ABSTRACT
Clinical management of endometrial cancer (EC) is handicapped by the limited availability of second line treatments and bona fide molecular biomarkers to predict recurrence. These limitations have hampered the treatment of these patients, whose survival rates have not improved over the last four decades. The advent of coordinated studies such as The Cancer Genome Atlas Uterine Corpus Endometrial Carcinoma (TCGA_UCEC) has partially solved this issue, but the lack of proper experimental systems still represents a bottleneck that precludes translational studies from successful clinical testing in EC patients. Within this context, the first study reporting the generation of a collection of endometrioid-EC-patient-derived orthoxenograft (PDOX) mouse models is presented that is believed to overcome these experimental constraints and pave the way toward state-of-the-art precision medicine in EC. The collection of primary tumors and derived PDOXs is characterized through an integrative approach based on transcriptomics, mutational profiles, and morphological analysis; and it is demonstrated that EC tumors engrafted in the mouse uterus retain the main molecular and morphological features from analogous tumor donors. Finally, the molecular properties of these tumors are harnessed to assess the therapeutic potential of trastuzumab, a human epidermal growth factor receptor 2 (HER2) inhibitor with growing interest in EC, using patient-derived organotypic multicellular tumor spheroids and in vivo experiments.
ABSTRACT
BACKGROUND: Gasdermin B (GSDMB) over-expression promotes poor prognosis and aggressive behavior in HER2 breast cancer by increasing resistance to therapy. Decoding the molecular mechanism of GSDMB-mediated drug resistance is crucial to identify novel effective targeted treatments for HER2/GSDMB aggressive tumors. METHODS: Different in vitro approaches (immunoblot, qRT-PCR, flow cytometry, proteomic analysis, immunoprecipitation, and confocal/electron microscopy) were performed in HER2 breast and gastroesophageal carcinoma cell models. Results were then validated using in vivo preclinical animal models and analyzing human breast and gastric cancer samples. RESULTS: GSDMB up-regulation renders HER2 cancer cells more resistant to anti-HER2 agents by promoting protective autophagy. Accordingly, the combination of lapatinib with the autophagy inhibitor chloroquine increases the therapeutic response of GSDMB-positive cancers in vitro and in zebrafish and mice tumor xenograft in vivo models. Mechanistically, GSDMB N-terminal domain interacts with the key components of the autophagy machinery LC3B and Rab7, facilitating the Rab7 activation during pro-survival autophagy in response to anti-HER2 therapies. Finally, we validated these results in clinical samples where GSDMB/Rab7/LC3B co-expression associates significantly with relapse in HER2 breast and gastric cancers. CONCLUSION: Our findings uncover for the first time a functional link between GSDMB over-expression and protective autophagy in response to HER2-targeted therapies. GSDMB behaves like an autophagy adaptor and plays a pivotal role in modulating autophagosome maturation through Rab7 activation. Finally, our results provide a new and accessible therapeutic approach for HER2/GSDMB + cancers with adverse clinical outcome.
Subject(s)
Breast Neoplasms , Receptor, ErbB-2 , Animals , Autophagy , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Chloroquine/pharmacology , Drug Resistance, Neoplasm , Female , Humans , Lapatinib/pharmacology , Mice , Neoplasm Recurrence, Local , Proteomics , Receptor, ErbB-2/genetics , ZebrafishABSTRACT
The H19X-encoded miR-424(322)/503 cluster regulates multiple cellular functions. Here, it is reported for the first time that it is also a critical linchpin of fat mass expansion. Deletion of this miRNA cluster in mice results in obesity, while increasing the pool of early adipocyte progenitors and hypertrophied adipocytes. Complementary loss and gain of function experiments and RNA sequencing demonstrate that miR-424(322)/503 regulates a conserved genetic program involved in the differentiation and commitment of white adipocytes. Mechanistically, it is demonstrated that miR-424(322)/503 targets γ-Synuclein (SNCG), a factor that mediates this program rearrangement by controlling metabolic functions in fat cells, allowing adipocyte differentiation and adipose tissue enlargement. Accordingly, diminished miR-424(322) in mice and obese humans co-segregate with increased SNCG in fat and peripheral blood as mutually exclusive features of obesity, being normalized upon weight loss. The data unveil a previously unknown regulatory mechanism of fat mass expansion tightly controlled by the miR-424(322)/503 through SNCG.