Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Photodermatol Photoimmunol Photomed ; 28(3): 147-52, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22548397

ABSTRACT

BACKGROUND: Skin cancer is the most common type of cancer in humans. Current techniques for identifying normal and neoplastic tissues are either destructive or not sensitive and specific enough. Raman spectroscopy and confocal imaging may obviate many limitations of existing methods by providing noninvasive, high-resolution, and real-time morphological and biochemical analysis of living tissues and cells. METHODS: We conducted micro-Raman spectroscopy studies on HaCaT cells, melanocytes (MC) and their malignant counterparts squamous cell carcinoma (SCC) and melanoma (MM) cells, respectively. Reflectance confocal imaging is used as guidance for the spectral measurements. RESULTS: Significant differences were found between the spectra of HaCaT cells and SCC cells, MC cells and MM cells, as well as all normal cells (HaCaT and MC) and all tumor cells (SCC and MM). Approximately 90% sensitivity and specificity was achieved for all the separations that we performed. CONCLUSION: Our results demonstrated the robust capability of confocal Raman spectroscopy in separating different cell lines. The acquired Raman spectra of major types of skin cells and their malignant counterparts will be useful for the interpretation of Raman spectra from in vivo skin. We believe it will eventually help diagnosis of skin cancer and other skin disease in clinical dermatology.


Subject(s)
Carcinoma, Squamous Cell/pathology , Keratinocytes/pathology , Melanocytes/pathology , Melanoma/pathology , Skin Neoplasms/pathology , Animals , Cell Line, Transformed , Cell Line, Tumor , Humans , Mice , Microscopy, Confocal/methods
2.
Am J Pathol ; 176(5): 2435-46, 2010 May.
Article in English | MEDLINE | ID: mdl-20228225

ABSTRACT

Basal cell carcinoma (BCC) is the most common skin malignancy encountered worldwide. We hypothesized that CXC chemokines, small cytokines involved in inducing directed leukocyte chemotaxis, could play a key role in the modulation of BCC growth. In this study, quantitative RT-PCR revealed that the chemokines CXCL9, 10, 11, and their receptor CXCR3 were significantly upregulated by an average 22.6-fold, 9.2-fold, 26.6-fold, and 4.9-fold, respectively in BCC tissue samples as compared with nonlesional skin epithelium. Immunohistochemistry analysis revealed that CXCR3, CXCL10, and CXCL11, but not CXCL9, colocalized with cytokeratin 17 (K17) in BCC keratinocytes. In addition, CXCR3 and its ligands were expressed in cells of the surrounding BCC stroma. The chemokines and K17 were also expressed in cultured human immortalized HaCaT keratinocytes. Exposure of HaCaT cells or primary BCC-derived cells to CXCL11 peptides in vitro significantly increased cell proliferation. In primary BCC-derived cell cultures, addition of CXCL11 progressively selected for K17+/CXCR3+ co-expressing cells over time. The expression of CXCR3 and its ligands in human BCC keratinocytes, the enhancement of keratinocyte cell proliferation by CXCL11, and the homogeneity of K17+ BCC cells in human BCC-isolated cell population supported by CXCR3/CXCL11 signaling all suggest that CXCR3 and its ligands may be important autocrine and/or paracrine signaling mediators in the tumorigenesis of BCC.


Subject(s)
Carcinoma, Basal Cell/metabolism , Gene Expression Regulation, Neoplastic , Receptors, CXCR3/physiology , Skin Neoplasms/metabolism , Aged , Cell Line, Tumor , Chemokine CXCL11/chemistry , Female , Humans , Immunohistochemistry/methods , Keratinocytes/cytology , Ligands , Male , Middle Aged , Receptors, CXCR3/chemistry , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL