Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Allergy Clin Immunol ; 153(1): 287-296, 2024 01.
Article in English | MEDLINE | ID: mdl-37793572

ABSTRACT

BACKGROUND: The Primary Immune Deficiency Treatment Consortium (PIDTC) enrolled children in the United States and Canada onto a retrospective multicenter natural history study of hematopoietic cell transplantation (HCT). OBJECTIVE: We investigated outcomes of HCT for severe combined immunodeficiency (SCID). METHODS: We evaluated the chronic and late effects (CLE) after HCT for SCID in 399 patients transplanted from 1982 to 2012 at 32 PIDTC centers. Eligibility criteria included survival to at least 2 years after HCT without need for subsequent cellular therapy. CLE were defined as either conditions present at any time before 2 years from HCT that remained unresolved (chronic), or new conditions that developed beyond 2 years after HCT (late). RESULTS: The cumulative incidence of CLE was 25% in those alive at 2 years, increasing to 41% at 15 years after HCT. CLE were most prevalent in the neurologic (9%), neurodevelopmental (8%), and dental (8%) categories. Chemotherapy-based conditioning was associated with decreased-height z score at 2 to 5 years after HCT (P < .001), and with endocrine (P < .001) and dental (P = .05) CLE. CD4 count of ≤500 cells/µL and/or continued need for immunoglobulin replacement therapy >2 years after transplantation were associated with lower-height z scores. Continued survival from 2 to 15 years after HCT was 90%. The presence of any CLE was associated with increased risk of late death (hazard ratio, 7.21; 95% confidence interval, 2.71-19.18; P < .001). CONCLUSION: Late morbidity after HCT for SCID was substantial, with an adverse impact on overall survival. This study provides evidence for development of survivorship guidelines based on disease characteristics and treatment exposure for patients after HCT for SCID.


Subject(s)
Hematopoietic Stem Cell Transplantation , Severe Combined Immunodeficiency , Child , Humans , Severe Combined Immunodeficiency/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Incidence , Canada/epidemiology , Retrospective Studies , Transplantation Conditioning
2.
Lancet ; 402(10396): 129-140, 2023 07 08.
Article in English | MEDLINE | ID: mdl-37352885

ABSTRACT

BACKGROUND: Severe combined immunodeficiency (SCID) is fatal unless durable adaptive immunity is established, most commonly through allogeneic haematopoietic cell transplantation (HCT). The Primary Immune Deficiency Treatment Consortium (PIDTC) explored factors affecting the survival of individuals with SCID over almost four decades, focusing on the effects of population-based newborn screening for SCID that was initiated in 2008 and expanded during 2010-18. METHODS: We analysed transplantation-related data from children with SCID treated at 34 PIDTC sites in the USA and Canada, using the calendar time intervals 1982-89, 1990-99, 2000-09, and 2010-18. Categorical variables were compared by χ2 test and continuous outcomes by the Kruskal-Wallis test. Overall survival was estimated by the Kaplan-Meier method. A multivariable analysis using Cox proportional hazards regression models examined risk factors for HCT outcomes, including the variables of time interval of HCT, infection status and age at HCT, trigger for diagnosis, SCID type and genotype, race and ethnicity of the patient, non-HLA-matched sibling donor type, graft type, GVHD prophylaxis, and conditioning intensity. FINDINGS: For 902 children with confirmed SCID, 5-year overall survival remained unchanged at 72%-73% for 28 years until 2010-18, when it increased to 87% (95% CI 82·1-90·6; n=268; p=0·0005). For children identified as having SCID by newborn screening since 2010, 5-year overall survival was 92·5% (95% CI 85·8-96·1), better than that of children identified by clinical illness or family history in the same interval (79·9% [69·5-87·0] and 85·4% [71·8-92·8], respectively [p=0·043]). Multivariable analysis demonstrated that the factors of active infection (hazard ratio [HR] 2·41, 95% CI 1·56-3·72; p<0·0001), age 3·5 months or older at HCT (2·12, 1·38-3·24; p=0·001), Black or African-American race (2·33, 1·56-3·46; p<0·0001), and certain SCID genotypes to be associated with lower overall survival during all time intervals. Moreover, after adjusting for several factors in this multivariable analysis, HCT after 2010 no longer conveyed a survival advantage over earlier time intervals studied (HR 0·73, 95% CI 0·43-1·26; p=0·097). This indicated that younger age and freedom from infections at HCT, both directly driven by newborn screening, were the main drivers for recent improvement in overall survival. INTERPRETATION: Population-based newborn screening has facilitated the identification of infants with SCID early in life, in turn leading to prompt HCT while avoiding infections. Public health programmes worldwide can benefit from this definitive demonstration of the value of newborn screening for SCID. FUNDING: National Institute of Allergy and Infectious Diseases, Office of Rare Diseases Research, and National Center for Advancing Translational Sciences.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Severe Combined Immunodeficiency , Humans , Infant, Newborn , Hematopoietic Stem Cell Transplantation/methods , Longitudinal Studies , Neonatal Screening , Proportional Hazards Models , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/therapy , Severe Combined Immunodeficiency/genetics
3.
Blood ; 140(7): 685-705, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35671392

ABSTRACT

Adenosine deaminase (ADA) deficiency causes ∼13% of cases of severe combined immune deficiency (SCID). Treatments include enzyme replacement therapy (ERT), hematopoietic cell transplant (HCT), and gene therapy (GT). We evaluated 131 patients with ADA-SCID diagnosed between 1982 and 2017 who were enrolled in the Primary Immune Deficiency Treatment Consortium SCID studies. Baseline clinical, immunologic, genetic characteristics, and treatment outcomes were analyzed. First definitive cellular therapy (FDCT) included 56 receiving HCT without preceding ERT (HCT); 31 HCT preceded by ERT (ERT-HCT); and 33 GT preceded by ERT (ERT-GT). Five-year event-free survival (EFS, alive, no need for further ERT or cellular therapy) was 49.5% (HCT), 73% (ERT-HCT), and 75.3% (ERT-GT; P < .01). Overall survival (OS) at 5 years after FDCT was 72.5% (HCT), 79.6% (ERT-HCT), and 100% (ERT-GT; P = .01). Five-year OS was superior for patients undergoing HCT at <3.5 months of age (91.6% vs 68% if ≥3.5 months, P = .02). Active infection at the time of HCT (regardless of ERT) decreased 5-year EFS (33.1% vs 68.2%, P < .01) and OS (64.7% vs 82.3%, P = .02). Five-year EFS (90.5%) and OS (100%) were best for matched sibling and matched family donors (MSD/MFD). For patients treated after the year 2000 and without active infection at the time of FDCT, no difference in 5-year EFS or OS was found between HCT using a variety of transplant approaches and ERT-GT. This suggests alternative donor HCT may be considered when MSD/MFD HCT and GT are not available, particularly when newborn screening identifies patients with ADA-SCID soon after birth and before the onset of infections. This trial was registered at www.clinicaltrials.gov as #NCT01186913 and #NCT01346150.


Subject(s)
Agammaglobulinemia , Hematopoietic Stem Cell Transplantation , Severe Combined Immunodeficiency , Adenosine Deaminase , Agammaglobulinemia/genetics , Child, Preschool , Humans , Infant , Infant, Newborn , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/therapy
4.
Clin Trials ; 21(2): 152-161, 2024 04.
Article in English | MEDLINE | ID: mdl-37877375

ABSTRACT

BACKGROUND/AIMS: Protecting patient safety is an essential component of the conduct of clinical trials. Rigorous safety monitoring schemes are implemented for these studies to guard against excess toxicity risk from study therapies. They often include protocol-specified stopping rules dictating that an excessive number of safety events will trigger a halt of the study. Statistical methods are useful for constructing rules that protect patients from exposure to excessive toxicity while also maintaining the chance of a false safety signal at a low level. Several statistical techniques have been proposed for this purpose, but the current literature lacks a rigorous comparison to determine which method may be best suitable for a given trial design. The aims of this article are (1) to describe a general framework for repeated monitoring of safety events in clinical trials; (2) to survey common statistical techniques for creating safety stopping criteria; and (3) to provide investigators with a software tool for constructing and assessing these stopping rules. METHODS: The properties and operating characteristics of stopping rules produced by Pocock and O'Brien-Fleming tests, Bayesian Beta-Binomial models, and sequential probability ratio tests (SPRTs) are studied and compared for common scenarios that may arise in phase II and III trials. We developed the R package "stoppingrule" for constructing and evaluating stopping rules from these methods. Its usage is demonstrated through a redesign of a stopping rule for BMT CTN 0601 (registered at Clinicaltrials.gov as NCT00745420), a phase II, single-arm clinical trial that evaluated outcomes in pediatric sickle cell disease patients treated by bone marrow transplant. RESULTS: Methods with aggressive stopping criteria early in the trial, such as the Pocock test and Bayesian Beta-Binomial models with weak priors, have permissive stopping criteria at late stages. This results in a trade-off where rules with aggressive early monitoring generally will have a smaller number of expected toxicities but also lower power than rules with more conservative early stopping, such as the O-Brien-Fleming test and Beta-Binomial models with strong priors. The modified SPRT method is sensitive to the choice of alternative toxicity rate. The maximized SPRT generally has a higher number of expected toxicities and/or worse power than other methods. CONCLUSIONS: Because the goal is to minimize the number of patients exposed to and experiencing toxicities from an unsafe therapy, we recommend using the Pocock or Beta-Binomial, weak prior methods for constructing safety stopping rules. At the design stage, the operating characteristics of candidate rules should be evaluated under various possible toxicity rates in order to guide the choice of rule(s) for a given trial; our R package facilitates this evaluation.


Subject(s)
Models, Statistical , Research Design , Humans , Child , Bayes Theorem , Probability , Outcome Assessment, Health Care
5.
J Allergy Clin Immunol ; 151(1): 260-271, 2023 01.
Article in English | MEDLINE | ID: mdl-35987350

ABSTRACT

BACKGROUND: Severe combined immunodeficiency (SCID) comprises rare inherited disorders of immunity that require definitive treatment through hematopoietic cell transplantation (HCT) or gene therapy for survival. Despite successes of allogeneic HCT, many SCID patients experience incomplete immune reconstitution, persistent T-cell lymphopenia, and poor long-term outcomes. OBJECTIVE: We hypothesized that CD4+ T-cell lymphopenia could be associated with a state of T-cell exhaustion in previously transplanted SCID patients. METHODS: We analyzed markers of exhaustion in blood samples from 61 SCID patients at a median of 10.4 years after HCT. RESULTS: Compared to post-HCT SCID patients with normal CD4+ T-cell counts, those with poor T-cell reconstitution showed lower frequency of naive CD45RA+/CCR7+ T cells, recent thymic emigrants, and TCR excision circles. They also had a restricted TCR repertoire, increased expression of inhibitory receptors (PD-1, 2B4, CD160, BTLA, CTLA-4), and increased activation markers (HLA-DR, perforin) on their total and naive CD8+ T cells, suggesting T-cell exhaustion and aberrant activation, respectively. The exhaustion score of CD8+ T cells was inversely correlated with CD4+ T-cell count, recent thymic emigrants, TCR excision circles, and TCR diversity. Exhaustion scores were higher among recipients of unconditioned HCT, especially when further in time from HCT. Patients with fewer CD4+ T cells showed a transcriptional signature of exhaustion. CONCLUSIONS: Recipients of unconditioned HCT for SCID may develop late post-HCT T-cell exhaustion as a result of diminished production of T-lineage cells. Elevated expression of inhibitory receptors on their T cells may be a biomarker of poor long-term T-cell reconstitution.


Subject(s)
Hematopoietic Stem Cell Transplantation , Lymphopenia , Severe Combined Immunodeficiency , Humans , CD8-Positive T-Lymphocytes , T-Cell Exhaustion , Receptors, Antigen, T-Cell
6.
J Allergy Clin Immunol ; 152(6): 1619-1633.e11, 2023 12.
Article in English | MEDLINE | ID: mdl-37659505

ABSTRACT

BACKGROUND: Chronic granulomatous disease (CGD) is caused by defects in any 1 of the 6 subunits forming the nicotinamide adenine dinucleotide phosphate oxidase complex 2 (NOX2), leading to severely reduced or absent phagocyte-derived reactive oxygen species production. Almost 50% of patients with CGD have inflammatory bowel disease (CGD-IBD). While conventional IBD therapies can treat CGD-IBD, their benefits must be weighed against the risk of infection. Understanding the impact of NOX2 defects on the intestinal microbiota may lead to the identification of novel CGD-IBD treatments. OBJECTIVE: We sought to identify microbiome and metabolome signatures that can distinguish individuals with CGD and CGD-IBD. METHODS: We conducted a cross-sectional observational study of 79 patients with CGD, 8 pathogenic variant carriers, and 19 healthy controls followed at the National Institutes of Health Clinical Center. We profiled the intestinal microbiome (amplicon sequencing) and stool metabolome, and validated our findings in a second cohort of 36 patients with CGD recruited through the Primary Immune Deficiency Treatment Consortium. RESULTS: We identified distinct intestinal microbiome and metabolome profiles in patients with CGD compared to healthy individuals. We observed enrichment for Erysipelatoclostridium spp, Sellimonas spp, and Lachnoclostridium spp in CGD stool samples. Despite differences in bacterial alpha and beta diversity between the 2 cohorts, several taxa correlated significantly between both cohorts. We further demonstrated that patients with CGD-IBD have a distinct microbiome and metabolome profile compared to patients without CGD-IBD. CONCLUSION: Intestinal microbiome and metabolome signatures distinguished patients with CGD and CGD-IBD, and identified potential biomarkers and therapeutic targets.


Subject(s)
Gastrointestinal Microbiome , Granulomatous Disease, Chronic , Inflammatory Bowel Diseases , Humans , Granulomatous Disease, Chronic/genetics , NADPH Oxidases , Cross-Sectional Studies
7.
Lifetime Data Anal ; 30(1): 181-212, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37659991

ABSTRACT

To achieve the goal of providing the best possible care to each individual under their care, physicians need to customize treatments for individuals with the same health state, especially when treating diseases that can progress further and require additional treatments, such as cancer. Making decisions at multiple stages as a disease progresses can be formalized as a dynamic treatment regime (DTR). Most of the existing optimization approaches for estimating dynamic treatment regimes including the popular method of Q-learning were developed in a frequentist context. Recently, a general Bayesian machine learning framework that facilitates using Bayesian regression modeling to optimize DTRs has been proposed. In this article, we adapt this approach to censored outcomes using Bayesian additive regression trees (BART) for each stage under the accelerated failure time modeling framework, along with simulation studies and a real data example that compare the proposed approach with Q-learning. We also develop an R wrapper function that utilizes a standard BART survival model to optimize DTRs for censored outcomes. The wrapper function can easily be extended to accommodate any type of Bayesian machine learning model.


Subject(s)
Decision Making , Humans , Bayes Theorem , Computer Simulation , Precision Medicine , Survival Analysis , Transplantation, Homologous , Hematopoietic Stem Cells
8.
Biometrics ; 79(4): 3023-3037, 2023 12.
Article in English | MEDLINE | ID: mdl-36932826

ABSTRACT

Many popular survival models rely on restrictive parametric, or semiparametric, assumptions that could provide erroneous predictions when the effects of covariates are complex. Modern advances in computational hardware have led to an increasing interest in flexible Bayesian nonparametric methods for time-to-event data such as Bayesian additive regression trees (BART). We propose a novel approach that we call nonparametric failure time (NFT) BART in order to increase the flexibility beyond accelerated failure time (AFT) and proportional hazard models. NFT BART has three key features: (1) a BART prior for the mean function of the event time logarithm; (2) a heteroskedastic BART prior to deduce a covariate-dependent variance function; and (3) a flexible nonparametric error distribution using Dirichlet process mixtures (DPM). Our proposed approach widens the scope of hazard shapes including nonproportional hazards, can be scaled up to large sample sizes, naturally provides estimates of uncertainty via the posterior and can be seamlessly employed for variable selection. We provide convenient, user-friendly, computer software that is freely available as a reference implementation. Simulations demonstrate that NFT BART maintains excellent performance for survival prediction especially when AFT assumptions are violated by heteroskedasticity. We illustrate the proposed approach on a study examining predictors for mortality risk in patients undergoing hematopoietic stem cell transplant (HSCT) for blood-borne cancer, where heteroskedasticity and nonproportional hazards are likely present.


Subject(s)
Machine Learning , Software , Humans , Bayes Theorem , Proportional Hazards Models , Uncertainty , Models, Statistical , Computer Simulation
9.
Am J Hematol ; 98(2): 229-250, 2023 02.
Article in English | MEDLINE | ID: mdl-36251401

ABSTRACT

For myelodysplastic syndrome (MDS), allogeneic hematopoietic cell transplantation (alloHCT) is the only available curative therapy. The Blood and Marrow Transplant Clinical Trials Network study 1102 (BMT CTN 1102, NCT02016781) was a multicenter, biologic assignment trial based on matched donor availability in adults aged 50-75 with higher risk de novo MDS who were candidates for reduced-intensity conditioning (RIC) alloHCT. The primary analysis showed that those who received alloHCT had a survival benefit, but whether this is at the cost of worse quality of life (QOL) has not been described in detail. English- and Spanish-speaking trial participants completed the Functional Assessment of Cancer Therapy-General (FACT-G), the SF-36, and the EQ-5D, at enrollment, every 6 months until 24 months, and 36 months. We compared patient-reported outcome (PRO) scores between study arms using an inverse probability weighted-independent estimating equation (IPW-IEE) model. Between January 2014 and November 2018, 384 subjects (median age 66.7 years, range: 50.1-75.3) enrolled at 34 centers. PRO completion rates were generally high at 65%-78%. The PRO trajectories for both arms were similar, with most decreasing or stable from baseline to 6 months and improving thereafter. Baseline PRO scores were the most consistent independent predictors of subsequent QOL outcomes and survival, even after controlling for clinical and patient-level factors. For older adults with MDS, the survival advantage associated with donor availability and alloHCT did not come at the cost of worse QOL. These results should reassure older patients and clinicians who prefer a curative approach to treating MDS.


Subject(s)
Hematopoietic Stem Cell Transplantation , Myelodysplastic Syndromes , Humans , Aged , Quality of Life , Transplantation Conditioning/methods , Hematopoietic Stem Cell Transplantation/methods , Myelodysplastic Syndromes/therapy , Tissue Donors
10.
Am J Hematol ; 98(4): 608-619, 2023 04.
Article in English | MEDLINE | ID: mdl-36606713

ABSTRACT

Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment for acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). While many factors influence the outcomes of allo-HCT, the independent impact of donor-recipient ABO mismatching remains unclear. Using the Center for International Blood and Marrow Transplant Research (CIBMTR) database, we identified patients aged ≥18 years with AML or ALL who underwent allo-HCT between 2008 and 2018. Our objectives were to analyze the outcomes of allo-HCT based on the donor-recipient ABO status (match, minor mismatch, major mismatch, bidirectional mismatch). Among 4946 eligible patients, 2741 patients (55.4%) were ABO matched, 1030 patients (20.8%) had a minor ABO mismatch, 899 patients (18.1%) had a major ABO mismatch, and 276 patients (5.6%) had a bidirectional ABO mismatch. In multivariable analyses, compared to ABO matched allo-HCT, the presence of a major ABO mismatch was associated with worse overall survival (HR 1.16, 95% CI 1.05-1.29; p = 0.005), inferior platelet engraftment (HR 0.83, 95% CI 0.77-0.90; p < 0.001), and higher primary graft failure (HR 1.60, 95% CI 1.12-2.30, p = 0.01). Relapse, acute graft versus host disease (GVHD) grades III-IV and chronic GVHD were not significantly associated with ABO status. While donor age was not significantly associated with outcomes, older recipient age was associated with worse survival and non-relapse mortality. Our study demonstrates that donor-recipient ABO status is independently associated with survival and other post-transplantation outcomes in acute leukemia. This underscores the importance of considering the ABO status in donor selection algorithms and its impact in acute leukemia.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Adolescent , Adult , Leukemia, Myeloid, Acute/therapy , Bone Marrow Transplantation , Bone Marrow , Acute Disease , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Graft vs Host Disease/etiology , Retrospective Studies , Transplantation Conditioning
11.
Blood ; 135(2): 97-107, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31738834

ABSTRACT

Clinical- and biomarker-based tools may identify a lower-risk acute graft-versus-host disease (GVHD) population amenable to novel, reduced-intensity treatments. Previous data suggest sirolimus may rival standard of care prednisone. We conducted a National Heart, Lung, and Blood Institute/National Cancer Institute-funded Blood and Marrow Transplant Clinical Trials Network multicenter, open-label, randomized phase 2 trial to estimate the difference in day 28 complete response (CR)/partial response (PR) rates for sirolimus vs prednisone as initial treatment of patients with standard risk (SR) acute GVHD as defined by the Minnesota (MN) GVHD Risk Score and Ann Arbor (AA1/2) biomarker status. A total of 127 MN-SR patients were randomized (1:1), and 122 were AA1/2 (sirolimus, n = 58; prednisone, n = 64). Others were AA3 (n = 4), or AA status missing (n = 1). The day 28 CR/PR rates were similar for sirolimus 64.8% (90% confidence interval [CI], 54.1%-75.5%) vs 73% (90% CI, 63.8%-82.2%) for prednisone. The day 28 rate of CR/PR with prednisone ≤0.25 mg/kg/day was significantly higher for sirolimus than prednisone (66.7% vs 31.7%; P < .001). No differences were detected in steroid-refractory acute GVHD, disease-free survival, relapse, nonrelapse mortality, or overall survival. Sirolimus was associated with reduced steroid exposure and hyperglycemia, reduced grade 2 to 3 infections, improvement in immune suppression discontinuation and patient-reported quality of life, and increased risk for thrombotic microangiopathy. For patients with clinical- and biomarker-based SR acute GVHD, sirolimus demonstrates similar overall initial treatment efficacy as prednisone. In addition, sirolimus therapy spares steroid exposure and allied toxicity, does not compromise long-term survival outcomes, and is associated with improved patient-reported quality of life. This trial was registered at www.clinicaltrials.gov as #NCT02806947.


Subject(s)
Antibiotics, Antineoplastic/therapeutic use , Graft vs Host Disease/drug therapy , Prednisone/therapeutic use , Sirolimus/therapeutic use , Acute Disease , Adolescent , Adult , Aged , Antineoplastic Agents, Hormonal , Bone Marrow Transplantation/adverse effects , Child , Child, Preschool , Female , Follow-Up Studies , Graft vs Host Disease/pathology , Humans , Infant , Male , Middle Aged , Prognosis , Survival Rate , Young Adult
12.
Blood ; 135(23): 2094-2105, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32268350

ABSTRACT

Wiskott-Aldrich syndrome (WAS) is an X-linked disease caused by mutations in the WAS gene, leading to thrombocytopenia, eczema, recurrent infections, autoimmune disease, and malignancy. Hematopoietic cell transplantation (HCT) is the primary curative approach, with the goal of correcting the underlying immunodeficiency and thrombocytopenia. HCT outcomes have improved over time, particularly for patients with HLA-matched sibling and unrelated donors. We report the outcomes of 129 patients with WAS who underwent HCT at 29 Primary Immune Deficiency Treatment Consortium centers from 2005 through 2015. Median age at HCT was 1.2 years. Most patients (65%) received myeloablative busulfan-based conditioning. With a median follow-up of 4.5 years, the 5-year overall survival (OS) was 91%. Superior 5-year OS was observed in patients <5 vs ≥5 years of age at the time of HCT (94% vs 66%; overall P = .0008). OS was excellent regardless of donor type, even in cord blood recipients (90%). Conditioning intensity did not affect OS, but was associated with donor T-cell and myeloid engraftment after HCT. Specifically, patients who received fludarabine/melphalan-based reduced-intensity regimens were more likely to have donor myeloid chimerism <50% early after HCT. In addition, higher platelet counts were observed among recipients who achieved full (>95%) vs low-level (5%-49%) donor myeloid engraftment. In summary, HCT outcomes for WAS have improved since 2005, compared with prior reports. HCT at a younger age continues to be associated with superior outcomes supporting the recommendation for early HCT. High-level donor myeloid engraftment is important for platelet reconstitution after either myeloablative or busulfan-containing reduced intensity conditioning. (This trial was registered at www.clinicaltrials.gov as #NCT02064933.).


Subject(s)
Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/mortality , T-Lymphocytes/immunology , Wiskott-Aldrich Syndrome Protein/genetics , Wiskott-Aldrich Syndrome/therapy , Child, Preschool , Humans , Infant , Male , Mutation , Myeloablative Agonists/therapeutic use , Prognosis , Retrospective Studies , Survival Rate , Transplantation Conditioning , Unrelated Donors/statistics & numerical data , Wiskott-Aldrich Syndrome/genetics , Wiskott-Aldrich Syndrome/pathology
13.
Stat Med ; 40(5): 1121-1132, 2021 02 28.
Article in English | MEDLINE | ID: mdl-33210321

ABSTRACT

To ensure that a study can properly address its research aims, the sample size and power must be determined appropriately. Covariate adjustment via regression modeling permits more precise estimation of the effect of a primary variable of interest at the expense of increased complexity in sample size/power calculation. The presence of correlation between the main variable and other covariates, commonly seen in observational studies and non-randomized clinical trials, further complicates this process. Though sample size and power specification methods have been obtained to accommodate specific covariate distributions and models, most existing approaches rely on either simple approximations lacking theoretical support or complex procedures that are difficult to apply at the design stage. The current literature lacks a general, coherent theory applicable to a broader class of regression models and covariate distributions. We introduce succinct formulas for sample size and power determination with the generalized linear, Cox, and Fine-Gray models that account for correlation between a main effect and other covariates. Extensive simulations demonstrate that this method produces studies that are appropriately sized to meet their type I error rate and power specifications, particularly offering accurate sample size/power estimation in the presence of correlated covariates.


Subject(s)
Research Design , Linear Models , Sample Size
14.
Biol Blood Marrow Transplant ; 26(4): 745-757, 2020 04.
Article in English | MEDLINE | ID: mdl-31756539

ABSTRACT

Umbilical cord blood (UCB) transplantation (UCBT) is a curative procedure for patients with hematologic malignancies and genetic disorders and expands access to transplantation for non-Caucasian patients unable to find a fully matched unrelated donor. In 2011, the US Food and Drug Administration required that unrelated UCBT be performed using either licensed UCB or unlicensed UCB under the Investigational New Drug (IND) program. The National Marrow Donor Program manages an IND under which 2456 patients (1499 adults and 957 children, 564 with malignant diseases and 393 with nonmalignant diseases) underwent single or double UCBT between October 2011 and December 2016. The median patient age was 31 years (range, <1 to 81 years), and 50% of children and 36% of adults were non-Caucasian. The median time to neutrophil engraftment (ie, absolute neutrophil count ≥500/mm3) was 22 days for adults, 20 days for pediatric patients with malignant diseases, and 19 days for pediatric patients with nonmalignant diseases, with corresponding rates of engraftment at 42 days of 89%, 88%, and 90%. In these 3 groups of patients, the incidence of acute graft-versus-host disease (GVHD) grade II-IV was 35%, 32%, and 24%; the incidence of chronic GVHD was 24%, 26%, and 24%; and 1-year overall survival (OS) was 57%, 71%, and 79%, respectively. In multivariate analysis, younger age, lower Hematopoietic Cell Transplantation-Specific Comorbidity Index, early-stage chemotherapy-sensitive disease, and higher performance score were predictive of improved OS for adults. In a subset analysis of children with malignancies undergoing single UCBT, the use of either licensed UCB (n = 48) or unlicensed UCB (n = 382) was associated with similar engraftment and survival. The use of unlicensed UCB units is safe and effective and provides an important graft source for a diverse population.


Subject(s)
Cord Blood Stem Cell Transplantation , Graft vs Host Disease , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Fetal Blood , Hematologic Neoplasms/therapy , Humans , Infant , Middle Aged , Young Adult
15.
Biol Blood Marrow Transplant ; 26(2): 333-342, 2020 02.
Article in English | MEDLINE | ID: mdl-31563573

ABSTRACT

Critically ill pediatric allogeneic hematopoietic cell transplant (HCT) patients may benefit from early and aggressive interventions aimed at reversing the progression of multiorgan dysfunction. Therefore, we evaluated 25 early risk factors for pediatric intensive care unit (PICU) mortality to improve mortality prognostication. We merged the Virtual Pediatric Systems and Center for International Blood and Marrow Transplant Research databases and analyzed 936 critically ill patients ≤21 years of age who had undergone allogeneic HCT and subsequently required PICU admission between January 1, 2009, and December 31, 2014. Of 1532 PICU admissions, the overall PICU mortality rate was 17.4% (95% confidence interval [CI], 15.6% to 19.4%) but was significantly higher for patients requiring mechanical ventilation (44.0%), renal replacement therapy (56.1%), or extracorporeal life support (77.8%). Mortality estimates increased significantly the longer that patients remained in the PICU. Of 25 HCT- and PICU-specific characteristics available at or near the time of PICU admission, moderate/severe pre-HCT renal injury, pre-HCT recipient cytomegalovirus seropositivity, <100-day interval between HCT and PICU admission, HCT for underlying acute myeloid leukemia, and greater admission organ dysfunction as approximated by the Pediatric Risk of Mortality 3 score were each independently associated with PICU mortality. A multivariable model using these components identified that patients in the top quartile of risk had 3 times greater mortality than other patients (35.1% versus 11.5%, P < .001, classification accuracy 75.2%; 95% CI, 73.0% to 77.4%). These data improve our working knowledge of the factors influencing the progression of critical illness in pediatric allogeneic HCT patients. Future investigation aimed at mitigating the effect of these risk factors is warranted.


Subject(s)
Critical Illness , Hematopoietic Stem Cell Transplantation , Child , Humans , Infant , Intensive Care Units, Pediatric , Registries , Retrospective Studies , Risk Factors
16.
Biol Blood Marrow Transplant ; 26(6): 1210-1217, 2020 06.
Article in English | MEDLINE | ID: mdl-32088366

ABSTRACT

Peripheral blood stem cells (PBSCs) have been increasingly used for allogeneic hematopoietic cell transplantation instead of bone marrow stem cells. Current National Marrow Donor Program policy recommends 5 days of daily filgrastim, followed by either 1 or 2 days of apheresis for unrelated donors, depending on collection center choice. To date, there are no published studies comparing the differences in donor experience between 1 day and 2 days of apheresis. We examined 22,348 adult unrelated donor collections in 184 centers between 2006 and 2016. Of these 22,348 donors, 20,004 (89.5%) had collection on 1 day, and the other 2344 (9.5%) had collection over 2 days. Information on why donors underwent apheresis in 1 day or 2 days was not available. Donors who underwent apheresis in 1 day were more likely to be male (67% versus 46%; P < .001), younger (age <30 years, 48% versus 36%; P < .001), and have a higher body weight (83.0 kg versus 75.9 kg; P< .001) and body mass index (BMI; >30, 30% versus 22%; P < .001). Successful collection of the requested CD34+ cell count was achieved on the first day in 82% of 1-day collections and in 16% of 2-day collections. Despite not administering filgrastim the evening after the first day of collection in patients who underwent 2 days of apheresis, the median concentration of CD34+ cells/L in the product was higher on the second day of apheresis compared with the first day (23.8 × 106 CD34+/L on day 1 versus 28.7 × 106 CD34+/L on day 2; P< .001). Donors who underwent collection in 1 day were less likely to experience citrate toxicity (36% versus 52%; P< .001), hospitalization (1% versus 6%; P< .001), and other side effects related to apheresis (Modified Toxicity Criteria incidence: 20% versus 26%; P < .001). Female sex, older age, collection via central lines, and higher BMI were factors associated with greater likelihood for the development of toxicity, whereas less toxicity was noted in those with higher CD34+ counts and more blood processed on the first day of collection. We conclude that although unrelated donors can be successfully collected in 1 day or 2 days, 1-day apheresis procedures were associated with less overall toxicity, and thus we recommend single-day collections, especially if the requested number of cells have been collected in 1 day.


Subject(s)
Peripheral Blood Stem Cells , Unrelated Donors , Adult , Aged , Antigens, CD34 , Blood Donors , Female , Granulocyte Colony-Stimulating Factor , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cells , Humans , Male
18.
Blood ; 131(26): 2967-2977, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29728406

ABSTRACT

Allogeneic hematopoietic stem cell transplant (HSCT) typically results in donor T-cell engraftment and function in patients with severe combined immunodeficiency (SCID), but humoral immunity, particularly when using donors other than matched siblings, is variable. B-cell function after HSCT for SCID depends on the genetic cause, the use of pre-HSCT conditioning, and whether donor B-cell chimerism is achieved. Patients with defects in IL2RG or JAK3 undergoing HSCT without conditioning often have poor B-cell function post-HSCT, perhaps as a result of impairment of IL-21 signaling in host-derived B cells. To investigate the effect of pre-HSCT conditioning on B-cell function, and the relationship of in vitro B-cell function to clinical humoral immune status, we analyzed 48 patients with IL2RG/JAK3 SCID who were older than 2 years after HSCT with donors other than matched siblings. T follicular helper cells (TFH) developed in these patients with kinetics similar to healthy young children; thus, poor B-cell function could not be attributed to a failure of TFH development. In vitro differentiation of B cells into plasmablasts and immunoglobulin secretion in response to IL-21 strongly correlated with the use of conditioning, donor B-cell engraftment, freedom from immunoglobulin replacement, and response to tetanus vaccine. Patients receiving immunoglobulin replacement who had normal serum immunoglobulin M showed poor response to IL-21 in vitro, similar to those with low serum IgM. In vitro response of B cells to IL-21 may predict clinically relevant humoral immune function in patients with IL2RG/JAK3 SCID after HSCT.


Subject(s)
B-Lymphocytes/immunology , Hematopoietic Stem Cell Transplantation/methods , Interleukin Receptor Common gamma Subunit/immunology , Interleukins/immunology , Janus Kinase 3/immunology , Severe Combined Immunodeficiency/therapy , Transplantation Conditioning/methods , Adolescent , B-Lymphocytes/cytology , Cell Differentiation , Child , Child, Preschool , Female , Humans , Immunity, Humoral , Interleukin Receptor Common gamma Subunit/genetics , Janus Kinase 3/genetics , Lymphocyte Activation , Male , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology , T-Lymphocytes/immunology , Transplantation, Homologous , Young Adult
19.
Blood ; 132(17): 1737-1749, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30154114

ABSTRACT

The Primary Immune Deficiency Treatment Consortium (PIDTC) performed a retrospective analysis of 662 patients with severe combined immunodeficiency (SCID) who received a hematopoietic cell transplantation (HCT) as first-line treatment between 1982 and 2012 in 33 North American institutions. Overall survival was higher after HCT from matched-sibling donors (MSDs). Among recipients of non-MSD HCT, multivariate analysis showed that the SCID genotype strongly influenced survival and immune reconstitution. Overall survival was similar for patients with RAG, IL2RG, or JAK3 defects and was significantly better compared with patients with ADA or DCLRE1C mutations. Patients with RAG or DCLRE1C mutations had poorer immune reconstitution than other genotypes. Although survival did not correlate with the type of conditioning regimen, recipients of reduced-intensity or myeloablative conditioning had a lower incidence of treatment failure and better T- and B-cell reconstitution, but a higher risk for graft-versus-host disease, compared with those receiving no conditioning or immunosuppression only. Infection-free status and younger age at HCT were associated with improved survival. Typical SCID, leaky SCID, and Omenn syndrome had similar outcomes. Landmark analysis identified CD4+ and CD4+CD45RA+ cell counts at 6 and 12 months post-HCT as biomarkers predictive of overall survival and long-term T-cell reconstitution. Our data emphasize the need for patient-tailored treatment strategies depending upon the underlying SCID genotype. The prognostic significance of CD4+ cell counts as early as 6 months after HCT emphasizes the importance of close follow-up of immune reconstitution to identify patients who may need additional intervention to prevent poor long-term outcome.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Hematopoietic Stem Cell Transplantation , Immune Reconstitution/immunology , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/mortality , Severe Combined Immunodeficiency/therapy , Genotype , Humans , Lymphocyte Count , Retrospective Studies
20.
Lifetime Data Anal ; 26(3): 603-623, 2020 07.
Article in English | MEDLINE | ID: mdl-31729633

ABSTRACT

Medical research frequently involves comparing an event time of interest between treatment groups. Rather than comparing the entire survival or cumulative incidence curves, it is sometimes preferable to evaluate these probabilities at a fixed point in time. Performing a covariate adjusted analysis can improve efficiency, even in randomized clinical trials, but no currently available group sequential test for fixed point analysis provides this adjustment. This paper introduces covariate adjusted group sequential pointwise comparisons of survival and cumulative incidence probabilities. Their test statistics have an asymptotic distribution with independent increments, permitting use of common stopping boundary specification methods. These tests are demonstrated through a redesign of BMT CTN 0402, a clinical trial that evaluated a prophylactic treatment for adverse outcomes following blood and marrow transplantation. A simulation study demonstrates that these tests maintain the type I error rate and power at nominal levels under a variety of settings involving influential covariates.


Subject(s)
Bias , Regression Analysis , Survival Analysis , Treatment Outcome , Clinical Trials as Topic , Computer Simulation , Humans , Incidence , Time
SELECTION OF CITATIONS
SEARCH DETAIL