Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(24): 13659-13669, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32482872

ABSTRACT

T cell maturation and activation depend upon T cell receptor (TCR) interactions with a wide variety of antigenic peptides displayed in a given major histocompatibility complex (MHC) context. Complementarity-determining region 3 (CDR3) is the most variable part of the TCRα and -ß chains, which govern interactions with peptide-MHC complexes. However, it remains unclear how the CDR3 landscape is shaped by individual MHC context during thymic selection of naïve T cells. We established two mouse strains carrying distinct allelic variants of H2-A and analyzed thymic and peripheral production and TCR repertoires of naïve conventional CD4+ T (Tconv) and naïve regulatory CD4+ T (Treg) cells. Compared with tuberculosis-resistant C57BL/6 (H2-Ab) mice, the tuberculosis-susceptible H2-Aj mice had fewer CD4+ T cells of both subsets in the thymus. In the periphery, this deficiency was only apparent for Tconv and was compensated for by peripheral reconstitution for Treg We show that H2-Aj favors selection of a narrower and more convergent repertoire with more hydrophobic and strongly interacting amino acid residues in the middle of CDR3α and CDR3ß, suggesting more stringent selection against a narrower peptide-MHC-II context. H2-Aj and H2-Ab mice have prominent reciprocal differences in CDR3α and CDR3ß features, probably reflecting distinct modes of TCR fitting to MHC-II variants. These data reveal the mechanics and extent of how MHC-II shapes the naïve CD4+ T cell CDR3 landscape, which essentially defines adaptive response to infections and self-antigens.


Subject(s)
Complementarity Determining Regions/immunology , Histocompatibility Antigens Class II/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Regulatory/immunology , Tuberculosis/genetics , Alleles , Animals , CD4-Positive T-Lymphocytes/immunology , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Histocompatibility Antigens Class II/genetics , Humans , Mice , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , Spleen/immunology , T-Lymphocytes, Regulatory/chemistry , Tuberculosis/immunology
2.
PLoS One ; 8(8): e72773, 2013.
Article in English | MEDLINE | ID: mdl-23977351

ABSTRACT

The balance between activation and inhibition of local immune responses in affected tissues during prolonged chronic infections is important for host protection. There is ample evidence that regulatory, tolerogenic dendritic cells (DC) are developed and present in tissues and inhibit overwhelming inflammatory reactions. Also, it was firmly established that stromal microenvironment of many organs is able to induce development of immature regulatory DC (DCreg), an essential element of a general immune regulatory network. However, direct experimental data demonstrating inhibition of immune responses by stroma-instructed immature DCreg in infectious models are scarce, and virtually nothing is known about functioning of this axis of immunity during tuberculosis (TB) infection. In this study, we demonstrate that lung stromal cells are capable of supporting the development in culture of immature CD11b(+)CD11c(low)CD103(-) DCreg from lineage-negative (lin(-)) bone marrow precursors. DCreg developed on lung stroma isolated from mice of genetically TB-hyper-susceptible I/St and relatively resistant B6 inbred strains inhibited proliferative response of mycobacteria-specific CD4(+) T-cell lines a dose-dependent manner. Importantly, the inhibitory activity of B6 DCreg was substantially higher than that of I/St Dcreg. Moreover, when the donors of stromal cells were chronically infected with virulent mycobacteria, the capacity to instruct inhibitory DCreg was retained in B6, but further diminished in I/St stromal cells. DCreg-provided suppression was mediated by a few soluble mediators, including PGE2, NO and IL-10. The content of CD4(+)Foxp3(+) Treg cells in the mediastinal, lung-draining lymph nodes at the advanced stages of chronic infection did not change in I/St, but increased 2-fold in B6 mice, and lung pathology was much more pronounced in the former mice. Taken together, these data provide genetic evidence that the capacity to maintain populations of regulatory cells during M. tuberculosis infection is a part of the host protective strategy.


Subject(s)
Dendritic Cells/immunology , Genetic Predisposition to Disease , Lung/pathology , Mycobacterium tuberculosis/physiology , Tuberculosis/immunology , Tuberculosis/microbiology , Aerosols , Animals , Antigens, Bacterial/immunology , Cell Adhesion , Coculture Techniques , Lymph Nodes/immunology , Lymph Nodes/pathology , Lymphocyte Count , Mice, Inbred C57BL , Phenotype , Solubility , Stromal Cells/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/microbiology , Tuberculosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL