Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters

Publication year range
1.
Am J Med Genet A ; 194(7): e63580, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38511524

ABSTRACT

Deletions of the long arm of chromosome 20 (20q) are rare, with only 16 reported patients displaying a proximal interstitial 20q deletion. A 1.62 Mb minimal critical region at 20q11.2, encompassing three genes GDF5, EPB41L1, and SAMHD1, is proposed to be responsible for this syndrome. The leading clinical features include growth retardation, intractable feeding difficulties with gastroesophageal reflux, hypotonia and psychomotor developmental delay. Common facial dysmorphisms including triangular face, hypertelorism, and hypoplastic alae nasi were additionally reported. Here, we present the clinical and molecular findings of five new patients with proximal interstitial 20q deletions. We analyzed the phenotype and molecular data of all previously reported patients with 20q11.2q12 microdeletions, along with our five new cases. Copy number variation analysis of patients in our cohort has enabled us to identify the second critical region in the 20q11.2q12 region and redefine the first region that is initially identified. The first critical region spans 359 kb at 20q11.2, containing six MIM genes, including two disease-causing genes, GDF5 and CEP250. The second critical region spans 706 kb at 20q12, encompassing four MIM genes, including two disease-causing genes, MAFB and TOP1. We propose GDF5 to be the primary candidate gene generating the phenotype of patients with 20q11.2 deletions. Moreover, we hypothesize TOP1 as a potential candidate gene for the second critical region at 20q12. Of note, we cannot exclude the possibility of a synergistic role of other genes involved in the deletion, including a contiguous gene deletion syndrome or position effect affecting both critical regions. Further studies focusing on patients with proximal 20q deletions are required to support our hypothesis.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 20 , Child , Child, Preschool , Female , Humans , Male , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Chromosomes, Human, Pair 20/genetics , DNA Copy Number Variations/genetics , Phenotype , Adolescent
2.
Am J Med Genet A ; 188(10): 2958-2968, 2022 10.
Article in English | MEDLINE | ID: mdl-35904974

ABSTRACT

Congenital diaphragmatic hernia (CDH) can occur in isolation or in conjunction with other birth defects (CDH+). A molecular etiology can only be identified in a subset of CDH cases. This is due, in part, to an incomplete understanding of the genes that contribute to diaphragm development. Here, we used clinical and molecular data from 36 individuals with CDH+ who are cataloged in the DECIPHER database to identify genes that may play a role in diaphragm development and to discover new phenotypic expansions. Among this group, we identified individuals who carried putatively deleterious sequence or copy number variants affecting CREBBP, SMARCA4, UBA2, and USP9X. The role of these genes in diaphragm development was supported by their expression in the developing mouse diaphragm, their similarity to known CDH genes using data from a previously published and validated machine learning algorithm, and/or the presence of CDH in other individuals with their associated genetic disorders. Our results demonstrate how data from DECIPHER, and other public databases, can be used to identify new phenotypic expansions and suggest that CREBBP, SMARCA4, UBA2, and USP9X play a role in diaphragm development.


Subject(s)
Hernias, Diaphragmatic, Congenital , Animals , DNA Copy Number Variations , Diaphragm , Hernias, Diaphragmatic, Congenital/genetics , Mice
3.
Int J Mol Sci ; 23(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36361691

ABSTRACT

Complex genomic rearrangements (CGRs) are structural variants arising from two or more chromosomal breaks, which are challenging to characterize by conventional or molecular cytogenetic analysis (karyotype and FISH). The integrated approach of standard and genomic techniques, including optical genome mapping (OGM) and genome sequencing, is crucial for disclosing and characterizing cryptic chromosomal rearrangements at high resolutions. We report on a patient with a complex developmental and epileptic encephalopathy in which karyotype analysis showed a de novo balanced translocation involving the long arms of chromosomes 2 and 18. Microarray analysis detected a 194 Kb microdeletion at 2q24.3 involving the SCN2A gene, which was considered the likely translocation breakpoint on chromosome 2. However, OGM redefined the translocation breakpoints by disclosing a paracentric inversion at 2q24.3 disrupting SCN1A. This combined genomic high-resolution approach allowed a fine characterization of the CGR, which involves two different chromosomes with four breakpoints. The patient's phenotype resulted from the concomitant loss of function of SCN1A and SCN2A.


Subject(s)
Brain Diseases , Chromosome Aberrations , Humans , Karyotyping , Translocation, Genetic , Chromosome Inversion , Karyotype , Genomics , NAV1.2 Voltage-Gated Sodium Channel/genetics , NAV1.1 Voltage-Gated Sodium Channel
4.
Am J Med Genet A ; 185(1): 242-249, 2021 01.
Article in English | MEDLINE | ID: mdl-33098373

ABSTRACT

Williams-Beurens syndrome (WBS) is a rare genetic disorder caused by a recurrent 7q11.23 microdeletion. Clinical characteristics include typical facial dysmorphisms, weakness of connective tissue, short stature, mild to moderate intellectual disability and distinct behavioral phenotype. Cardiovascular diseases are common due to haploinsufficiency of ELN gene. A few cases of larger or smaller deletions have been reported spanning towards the centromeric or the telomeric regions, most of which included ELN gene. We report on three patients from two unrelated families, presenting with distinctive WBS features, harboring an atypical distal deletion excluding ELN gene. Our study supports a critical role of CLIP2, GTF2IRD1, and GTF2I gene in the WBS neurobehavioral profile and in craniofacial features, highlights a possible role of HIP1 in the autism spectrum disorder, and delineates a subgroup of WBS individuals with an atypical distal deletion not associated to an increased risk of cardiovascular defects.


Subject(s)
Celiac Disease/genetics , Elastin/genetics , Neurocognitive Disorders/genetics , Williams Syndrome/genetics , Adolescent , Adult , Celiac Disease/complications , Celiac Disease/pathology , Child , Chromosome Deletion , Chromosomes, Human, Pair 7/genetics , Female , Genetic Predisposition to Disease , Haploinsufficiency/genetics , Humans , Neurocognitive Disorders/complications , Neurocognitive Disorders/pathology , Phenotype , Williams Syndrome/complications , Williams Syndrome/pathology
5.
Am J Med Genet A ; 185(8): 2417-2433, 2021 08.
Article in English | MEDLINE | ID: mdl-34042254

ABSTRACT

Biallelic loss-of-function variants in the thrombospondin-type laminin G domain and epilepsy-associated repeats (TSPEAR) gene have recently been associated with ectodermal dysplasia and hearing loss. The first reports describing a TSPEAR disease association identified this gene is a cause of nonsyndromic hearing loss, but subsequent reports involving additional affected families have questioned this evidence and suggested a stronger association with ectodermal dysplasia. To clarify genotype-phenotype associations for TSPEAR variants, we characterized 13 individuals with biallelic TSPEAR variants. Individuals underwent either exome sequencing or panel-based genetic testing. Nearly all of these newly reported individuals (11/13) have phenotypes that include tooth agenesis or ectodermal dysplasia, while three newly reported individuals have hearing loss. Of the individuals displaying hearing loss, all have additional variants in other hearing-loss-associated genes, specifically TMPRSS3, GJB2, and GJB6, that present competing candidates for their hearing loss phenotype. When presented alongside previous reports, the overall evidence supports the association of TSPEAR variants with ectodermal dysplasia and tooth agenesis features but creates significant doubt as to whether TSPEAR variants are a monogenic cause of hearing loss. Further functional evidence is needed to evaluate this phenotypic association.


Subject(s)
Anodontia/diagnosis , Anodontia/genetics , Ectodermal Dysplasia/diagnosis , Ectodermal Dysplasia/genetics , Genetic Variation , Phenotype , Proteins/genetics , Alleles , Amino Acid Substitution , Cohort Studies , Female , Genetic Association Studies , Genetic Loci , Humans , Male , Mutation , Pedigree , Radiography
6.
Int J Mol Sci ; 22(2)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33451138

ABSTRACT

We report on a patient born to consanguineous parents, presenting with Growth Hormone Deficiency (GHD) and osteoporosis. SNP-array analysis and exome sequencing disclosed long contiguous stretches of homozygosity and two distinct homozygous variants in HESX1 (Q6H) and COL1A1 (E1361K) genes. The HESX1 variant was described as causative in a few subjects with an incompletely penetrant dominant form of combined pituitary hormone deficiency (CPHD). The COL1A1 variant is rare, and so far it has never been found in a homozygous form. Segregation analysis showed that both variants were inherited from heterozygous unaffected parents. Present results further elucidate the inheritance pattern of HESX1 variants and recommend assessing the clinical impact of variants located in C-terminal propeptide of COL1A1 gene for their potential association with rare recessive and early onset forms of osteoporosis.


Subject(s)
Collagen Type I/genetics , Homeodomain Proteins/genetics , Homozygote , Human Growth Hormone/deficiency , Mutation , Osteoporosis/diagnosis , Osteoporosis/etiology , Adolescent , Age of Onset , Amino Acid Substitution , Collagen Type I/chemistry , Collagen Type I, alpha 1 Chain , DNA Mutational Analysis , Facies , Genetic Association Studies , Genetic Predisposition to Disease , Homeodomain Proteins/chemistry , Humans , Hypopituitarism/complications , Hypopituitarism/genetics , Magnetic Resonance Imaging , Male , Models, Molecular , Phenotype , Polymorphism, Single Nucleotide , Radiography , Structure-Activity Relationship
7.
Clin Genet ; 97(6): 927-932, 2020 06.
Article in English | MEDLINE | ID: mdl-32170730

ABSTRACT

Two 1p36 contiguous gene deletion syndromes are known so far: the terminal 1p36 deletion syndrome and a 1p36 deletion syndrome with a critical region located more proximal at 1p36.23-1p36.22. We present even more proximally located overlapping deletions from seven individuals, with the smallest region of overlap comprising 1 Mb at 1p36.13-1p36.12 (chr1:19077793-20081292 (GRCh37/hg19)) defining a new contiguous gene deletion syndrome. The characteristic features of this new syndrome are learning disability or mild intellectual disability, speech delay, behavioral abnormalities, and ptosis. The genes UBR4 and CAPZB are considered the most likely candidate genes for the features of this new syndrome.


Subject(s)
Blepharoptosis/genetics , Calmodulin-Binding Proteins/genetics , CapZ Actin Capping Protein/genetics , Chromosome Disorders/genetics , Learning Disabilities/genetics , Ubiquitin-Protein Ligases/genetics , Blepharoptosis/pathology , Chromosome Deletion , Chromosome Disorders/pathology , Chromosomes, Human, Pair 1/genetics , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Female , Genetic Association Studies , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Learning Disabilities/pathology , Male , Phenotype
8.
Am J Med Genet A ; 182(12): 3014-3022, 2020 12.
Article in English | MEDLINE | ID: mdl-32985083

ABSTRACT

Variants in PPP1R21 were recently found to be associated with an autosomal recessive intellectual disability syndrome in 9 individuals. Our patient, the oldest among the known subjects affected by PPP1R21-related syndrome, manifested intellectual disability, short stature, congenital ataxia with cerebellar vermis hypoplasia, generalized hypertrichosis, ulcerative keratitis, muscle weakness, progressive coarse appearance, macroglossia with fissured tongue, and deep palmar and plantar creases. We provide an overview of the clinical spectrum and natural history of this newly recognized disorder, arguing the emerging notion that PPP1R21 gene mutations could result in endolysosomal functional defects. The oldest patients could display a more severe clinical outcome, due to accumulation of metabolites or damage secondary to an alteration of the autophagy pathway. Follow-up of patients with PPP1R21 mutations is recommended for improving the understanding of PPP1R21-related syndromic intellectual disability.


Subject(s)
Developmental Disabilities/pathology , Intellectual Disability/pathology , Mutation , Nervous System Malformations/pathology , Protein Phosphatase 1/genetics , Adult , Developmental Disabilities/genetics , Female , Humans , Intellectual Disability/genetics , Nervous System Malformations/genetics , Pedigree , Syndrome
9.
Neurogenetics ; 20(3): 145-154, 2019 08.
Article in English | MEDLINE | ID: mdl-31209758

ABSTRACT

Both copy number losses and gains occur within subtelomeric 9q34 region without common breakpoints. The microdeletions cause Kleefstra syndrome (KS), whose responsible gene is EHMT1. A 9q34 duplication syndrome (9q34 DS) had been reported in literature, but it has never been characterized by a detailed molecular analysis of the gene content and endpoints. To the best of our knowledge, we report on the first patient carrying the smallest 9q34.3 duplication containing EHMT1 as the only relevant gene. We compared him with 21 reported patients described here as carrying 9q34.3 duplications encompassing the entire gene and extending within ~ 3 Mb. By surveying the available clinical and molecular cytogenetic data, we were able to discover that similar neurodevelopmental disorders (NDDs) were shared by patient carriers of even very differently sized duplications. Moreover, some facial features of the 9q34 DS were more represented than those of KS. However, an accurate in silico analysis of the genes mapped in all the duplications allowed us to support EHMT1 as being sufficient to cause a NDD phenotype. Wider patient cohorts are needed to ascertain whether the rearrangements have full causative role or simply confer the susceptibility to NDDs and possibly to identify the cognitive and behavioral profile associated with the increased dosage of EHMT1.


Subject(s)
Chromosome Duplication , Chromosomes, Human, Pair 9 , Histone-Lysine N-Methyltransferase/genetics , Neurodevelopmental Disorders/genetics , Adolescent , Comparative Genomic Hybridization , Databases, Factual , Female , France , Gene Dosage , Humans , In Situ Hybridization, Fluorescence , Italy , Male , Molecular Sequence Annotation , New Zealand , Oligonucleotide Array Sequence Analysis , Phenotype , Syndrome
10.
Ann Hum Genet ; 83(2): 100-109, 2019 03.
Article in English | MEDLINE | ID: mdl-30302754

ABSTRACT

Cornelia de Lange syndrome (CdLS) is a genetically and clinical heterogeneous condition characterized by congenital malformation, intellectual disability, and peculiar dysmorphic features. Recently, BRD4 (19p13.12) was proposed as a new critical gene associated with a mild CdLS because of a similar presentation of the patients carrying point mutations and of its involvement in the NIPBL pathway. Patients harboring a 19p interstitial deletion shared some physical features with BRD4 mutation carriers, which results in a more complex phenotype because of the involvement of several neighboring genes. We report a new 19p deletion in a patient clinically diagnosed as CdLS, partially overlapping with previously published cases with the aim to support the role of BRD4 haploinsufficiency in a CdL-like phenotype and to improve the delineation of 19p13.12p13.11 deletion as a new nonrecurrent gene contiguous syndrome, spanning GIPC1, NOTCH3, BRD4, AKAP8, AKAP8L, CASP14, and EPS15L1 genes. Previously described cases are reviewed, attempting to delineate a genotype-phenotype correlation.


Subject(s)
Cell Cycle Proteins/genetics , De Lange Syndrome/genetics , Haploinsufficiency , Transcription Factors/genetics , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 19 , Female , Humans , Infant , Infant, Newborn , Phenotype
11.
Am J Med Genet A ; 179(8): 1615-1621, 2019 08.
Article in English | MEDLINE | ID: mdl-31145527

ABSTRACT

Only a few individuals with 12q15 deletion have been described, presenting with a disorder characterized by learning disability, developmental delay, nasal speech, and hypothyroidism. The smallest region of overlap for this syndrome was included in a genomic segment spanning CNOT2, KCNMB4, and PTPRB genes. We report on an additional patient harboring a 12q15 microdeletion encompassing only part of CNOT2 gene, presenting with a spectrum of clinical features overlapping the 12q15 deletion syndrome phenotype. We propose CNOT2 as the phenocritical gene for 12q15 deletion syndrome and its haploinsufficiency being associated with an autosomal dominant disorder, presenting with developmental delay, hypotonia, feeding problems, learning difficulties, nasal speech, skeletal anomalies, and facial dysmorphisms.


Subject(s)
Chromosome Deletion , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Chromosomes, Human, Pair 12 , Heterozygote , Phenotype , Repressor Proteins/genetics , Sequence Deletion , Facies , Genetic Association Studies , Genetic Predisposition to Disease , Haploinsufficiency , Humans
12.
Int J Mol Sci ; 20(6)2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30909440

ABSTRACT

To identify whether parent-of-origin effects (POE) of the 15q11.2 BP1-BP2 microdeletion are associated with differences in clinical features in individuals inheriting the deletion, we collected 71 individuals reported with phenotypic data and known inheritance from a clinical cohort, a research cohort, the DECIPHER database, and the primary literature. Chi-squared and Mann-Whitney U tests were used to test for differences in specific and grouped clinical symptoms based on parental inheritance and proband gender. Analyses controlled for sibling sets and individuals with additional variants of uncertain significance (VOUS). Among all probands, maternal deletions were associated with macrocephaly (p = 0.016) and autism spectrum disorder (ASD; p = 0.02), while paternal deletions were associated with congenital heart disease (CHD; p = 0.004). Excluding sibling sets, maternal deletions were associated with epilepsy as well as macrocephaly (p < 0.05), while paternal deletions were associated with CHD and abnormal muscular phenotypes (p < 0.05). Excluding sibling sets and probands with an additional VOUS, maternal deletions were associated with epilepsy (p = 0.019) and paternal deletions associated with muscular phenotypes (p = 0.008). Significant gender-based differences were also observed. Our results supported POEs of this deletion and included macrocephaly, epilepsy and ASD in maternal deletions with CHD and abnormal muscular phenotypes seen in paternal deletions.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Child , Child, Preschool , Chromosome Aberrations , Chromosomes, Human, Pair 15/genetics , Cohort Studies , Female , Genomic Imprinting , Humans , Male , Phenotype , Sex Factors , Siblings
13.
Neurogenetics ; 19(2): 111-121, 2018 05.
Article in English | MEDLINE | ID: mdl-29691679

ABSTRACT

Hereditary spastic paraplegias (HSP) are clinical and genetic heterogeneous diseases with more than 80 disease genes identified thus far. Studies on large cohorts of HSP patients showed that, by means of current technologies, the percentage of genetically solved cases is close to 50%. Notably, the percentage of molecularly confirmed diagnoses decreases significantly in sporadic patients. To describe our diagnostic molecular genetic approach on patients with pediatric-onset pure and complex HSP, 47 subjects with HSP underwent molecular screening of 113 known and candidate disease genes by targeted capture and massively parallel sequencing. Negative cases were successively analyzed by multiplex ligation-dependent probe amplification (MLPA) analysis for the SPAST gene and high-resolution SNP array analysis for genome-wide CNV detection. Diagnosis was molecularly confirmed in 29 out of 47 (62%) patients, most of whom had clinical diagnosis of cHSP. Although SPG11 and SPG4 remain the most frequent cause of, respectively, complex and pure HSP, a large number of pathogenic variants were disclosed in POLR3A, FA2H, DDHD2, ATP2B4, ENTPD1, ERLIN2, CAPN1, ALS2, ADAR1, RNASEH2B, TUBB4A, ATL1, and KIF1A. In a subset of these disease genes, phenotypic expansion and novel genotype-phenotype correlations were recognized. Notably, SNP array analysis did not provide any significant contribution in increasing the diagnostic yield. Our findings document the high diagnostic yield of targeted sequencing for patients with pediatric-onset, complex, and pure HSP. MLPA for SPAST and SNP array should be limited to properly selected cases based on clinical suspicion.


Subject(s)
High-Throughput Nucleotide Sequencing , Spastic Paraplegia, Hereditary/diagnosis , Spastic Paraplegia, Hereditary/genetics , Adolescent , Age of Onset , Brain/diagnostic imaging , Brain/pathology , Child , Child, Preschool , Cohort Studies , Female , Genetic Association Studies , Genetic Testing/methods , Humans , Infant , Infant, Newborn , Male , Mutation , Polymorphism, Single Nucleotide
14.
Cytogenet Genome Res ; 156(2): 87-94, 2018.
Article in English | MEDLINE | ID: mdl-30372694

ABSTRACT

Interstitial deletions of the long arm of chromosome 20 are very rare, with only 12 reported patients harboring the 20q11.2 microdeletion and presenting a disorder characterized by psychomotor and growth delay, dysmorphisms, and brachy-/clinodactyly. We describe the first case of mosaic 20q11.2 deletion in a 5-year-old girl affected by mild psychomotor delay, feeding difficulties, growth retardation, craniofacial dysmorphisms, and finger anomalies. SNP array analysis disclosed 20% of cells with a 20q11.21q12 deletion, encompassing the 20q11.2 minimal critical region and the 3 OMIM disease-causing genes GDF5, EPB41L1, and SAMHD1. We propose a pathogenic role of other genes mapping outside the small region of overlap, in particular GHRH (growth hormone releasing hormone), whose haploinsufficiency could be responsible for the prenatal onset of growth retardation which is shared by half of these patients. Our patient highlights the utility of chromosomal microarray analysis to identify low-level mosaicism.

15.
Am J Med Genet A ; 176(12): 2781-2786, 2018 12.
Article in English | MEDLINE | ID: mdl-30289615

ABSTRACT

DCPS gene encodes for a protein involved in gene expression regulation through promoting cap degradation during mRNA decapping processes. Mutations altering the DCPS function have been associated to a distinct disorder, Al-Raqad syndrome, so far described only in two families. We report on a patient harboring a novel homozygous missense mutation in DCPS, presenting with growth retardation, craniofacial anomalies, skin dyschromia, and neuromuscular defects. This case study explains the molecular spectrum of DCPS mutations and might contribute to the phenotypic delineation of this rare condition.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Endoribonucleases/genetics , Homozygote , Mutation , Alleles , Child, Preschool , Exons , Female , Genes, Recessive , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Phenotype , Syndrome
16.
Am J Med Genet B Neuropsychiatr Genet ; 177(4): 397-405, 2018 06.
Article in English | MEDLINE | ID: mdl-29603867

ABSTRACT

Recurrent deletions and duplications at the 2q13 locus have been associated with developmental delay (DD) and dysmorphisms. We aimed to undertake detailed clinical characterization of individuals with 2q13 copy number variations (CNVs), with a focus on behavioral and psychiatric phenotypes. Participants were recruited via the Unique chromosomal disorder support group, U.K. National Health Service Regional Genetics Centres, and the DatabasE of genomiC varIation and Phenotype in Humans using Ensembl Resources (DECIPHER) database. A review of published 2q13 patient case reports was undertaken to enable combined phenotypic analysis. We present a new case series of 2q13 CNV carriers (21 deletion, 4 duplication) and the largest ever combined analysis with data from published studies, making a total of 54 deletion and 23 duplication carriers. DD/intellectual disabilities was identified in the majority of carriers (79% deletion, 70% duplication), although in the new cases 52% had an IQ in the borderline or normal range. Despite the median age of the new cases being only 9 years, 64% had a clinical psychiatric diagnosis. Combined analysis found attention deficit hyperactivity disorder (ADHD) to be the most frequent diagnosis (48% deletion, 60% duplication), followed by autism spectrum disorders (33% deletion, 17% duplication). Aggressive (33%) and self-injurious behaviors (33%) were also identified in the new cases. CNVs at 2q13 are typically associated with DD with mildly impaired intelligence, and a high rate of childhood psychiatric diagnoses-particularly ADHD. We have further characterized the clinical phenotype related to imbalances of the 2q13 region and identified it as a region of interest for the neurobiological investigation of ADHD.


Subject(s)
Chromosomes, Human, Pair 2/genetics , Developmental Disabilities/genetics , Mental Disorders/genetics , Adolescent , Adult , Child , Child, Preschool , Chromosome Aberrations , Chromosome Deletion , Chromosome Duplication , DNA Copy Number Variations/genetics , Female , Gene Duplication/genetics , Humans , Intellectual Disability/genetics , Male , Phenotype , United Kingdom
17.
Cytogenet Genome Res ; 151(4): 179-185, 2017.
Article in English | MEDLINE | ID: mdl-28478456

ABSTRACT

Complex chromosomal rearrangements (CCRs) are structural aberrations involving more than 2 chromosomal breakpoints. They are associated with different outcomes depending on the deletion/duplication of genomic material, gene disruption, or position effects. Balanced CCRs can also undergo missegregation during meiotic division, leading to unbalanced derivative chromosomes and, in some cases, to affected offspring. We report on a patient presenting with developmental and speech delay, growth retardation, microcephaly, hypospadias, and dysmorphic features, harboring an interstitial 10q21.1q23.31 duplication, due to recombination of a paternal CCR. Application of several cytogenetic and molecular techniques allowed determining the biological bases of the rearrangement, understanding the underlying chromosomal mechanism, and assessing the reproductive risk.


Subject(s)
Chromosome Disorders/genetics , Chromosomes, Human, Pair 10/genetics , Gene Rearrangement/genetics , Meiosis/genetics , Recombination, Genetic/genetics , Trisomy/genetics , Adolescent , Cytogenetics/instrumentation , Humans , Karyotyping/methods , Male
18.
Am J Med Genet A ; 167A(4): 797-801, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25735547

ABSTRACT

Oculo auriculo vertebral spectrum (OAVS; OMIM 164210) is a clinically and genetically heterogeneous disorder originating from an abnormal development of the first and second branchial arches. Main clinical characteristics include defects of the aural, oral, mandibular, and vertebral development. Anomalies of the cardiac, pulmonary, renal, skeletal, and central nervous systems have also been described. We report on a 25-year-old male showing a spectrum of clinical manifestations fitting the OAVS diagnosis: hemifacial microsomia, asymmetric mandibular hypoplasia, preauricular pits and tags, unilateral absence of the auditory meatus, dysgenesis of the inner ear and unilateral microphthalmia. A SNP-array analysis identified a de novo previously unreported microduplication spanning 723 Kb on chromosome 3q29. This rearrangement was proximal to the 3q29 microdeletion/microduplication syndrome region, and encompassed nine genes including ATP13A3 and XXYLT1, which are involved in the organogenesis and regulation of the Notch pathway, respectively. The present observation further expands the spectrum of genomic rearrangements associated to OAVS, underlying the value of array-based studies in patients manifesting OAVS features.


Subject(s)
Chromosome Disorders/diagnostic imaging , Goldenhar Syndrome/diagnostic imaging , Adult , Chromosome Disorders/genetics , Chromosome Duplication/genetics , Goldenhar Syndrome/genetics , Humans , Male , Molecular Diagnostic Techniques , Polymorphism, Single Nucleotide , Radiography
20.
Genes (Basel) ; 15(1)2024 01 16.
Article in English | MEDLINE | ID: mdl-38254992

ABSTRACT

The translocation of the testis-determining factor, the SRY gene, from the Y to the X chromosome is a rare event that causes abnormalities in gonadal development. In all cases of males and females carrying this translocation, disorder of sex development is reported. In our study, we described a peculiar pedigree with the first evidence of four healthy females from three generations who are carriers of the newly identified t(X;Y)(q28;p11.2)(SRY+) translocation with no evidence of ambiguous genitalia or other SRY-dependent alterations. Our study was a consequence of a Non-Invasive Prenatal Test (NIPT) showing a sexual chromosomal abnormality (XXY) followed by a chorionic villus analysis suggesting a normal karyotype 46,XX and t(X;Y) translocation detected by FISH. Here, we (i) demonstrated the inheritance of the translocation in the maternal lineage via karyotyping and FISH analysis; (ii) characterised the structural rearrangement via chromosomal microarray; and (iii) demonstrated, via Click-iT® EdU Imaging assay, that there was an absolute preferential inactivation of the der(X) chromosome responsible for the lack of SRY expression. Overall, our study provides valuable genetic and molecular information that may lead personal and medical decisions.


Subject(s)
Chromosomes, Human, X , Genes, sry , Male , Pregnancy , Humans , Female , Sex-Determining Region Y Protein/genetics , Chromosomes, Human, X/genetics , Chromosome Aberrations , Karyotyping , Translocation, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL