Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Hum Mol Genet ; 31(8): 1308-1324, 2022 04 22.
Article in English | MEDLINE | ID: mdl-34740256

ABSTRACT

Epidermolysis bullosa simplex (EBS) with cardiomyopathy (EBS-KLHL24) is an EBS subtype caused by dominantly inherited, gain-of-function mutations in the gene encoding for the ubiquitin-ligase KLHL24, which addresses specific proteins to proteasomal degradation. EBS-KLHL24 patients are born with extensive denuded skin areas and skin fragility. Whilst skin fragility rapidly ameliorates, atrophy and scarring develop over time, accompanied by life-threatening cardiomyopathy. To date, pathogenetic mechanisms underlying such a unique disease phenotype are not fully characterized. The basal keratin 14 (K14) has been indicated as a KLHL24 substrate in keratinocytes. However, EBS-KLHL24 pathobiology cannot be determined by the mutation-enhanced disruption of K14 alone, as K14 is similarly expressed in foetal and postnatal epidermis and its protein levels are preserved both in vivo and in vitro disease models. In this study, we focused on foetal keratins as additional KLHL24 substrates. We showed that K7, K8, K17 and K18 protein levels are markedly reduced via proteasome degradation in normal foetal keratinocytes transduced with the mutant KLHL24 protein (ΔN28-KLHL24) as compared to control cells expressing the wild-type form. In addition, heat stress led to keratin network defects and decreased resilience in ΔN28-KLHL24 cells. The KLHL24-mediated degradation of foetal keratins could contribute to congenital skin defects in EBS-KLHL24. Furthermore, we observed that primary keratinocytes from EBS-KLHL24 patients undergo accelerated clonal conversion with reduced colony forming efficiency (CFE) and early replicative senescence. Finally, our findings pointed out a reduced CFE in ΔN28-KLHL24-transduced foetal keratinocytes as compared to controls, suggesting that mutant KLHL24 contributes to patients' keratinocyte clonogenicity impairment.


Subject(s)
Cardiomyopathies , Epidermolysis Bullosa Simplex , Repressor Proteins/genetics , Skin Abnormalities , Cardiomyopathies/pathology , Epidermolysis Bullosa Simplex/genetics , Epidermolysis Bullosa Simplex/metabolism , Epidermolysis Bullosa Simplex/pathology , Female , Humans , Keratinocytes/metabolism , Keratins/metabolism , Mutation , Pregnancy , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Skin Abnormalities/pathology
2.
Int J Mol Sci ; 20(22)2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31739489

ABSTRACT

Epidermolysis bullosa (EB) is a heterogeneous group of inherited skin disorders determined by mutations in genes encoding for structural components of the cutaneous basement membrane zone. Disease hallmarks are skin fragility and unremitting blistering. The most disabling EB (sub)types show defective wound healing, fibrosis and inflammation at lesional skin. These features expose patients to serious disease complications, including the development of cutaneous squamous cell carcinomas (SCCs). Almost all subjects affected with the severe recessive dystrophic EB (RDEB) subtype suffer from early and extremely aggressive SCCs (RDEB-SCC), which represent the first cause of death in these patients. The genetic determinants of RDEB-SCC do not exhaustively explain its unique behavior as compared to low-risk, ultraviolet-induced SCCs in the general population. On the other hand, a growing body of evidence points to the key role of tumor microenvironment in initiation, progression and spreading of RDEB-SCC, as well as of other, less-investigated, EB-related SCCs (EB-SCCs). Here, we discuss the recent advances in understanding the complex series of molecular events (i.e., fibrotic, inflammatory, and immune processes) contributing to SCC development in EB patients, cross-compare tumor features in the different EB subtypes and report the most promising therapeutic approaches to counteract or delay EB-SCCs.


Subject(s)
Carcinoma, Squamous Cell/etiology , Disease Susceptibility , Epidermolysis Bullosa/complications , Animals , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/therapy , Disease Management , Epidermolysis Bullosa/genetics , Epidermolysis Bullosa/metabolism , Humans , Population Surveillance , Signal Transduction , Tumor Microenvironment , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL