Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Cell ; 158(1): 69-83, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24995979

ABSTRACT

Brown fat can reduce obesity through the dissipation of calories as heat. Control of thermogenic gene expression occurs via the induction of various coactivators, most notably PGC-1α. In contrast, the transcription factor partner(s) of these cofactors are poorly described. Here, we identify interferon regulatory factor 4 (IRF4) as a dominant transcriptional effector of thermogenesis. IRF4 is induced by cold and cAMP in adipocytes and is sufficient to promote increased thermogenic gene expression, energy expenditure, and cold tolerance. Conversely, knockout of IRF4 in UCP1(+) cells causes reduced thermogenic gene expression and energy expenditure, obesity, and cold intolerance. IRF4 also induces the expression of PGC-1α and PRDM16 and interacts with PGC-1α, driving Ucp1 expression. Finally, cold, ß-agonists, or forced expression of PGC-1α are unable to cause thermogenic gene expression in the absence of IRF4. These studies establish IRF4 as a transcriptional driver of a program of thermogenic gene expression and energy expenditure.


Subject(s)
Adipose Tissue, Brown/metabolism , Interferon Regulatory Factors/metabolism , Thermogenesis , Transcription Factors/metabolism , Transcriptional Activation , Adipocytes/metabolism , Adipose Tissue, Brown/cytology , Adrenergic beta-3 Receptor Agonists/pharmacology , Animals , Cold Temperature , Cyclic AMP/metabolism , Energy Metabolism , Humans , Ion Channels/genetics , Mice , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Obesity/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Thinness/metabolism , Transcriptional Activation/drug effects , Uncoupling Protein 1
2.
Cell ; 157(6): 1279-1291, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24906147

ABSTRACT

Exercise training benefits many organ systems and offers protection against metabolic disorders such as obesity and diabetes. Using the recently identified isoform of PGC1-α (PGC1-α4) as a discovery tool, we report the identification of meteorin-like (Metrnl), a circulating factor that is induced in muscle after exercise and in adipose tissue upon cold exposure. Increasing circulating levels of Metrnl stimulates energy expenditure and improves glucose tolerance and the expression of genes associated with beige fat thermogenesis and anti-inflammatory cytokines. Metrnl stimulates an eosinophil-dependent increase in IL-4 expression and promotes alternative activation of adipose tissue macrophages, which are required for the increased expression of the thermogenic and anti-inflammatory gene programs in fat. Importantly, blocking Metrnl actions in vivo significantly attenuates chronic cold-exposure-induced alternative macrophage activation and thermogenic gene responses. Thus, Metrnl links host-adaptive responses to the regulation of energy homeostasis and tissue inflammation and has therapeutic potential for metabolic and inflammatory diseases.


Subject(s)
Adipose Tissue, Brown/metabolism , Nerve Growth Factors/metabolism , Animals , Glucose/metabolism , Interleukin-13/metabolism , Interleukin-4/metabolism , Liver/metabolism , Macrophages/metabolism , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism , Nerve Growth Factors/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Thermogenesis , Transcription Factors/genetics
3.
Cell ; 158(1): 41-53, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24995977

ABSTRACT

A hallmark of type 2 diabetes mellitus (T2DM) is the development of pancreatic ß cell failure, which results in insulinopenia and hyperglycemia. We show that the adipokine adipsin has a beneficial role in maintaining ß cell function. Animals genetically lacking adipsin have glucose intolerance due to insulinopenia; isolated islets from these mice have reduced glucose-stimulated insulin secretion. Replenishment of adipsin to diabetic mice treated hyperglycemia by boosting insulin secretion. We identify C3a, a peptide generated by adipsin, as a potent insulin secretagogue and show that the C3a receptor is required for these beneficial effects of adipsin. C3a acts on islets by augmenting ATP levels, respiration, and cytosolic free Ca(2+). Finally, we demonstrate that T2DM patients with ß cell failure are deficient in adipsin. These findings indicate that the adipsin/C3a pathway connects adipocyte function to ß cell physiology, and manipulation of this molecular switch may serve as a therapy in T2DM.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Insulin-Secreting Cells/metabolism , Adipose Tissue/metabolism , Animals , Complement C3a/metabolism , Complement Factor D/genetics , Complement Factor D/metabolism , Diabetes Mellitus, Type 2/physiopathology , Diet, High-Fat , Glucose/metabolism , Humans , Inflammation/metabolism , Insulin/metabolism , Insulin Secretion , Mice
4.
Cell ; 156(1-2): 304-16, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24439384

ABSTRACT

A clear relationship exists between visceral obesity and type 2 diabetes, whereas subcutaneous obesity is comparatively benign. Here, we show that adipocyte-specific deletion of the coregulatory protein PRDM16 caused minimal effects on classical brown fat but markedly inhibited beige adipocyte function in subcutaneous fat following cold exposure or ß3-agonist treatment. These animals developed obesity on a high-fat diet, with severe insulin resistance and hepatic steatosis. They also showed altered fat distribution with markedly increased subcutaneous adiposity. Subcutaneous adipose tissue in mutant mice acquired many key properties of visceral fat, including decreased thermogenic and increased inflammatory gene expression and increased macrophage accumulation. Transplantation of subcutaneous fat into mice with diet-induced obesity showed a loss of metabolic benefit when tissues were derived from PRDM16 mutant animals. These findings indicate that PRDM16 and beige adipocytes are required for the "browning" of white fat and the healthful effects of subcutaneous adipose tissue.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue/metabolism , DNA-Binding Proteins/metabolism , Obesity/metabolism , Transcription Factors/metabolism , Adipocytes/metabolism , Animals , DNA-Binding Proteins/genetics , Diet, High-Fat , Insulin Resistance , Mice , Mice, Knockout , Transcription Factors/genetics
5.
Nature ; 618(7964): 374-382, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225988

ABSTRACT

Cancer alters the function of multiple organs beyond those targeted by metastasis1,2. Here we show that inflammation, fatty liver and dysregulated metabolism are hallmarks of systemically affected livers in mouse models and in patients with extrahepatic metastasis. We identified tumour-derived extracellular vesicles and particles (EVPs) as crucial mediators of cancer-induced hepatic reprogramming, which could be reversed by reducing tumour EVP secretion via depletion of Rab27a. All EVP subpopulations, exosomes and principally exomeres, could dysregulate hepatic function. The fatty acid cargo of tumour EVPs-particularly palmitic acid-induced secretion of tumour necrosis factor (TNF) by Kupffer cells, generating a pro-inflammatory microenvironment, suppressing fatty acid metabolism and oxidative phosphorylation, and promoting fatty liver formation. Notably, Kupffer cell ablation or TNF blockade markedly decreased tumour-induced fatty liver generation. Tumour implantation or pre-treatment with tumour EVPs diminished cytochrome P450 gene expression and attenuated drug metabolism in a TNF-dependent manner. We also observed fatty liver and decreased cytochrome P450 expression at diagnosis in tumour-free livers of patients with pancreatic cancer who later developed extrahepatic metastasis, highlighting the clinical relevance of our findings. Notably, tumour EVP education enhanced side effects of chemotherapy, including bone marrow suppression and cardiotoxicity, suggesting that metabolic reprogramming of the liver by tumour-derived EVPs may limit chemotherapy tolerance in patients with cancer. Our results reveal how tumour-derived EVPs dysregulate hepatic function and their targetable potential, alongside TNF inhibition, for preventing fatty liver formation and enhancing the efficacy of chemotherapy.


Subject(s)
Extracellular Vesicles , Fatty Acids , Fatty Liver , Liver , Pancreatic Neoplasms , Animals , Mice , Cytochrome P-450 Enzyme System/genetics , Extracellular Vesicles/metabolism , Fatty Acids/metabolism , Fatty Liver/drug therapy , Fatty Liver/etiology , Fatty Liver/metabolism , Fatty Liver/prevention & control , Liver/metabolism , Liver/pathology , Liver/physiopathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Liver Neoplasms/secondary , Humans , Inflammation/metabolism , Palmitic Acid/metabolism , Kupffer Cells , Oxidative Phosphorylation , rab27 GTP-Binding Proteins/deficiency
6.
Proc Natl Acad Sci U S A ; 115(3): 561-566, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29295932

ABSTRACT

The peroxisome-proliferator receptor-γ (PPARγ) is expressed in multiple cancer types. Recently, our group has shown that PPARγ is phosphorylated on serine 273 (S273), which selectively modulates the transcriptional program controlled by this protein. PPARγ ligands, including thiazolidinediones (TZDs), block S273 phosphorylation. This activity is chemically separable from the canonical activation of the receptor by agonist ligands and, importantly, these noncanonical agonist ligands do not cause some of the known side effects of TZDs. Here, we show that phosphorylation of S273 of PPARγ occurs in cancer cells on exposure to DNA damaging agents. Blocking this phosphorylation genetically or pharmacologically increases accumulation of DNA damage, resulting in apoptotic cell death. A genetic signature of PPARγ phosphorylation is associated with worse outcomes in response to chemotherapy in human patients. Noncanonical agonist ligands sensitize lung cancer xenografts and genetically induced lung tumors to carboplatin therapy. Moreover, inhibition of this phosphorylation results in deregulation of p53 signaling, and biochemical studies show that PPARγ physically interacts with p53 in a manner dependent on S273 phosphorylation. These data implicate a role for PPARγ in modifying the p53 response to cytotoxic therapy, which can be modulated for therapeutic gain using these compounds.


Subject(s)
Antineoplastic Agents/administration & dosage , DNA Damage , Lung Neoplasms/drug therapy , PPAR gamma/metabolism , Thiazolidinediones/administration & dosage , Amino Acid Motifs , Animals , Apoptosis/drug effects , Carboplatin/administration & dosage , Cell Line, Tumor , DNA Damage/drug effects , Humans , Ligands , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Mice , Mice, Nude , PPAR gamma/agonists , PPAR gamma/chemistry , PPAR gamma/genetics , Phosphorylation , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
7.
Clin Sci (Lond) ; 133(22): 2317-2327, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31769478

ABSTRACT

The growing prevalence of obesity and its related metabolic diseases, mainly Type 2 diabetes (T2D), has increased the interest in adipose tissue (AT) and its role as a principal metabolic orchestrator. Two decades of research have now shown that ATs act as an endocrine organ, secreting soluble factors termed adipocytokines or adipokines. These adipokines play crucial roles in whole-body metabolism with different mechanisms of action largely dependent on the tissue or cell type they are acting on. The pancreatic ß cell, a key regulator of glucose metabolism due to its ability to produce and secrete insulin, has been identified as a target for several adipokines. This review will focus on how adipokines affect pancreatic ß cell function and their impact on pancreatic ß cell survival in disease contexts such as diabetes. Initially, the "classic" adipokines will be discussed, followed by novel secreted adipocyte-specific factors that show therapeutic promise in regulating the adipose-pancreatic ß cell axis.


Subject(s)
Adipokines/physiology , Insulin-Secreting Cells/physiology , Animals , Humans
8.
Genes Dev ; 25(12): 1232-44, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21646374

ABSTRACT

PGC-1α is a transcriptional coactivator that powerfully regulates many pathways linked to energy homeostasis. Specifically, PGC-1α controls mitochondrial biogenesis in most tissues but also initiates important tissue-specific functions, including fiber type switching in skeletal muscle and gluconeogenesis and fatty acid oxidation in the liver. We show here that S6 kinase, activated in the liver upon feeding, can phosphorylate PGC-1α directly on two sites within its arginine/serine-rich (RS) domain. This phosphorylation significantly attenuates the ability of PGC-1α to turn on genes of gluconeogenesis in cultured hepatocytes and in vivo, while leaving the functions of PGC-1α as an activator of mitochondrial and fatty acid oxidation genes completely intact. These phosphorylations interfere with the ability of PGC-1α to bind to HNF4α, a transcription factor required for gluconeogenesis, while leaving undisturbed the interactions of PGC-1α with ERRα and PPARα, factors important for mitochondrial biogenesis and fatty acid oxidation. These data illustrate that S6 kinase can modify PGC-1α and thus allow molecular dissection of its functions, providing metabolic flexibility needed for dietary adaptation.


Subject(s)
Gluconeogenesis/physiology , Mitochondria/metabolism , Ribosomal Protein S6 Kinases/metabolism , Transcription Factors/metabolism , Animals , Cell Line , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C
9.
Nature ; 481(7382): 463-8, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22237023

ABSTRACT

Exercise benefits a variety of organ systems in mammals, and some of the best-recognized effects of exercise on muscle are mediated by the transcriptional co-activator PPAR-γ co-activator-1 α (PGC1-α). Here we show in mouse that PGC1-α expression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. Irisin acts on white adipose cells in culture and in vivo to stimulate UCP1 expression and a broad program of brown-fat-like development. Irisin is induced with exercise in mice and humans, and mildly increased irisin levels in the blood cause an increase in energy expenditure in mice with no changes in movement or food intake. This results in improvements in obesity and glucose homeostasis. Irisin could be therapeutic for human metabolic disease and other disorders that are improved with exercise.


Subject(s)
Adipose Tissue, Brown/cytology , Adipose Tissue, White/cytology , Thermogenesis , Trans-Activators/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Cell Respiration/drug effects , Cells, Cultured , Culture Media, Conditioned/pharmacology , Energy Metabolism/drug effects , Energy Metabolism/genetics , Energy Metabolism/physiology , Exercise/physiology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Hormones/metabolism , Humans , Insulin Resistance/physiology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Ion Channels/metabolism , Mice , Mice, Inbred BALB C , Mice, Transgenic , Mitochondrial Proteins/metabolism , Models, Animal , Muscle Cells/metabolism , Obesity/blood , Obesity/chemically induced , Obesity/prevention & control , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Physical Conditioning, Animal/physiology , Plasma/chemistry , Subcutaneous Fat/cytology , Subcutaneous Fat/drug effects , Subcutaneous Fat/metabolism , Thermogenesis/drug effects , Thermogenesis/genetics , Trans-Activators/deficiency , Trans-Activators/genetics , Transcription Factors , Uncoupling Protein 1
10.
Diabetes ; 73(2): 169-177, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38241508

ABSTRACT

Excessive adiposity in obesity is a significant risk factor for development of type 2 diabetes (T2D), nonalcoholic fatty liver disease, and other cardiometabolic diseases. An unhealthy expansion of adipose tissue (AT) results in reduced adipogenesis, increased adipocyte hypertrophy, adipocyte hypoxia, chronic low-grade inflammation, increased macrophage infiltration, and insulin resistance. This ultimately culminates in AT dysfunction characterized by decreased secretion of antidiabetic adipokines such as adiponectin and adipsin and increased secretion of proinflammatory prodiabetic adipokines including RBP4 and resistin. This imbalance in adipokine secretion alters the physiological state of AT communication with target organs including pancreatic ß-cells, heart, and liver. In the pancreatic ß-cells, adipokines are known to have a direct effect on insulin secretion, gene expression, cell death, and/or dedifferentiation. For instance, impaired secretion of adipsin, which promotes insulin secretion and ß-cell identity, results in ß-cell failure and T2D, thus presenting a potential druggable target to improve and/or preserve ß-cell function. The cardiac tissue is affected by both the classic white AT-secreted adipokines and the newly recognized brown AT (BAT)-secreted BATokines or lipokines that alter lipid deposition and ventricular function. In the liver, adipokines affect hepatic gluconeogenesis, lipid accumulation, and insulin sensitivity, underscoring the importance of adipose-liver communication in the pathogenesis of nonalcoholic fatty liver disease. In this perspective, we outline what is currently known about the effects of individual adipokines on pancreatic ß-cells, liver, and the heart.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Adiposity , Complement Factor D/metabolism , Diabetes Mellitus, Type 2/metabolism , Adipose Tissue/metabolism , Adipokines/metabolism , Obesity/metabolism , Adipose Tissue, Brown/metabolism , Inflammation/metabolism , Lipids , Retinol-Binding Proteins, Plasma/metabolism
11.
JCI Insight ; 9(11)2024 May 07.
Article in English | MEDLINE | ID: mdl-38713526

ABSTRACT

Thermogenesis in beige/brown adipose tissues can be leveraged to combat metabolic disorders such as type 2 diabetes and obesity. The complement system plays pleiotropic roles in metabolic homeostasis and organismal energy balance with canonical effects on immune cells and noncanonical effects on nonimmune cells. The adipsin/C3a/C3a receptor 1 (C3aR1) pathway stimulates insulin secretion and sustains pancreatic ß cell mass. However, its role in adipose thermogenesis has not been defined. Here, we show that male Adipsin/Cfd-knockout mice exhibited increased energy expenditure and white adipose tissue (WAT) browning. In addition, male adipocyte-specific C3aR1-knockout mice exhibited enhanced WAT thermogenesis and increased respiration. In stark contrast, female adipocyte-specific C3aR1-knockout mice displayed decreased brown fat thermogenesis and were cold intolerant. Female mice expressed lower levels of Adipsin in thermogenic adipocytes and adipose tissues than males. C3aR1 was also lower in female subcutaneous adipose tissue than in males. Collectively, these results reveal sexual dimorphism in the adipsin/C3a/C3aR1 axis in regulating adipose thermogenesis and defense against cold stress. Our findings establish a potentially new role of the alternative complement pathway in adaptive thermogenesis and highlight sex-specific considerations in potential therapeutic targets for metabolic diseases.


Subject(s)
Adipose Tissue, Brown , Complement Factor D , Mice, Knockout , Receptors, Complement , Thermogenesis , Animals , Thermogenesis/genetics , Complement Factor D/metabolism , Complement Factor D/genetics , Female , Male , Mice , Receptors, Complement/metabolism , Receptors, Complement/genetics , Adipose Tissue, Brown/metabolism , Energy Metabolism , Adipose Tissue, White/metabolism , Adipocytes/metabolism , Sex Characteristics , Sex Factors
12.
medRxiv ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-38978661

ABSTRACT

Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood. In human and mouse, C3AR1 in the liver is expressed primarily in Kupffer cells, but is downregulated in humans with MASLD compared to obese controls. To test the role of complement 3a receptor (C3aR1) on macrophages and liver resident macrophages in MASLD, we generated mice deficient in C3aR1 on all macrophages (C3aR1-MφKO) or specifically in liver Kupffer cells (C3aR1-KpKO) and subjected them to a model of metabolic steatotic liver disease. We show that macrophages account for the vast majority of C3ar1 expression in the liver. Overall, C3aR1-MφKO and C3aR1-KpKO mice have similar body weight gain without significant alterations in glucose homeostasis, hepatic steatosis and fibrosis, compared to controls on a MASLD-inducing diet. This study demonstrates that C3aR1 deletion in macrophages or Kupffer cells, the predominant liver cell type expressing C3aR1, has no significant effect on liver steatosis, inflammation or fibrosis in a dietary MASLD model.

13.
Nat Commun ; 15(1): 8980, 2024 Oct 17.
Article in English | MEDLINE | ID: mdl-39420001

ABSTRACT

The canonical G406R mutation that increases Ca2+ influx through the CACNA1C-encoded CaV1.2 Ca2+ channel underlies the multisystem disorder Timothy syndrome (TS), characterized by life-threatening arrhythmias. Severe episodic hypoglycemia is among the poorly characterized non-cardiac TS pathologies. While hypothesized from increased Ca2+ influx in pancreatic beta cells and consequent hyperinsulinism, this hypoglycemia mechanism is undemonstrated because of limited clinical data and lack of animal models. We generated a CaV1.2 G406R knockin mouse model that recapitulates key TS features, including hypoglycemia. Unexpectedly, these mice do not show hyperactive beta cells or hyperinsulinism in the setting of normal intrinsic beta cell function, suggesting dysregulated glucose homeostasis. Patient data confirm the absence of hyperinsulinism. We discover multiple alternative contributors, including perturbed counterregulatory hormone responses with defects in glucagon secretion and abnormal hypothalamic control of glucose homeostasis. These data provide new insights into contributions of CaV1.2 channels and reveal integrated consequences of the mutant channels driving life-threatening events in TS.


Subject(s)
Autistic Disorder , Calcium Channels, L-Type , Disease Models, Animal , Hypoglycemia , Insulin-Secreting Cells , Long QT Syndrome , Syndactyly , Animals , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Hypoglycemia/metabolism , Hypoglycemia/genetics , Insulin-Secreting Cells/metabolism , Syndactyly/genetics , Syndactyly/metabolism , Syndactyly/pathology , Long QT Syndrome/genetics , Long QT Syndrome/metabolism , Autistic Disorder/genetics , Autistic Disorder/metabolism , Mice , Humans , Male , Glucagon/metabolism , Female , Mutation , Glucose/metabolism , Calcium/metabolism , Gene Knock-In Techniques , Hyperinsulinism/genetics , Hyperinsulinism/metabolism , Insulin/metabolism , Homeostasis , Hypothalamus/metabolism , Blood Glucose/metabolism
14.
bioRxiv ; 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36993713

ABSTRACT

The immune system coordinates the response to cardiac injury and is known to control regenerative and fibrotic scar outcomes in the heart and subsequent chronic low-grade inflammation associated with heart failure. Here we profiled the inflammatory response to heart injury using single cell transcriptomics to compare and contrast two experimental models with disparate outcomes. We used adult mice, which like humans lack the ability to fully recover and zebrafish which spontaneously regenerate after heart injury. The extracardiac reaction to cardiomyocyte necrosis was also interrogated to assess the specific peripheral tissue and immune cell reaction to chronic stress. Cardiac macrophages are known to play a critical role in determining tissue homeostasis by healing versus scarring. We identified distinct transcriptional clusters of monocytes/macrophages in each species and found analogous pairs in zebrafish and mice. However, the reaction to myocardial injury was largely disparate between mice and zebrafish. The dichotomous response to heart damage between the mammalian and zebrafish monocytes/macrophages may underlie the impaired regenerative process in mice, representing a future therapeutic target.

15.
Mol Metab ; 78: 101831, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37925022

ABSTRACT

OBJECTIVE: Glucose-dependent insulinotropic polypeptide (GIP) has a role in controlling postprandial metabolic tone. In humans, a GIP receptor (GIPR) variant (Q354, rs1800437) is associated with a lower body mass index (BMI) and increased risk for Type 2 Diabetes. To better understand the impacts of GIPR-Q354 on metabolism, it is necessary to study it in an isogeneic background to the predominant GIPR isoform, E354. To accomplish this objective, we used CRISPR-CAS9 editing to generate mouse models of GIPR-Q354 and GIPR-E354. Here we characterize the metabolic effects of GIPR-Q354 variant in a mouse model (GIPR-Q350). METHODS: We generated the GIPR-Q350 mice for in vivo studies of metabolic impact of the variant. We isolated pancreatic islets from GIPR-Q350 mice to study insulin secretion ex vivo. We used a ß-cell cell line to understand the impact of the GIPR-Q354 variant on the receptor traffic. RESULTS: We found that female GIPR-Q350 mice are leaner than littermate controls, and male GIPR-Q350 mice are resistant to diet-induced obesity, in line with the association of the variant with reduced BMI in humans. GIPR-Q350 mice of both sexes are more glucose tolerant and exhibit an increased sensitivity to GIP. Postprandial GIP levels are reduced in GIPR-Q350 mice, revealing feedback regulation that balances the increased sensitivity of GIP target tissues to secretion of GIP from intestinal endocrine cells. The increased GIP sensitivity is recapitulated ex vivo during glucose stimulated insulin secretion assays in islets. Generation of cAMP in islets downstream of GIPR activation is not affected by the Q354 substitution. However, post-activation traffic of GIPR-Q354 variant in ß-cells is altered, characterized by enhanced intracellular dwell time and increased localization to the Trans-Golgi Network (TGN). CONCLUSIONS: Our data link altered intracellular traffic of the GIPR-Q354 variant with GIP control of metabolism. We propose that this change in spatiotemporal signaling underlies the physiologic effects of GIPR-Q350/4 and GIPR-E350/4 in mice and humans. These findings contribute to a more complete understanding of the impact of GIPR-Q354 variant on glucose homeostasis that could perhaps be leveraged to enhance pharmacologic targeting of GIPR for the treatment of metabolic disease.


Subject(s)
Diabetes Mellitus, Type 2 , Islets of Langerhans , Humans , Male , Animals , Female , Mice , Diabetes Mellitus, Type 2/metabolism , Islets of Langerhans/metabolism , Receptors, G-Protein-Coupled/metabolism , Gastric Inhibitory Polypeptide/metabolism , Glucose/metabolism , Homeostasis
16.
Nat Cell Biol ; 25(4): 565-578, 2023 04.
Article in English | MEDLINE | ID: mdl-36928765

ABSTRACT

The pancreatic islets are composed of discrete hormone-producing cells that orchestrate systemic glucose homeostasis. Here we identify subsets of beta cells using a single-cell transcriptomic approach. One subset of beta cells marked by high CD63 expression is enriched for the expression of mitochondrial metabolism genes and exhibits higher mitochondrial respiration compared with CD63lo beta cells. Human and murine pseudo-islets derived from CD63hi beta cells demonstrate enhanced glucose-stimulated insulin secretion compared with pseudo-islets from CD63lo beta cells. We show that CD63hi beta cells are diminished in mouse models of and in humans with type 2 diabetes. Finally, transplantation of pseudo-islets generated from CD63hi but not CD63lo beta cells into diabetic mice restores glucose homeostasis. These findings suggest that loss of a specific subset of beta cells may lead to diabetes. Strategies to reconstitute or maintain CD63hi beta cells may represent a potential anti-diabetic therapy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Humans , Mice , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Insulin Secretion , Insulin/metabolism , Diabetes Mellitus, Experimental/metabolism , Insulin-Secreting Cells/metabolism , Glucose/metabolism
17.
Compr Physiol ; 12(3): 4039-4065, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35950650

ABSTRACT

Rising rates of obesity are intricately tied to the type 2 diabetes epidemic. The adipose tissues can play a central role in protection against or triggering metabolic diseases through the secretion of adipokines. Many adipokines may improve peripheral insulin sensitivity through a variety of mechanisms, thereby indirectly reducing the strain on beta cells and thus improving their viability and functionality. Such effects will not be the focus of this article. Rather, we will focus on adipocyte-secreted molecules that have a direct effect on pancreatic islets. By their nature, adipokines represent potential druggable targets that can reach the islets and improve beta-cell function or preserve beta cells in the face of metabolic stress. © 2022 American Physiological Society. Compr Physiol 12:1-27, 2022.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Adipocytes , Adipokines/metabolism , Adipose Tissue/metabolism , Diabetes Mellitus, Type 2/metabolism , Humans , Insulin-Secreting Cells/metabolism
18.
Nat Commun ; 13(1): 4423, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35908073

ABSTRACT

Preservation and expansion of ß-cell mass is a therapeutic goal for diabetes. Here we show that the hyperactive isoform of carbohydrate response-element binding protein (ChREBPß) is a nuclear effector of hyperglycemic stress occurring in ß-cells in response to prolonged glucose exposure, high-fat diet, and diabetes. We show that transient positive feedback induction of ChREBPß is necessary for adaptive ß-cell expansion in response to metabolic challenges. Conversely, chronic excessive ß-cell-specific overexpression of ChREBPß results in loss of ß-cell identity, apoptosis, loss of ß-cell mass, and diabetes. Furthermore, ß-cell "glucolipotoxicity" can be prevented by deletion of ChREBPß. Moreover, ChREBPß-mediated cell death is mitigated by overexpression of the alternate CHREBP gene product, ChREBPα, or by activation of the antioxidant Nrf2 pathway in rodent and human ß-cells. We conclude that ChREBPß, whether adaptive or maladaptive, is an important determinant of ß-cell fate and a potential target for the preservation of ß-cell mass in diabetes.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Insulin-Secreting Cells , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Feedback , Glucose/metabolism , Humans , Insulin-Secreting Cells/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
19.
medRxiv ; 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33791724

ABSTRACT

COVID-19 has proven to be a metabolic disease resulting in adverse outcomes in individuals with diabetes or obesity. Patients infected with SARS-CoV-2 and hyperglycemia suffer from longer hospital stays, higher risk of developing acute respiratory distress syndrome (ARDS), and increased mortality compared to those who do not develop hyperglycemia. Nevertheless, the pathophysiological mechanism(s) of hyperglycemia in COVID-19 remains poorly characterized. Here we show that insulin resistance rather than pancreatic beta cell failure is the prevalent cause of hyperglycemia in COVID-19 patients with ARDS, independent of glucocorticoid treatment. A screen of protein hormones that regulate glucose homeostasis reveals that the insulin sensitizing adipokine adiponectin is reduced in hyperglycemic COVID-19 patients. Hamsters infected with SARS-CoV-2 also have diminished expression of adiponectin. Together these data suggest that adipose tissue dysfunction may be a driver of insulin resistance and adverse outcomes in acute COVID-19.

20.
Cell Metab ; 33(11): 2174-2188.e5, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34599884

ABSTRACT

Individuals infected with SARS-CoV-2 who also display hyperglycemia suffer from longer hospital stays, higher risk of developing acute respiratory distress syndrome (ARDS), and increased mortality. Nevertheless, the pathophysiological mechanism of hyperglycemia in COVID-19 remains poorly characterized. Here, we show that hyperglycemia is similarly prevalent among patients with ARDS independent of COVID-19 status. Yet among patients with ARDS and COVID-19, insulin resistance is the prevalent cause of hyperglycemia, independent of glucocorticoid treatment, which is unlike patients with ARDS but without COVID-19, where pancreatic beta cell failure predominates. A screen of glucoregulatory hormones revealed lower levels of adiponectin in patients with COVID-19. Hamsters infected with SARS-CoV-2 demonstrated a strong antiviral gene expression program in the adipose tissue and diminished expression of adiponectin. Moreover, we show that SARS-CoV-2 can infect adipocytes. Together these data suggest that SARS-CoV-2 may trigger adipose tissue dysfunction to drive insulin resistance and adverse outcomes in acute COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL