assignment. This study demonstrates that in some-but not all-cases, suspect screening analysis methods provide a means to rapidly identify and characterize metabolites of xenobiotic chemicals.
ABSTRACT
Retinoblastoma-related (RBR) genes inhibit the cell cycle primarily by repressing adenovirus E2 promoter binding factor (E2F) transcription factors, which drive the expression of numerous genes required for DNA synthesis and cell cycle progression. The RBR-E2F pathway is conserved in plants, but cereals such as maize are characterized by having a complex RBR gene family with at least 2 functionally distinct members, RBR1 and RBR3. Although RBR1 has a clear cell cycle inhibitory function, it is not known whether RBR3 has a positive or negative role. By uncoupling RBR3 from the negative regulation of RBR1 in cultured maize embryos through a combination of approaches, we demonstrate that RBR3 has a positive and critical role in the expression of E2F targets required for the initiation of DNA synthesis, DNA replication, and the efficiency with which transformed plants can be obtained. Titration of endogenous RBR3 activity through expression of a dominant-negative allele with a compromised pocket domain suggests that these RBR3 functions require an activity distinct from its pocket domain. Our results indicate a cell cycle pathway in maize, in which 2 RBR genes have specific and opposing functions. Thus, the paradigm that RBR genes are negative cell cycle regulators cannot be considered universal.
Subject(s)
Chromosomes, Plant/genetics , DNA Replication , Gene Expression Regulation, Plant , Genes, Retinoblastoma , Plant Proteins/genetics , Zea mays/cytology , Zea mays/genetics , Down-Regulation/genetics , G2 Phase , Genes, Plant , Models, Genetic , Plant Proteins/metabolism , Plants, Genetically Modified , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transformation, GeneticABSTRACT
3,4-(±)-Methylenedioxymethamphetamine (MDMA, Ecstasy) is a ring-substituted amphetamine derivative with potent psychostimulant properties. The neuropharmacological effects of MDMA are biphasic in nature, initially causing synaptic monoamine release, primarily of serotonin (5-HT). Conversely, the long-term effects of MDMA manifest as prolonged depletions in 5-HT, and reductions in 5-HT reuptake transporter (SERT), indicative of serotonergic neurotoxicity. MDMA-induced 5-HT efflux relies upon disruption of vesicular monoamine storage, which increases cytosolic 5-HT concentrations available for release via a carrier-mediated mechanism. The vesicular monoamine transporter 2 (VMAT2) is responsible for packaging monoamine neurotransmitters into cytosolic vesicles. Thus, VMAT2 is a molecular target for a number of psychostimulant drugs, including methamphetamine and MDMA. We investigated the effects of depressed VMAT2 activity on the adverse responses to MDMA, via reversible inhibition of the VMAT2 protein with Ro4-1284. A single dose of MDMA (20 mg/kg, subcutaneous) induced significant hyperthermia in rats. Ro4-1284 (10 mg/kg, intraperitoneal) pretreatment prevented the thermogenic effects of MDMA, instead causing a transient decrease in body temperature. MDMA-treated rats exhibited marked increases in horizontal velocity and rearing behavior. In the presence of Ro4-1284, MDMA-mediated horizontal hyperlocomotion was delayed and attenuated, whereas rearing activity was abolished. Finally, Ro4-1284 prevented deficits in 5-HT content in rat cortex and striatum, and reduced depletions in striatal SERT staining, 7 days after MDMA administration. In summary, acute inhibition of VMAT2 by Ro4-1284 protected against MDMA-mediated hyperthermia, hyperactivity, and serotonergic neurotoxicity. The data suggest the involvement of VMAT2 in the thermoregulatory, behavioral, and neurotoxic effects of MDMA.
Subject(s)
Brain/drug effects , Hallucinogens , N-Methyl-3,4-methylenedioxyamphetamine , Neurotoxicity Syndromes/prevention & control , Serotonergic Neurons/drug effects , Serotonin/metabolism , Vesicular Monoamine Transport Proteins/antagonists & inhibitors , 2H-Benzo(a)quinolizin-2-ol, 2-Ethyl-1,3,4,6,7,11b-hexahydro-3-isobutyl-9,10-dimethoxy-/pharmacology , Animals , Behavior, Animal/drug effects , Body Temperature Regulation/drug effects , Brain/metabolism , Brain/pathology , Brain/physiopathology , Disease Models, Animal , Fever/chemically induced , Fever/physiopathology , Fever/prevention & control , Hyperkinesis/chemically induced , Hyperkinesis/prevention & control , Hyperkinesis/psychology , Male , Motor Activity/drug effects , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/physiopathology , Neurotoxicity Syndromes/psychology , Rats, Sprague-Dawley , Serotonergic Neurons/metabolism , Serotonergic Neurons/pathology , Time Factors , Vesicular Monoamine Transport Proteins/metabolismABSTRACT
Metabolism of 3,4-(±)-methylenedioxymethamphetamine (MDMA) is necessary to elicit its neurotoxic effects. Perturbations in phase I and phase II hepatic enzymes can alter the neurotoxic profile of systemically administered MDMA. In particular, catechol-O-methyltransferase (COMT) plays a critical role in determining the fraction of MDMA that is converted to potentially neurotoxic metabolites. Thus, cytochrome P450 mediated demethylenation of MDMA, or its N-demethylated metabolite, 3,4-(±)-methylenedioxyamphetamine, give rise to the catechols, N-methyl-α-methyldopamine and α-methyldopamine, respectively. Methylation of these catechols by COMT limits their oxidation and conjugation to glutathione, a process that ultimately gives rise to neurotoxic metabolites. We therefore determined the effects of modulating COMT, a critical enzyme involved in determining the fraction of MDMA that is converted to potentially neurotoxic metabolites, on MDMA-induced toxicity. Pharmacological inhibition of COMT in the rat potentiated MDMA-induced serotonin deficits and exacerbated the acute MDMA-induced hyperthermic response. Using a genetic mouse model of COMT deficiency, in which mice lack a functional COMT gene, such mice displayed greater reductions in dopamine concentrations relative to their wild-type (WT) counterparts. Neither WT nor COMT deficient mice were susceptible to MDMA-induced decreases in serotonin concentrations. Interestingly, mice devoid of COMT were far more susceptible to the acute hyperthermic effects of MDMA, exhibiting greater increases in body temperature that ultimately resulted in death. Our findings support the view that COMT plays a pivotal role in determining the toxic response to MDMA.
Subject(s)
3,4-Methylenedioxyamphetamine/toxicity , Catechol O-Methyltransferase/metabolism , Animals , Base Sequence , Benzophenones/pharmacology , Chromatography, High Pressure Liquid , DNA Primers , Electrochemical Techniques , Female , Fever/chemically induced , Liver/drug effects , Liver/enzymology , Mice , Mice, Inbred C57BL , Norepinephrine/blood , Rats , Rats, Sprague-DawleyABSTRACT
3,4-(±)-Methylenedioxymethamphetamine (MDMA) is a ring-substituted amphetamine derivative with potent psychostimulant properties. The neuropharmacological effects of MDMA are biphasic in nature, initially causing synaptic monoamine release, primarily of serotonin (5-HT), inducing thermogenesis and hyperactivity (5-HT syndrome). The long-term effects of MDMA manifest as a prolonged depletion in 5-HT, and structural damage to 5-HT nerve terminals. MDMA toxicity is in part mediated by an ability to inhibit the presynaptic 5-HT reuptake transporter (SERT). Using a SERT-knockout (SERT-KO) rat model, we determined the impact of SERT deficiency on thermoregulation, locomotor activity, and neurotoxicity in SERT-KO or Wistar-based wild-type (WT) rats exposed to MDMA. WT and SERT-KO animals exhibited the highest thermogenic responses to MDMA (four times 10 mg/kg, sc at 12 h intervals) during the diurnal (first and third) doses according to peak body temperature and area under the curve (∑°C × h) analysis. Although no differences in peak body temperature were observed between MDMA-treated WT and SERT-KO animals, ∑°C × h following the first MDMA dose was reduced in SERT-KO rats. Exposure to a single dose of MDMA stimulated horizontal velocity in both WT and SERT-KO rats, however, this effect was delayed and attenuated in the KO animals. Finally, SERT-KO rats were insensitive to MDMA-induced long-term (7 days) depletions in 5-HT and its metabolite, 5-hydroxyindole acetic acid, in both cortex and striatum. In conclusion, SERT deficiency modulated MDMA-mediated thermogenesis, hyperactivity and neurotoxicity in KO rats. The data confirm that the SERT is essential for the manifestation of the acute and long-term toxicities of MDMA.