Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Thorac Oncol ; 16(8): 1349-1358, 2021 08.
Article in English | MEDLINE | ID: mdl-33975004

ABSTRACT

INTRODUCTION: Programmed cell death protein-1 (PD-1) and programmed death-ligand 1 (PD-L1) blockade is currently widely used in the treatment of metastatic NSCLC. Despite available biomarker stratification, clinical responses vary. Thus, the search for novel biomarkers with improved response prediction is ongoing. Previously, using mass cytometry or cytometry by time-of-flight (CyTOF), our group demonstrated that CD39+CD8+ immune cells represent tumor antigen-specific, cytotoxic T cells in treatment-naive NSCLC. We hypothesized that accurate quantitation of this T cell subset would predict immunotherapy outcome. METHODS: To translate this to a clinical setting, the present study compared CyTOF data with a range of clinically relevant methods, including conventional immunohistochemistry (IHC), multiplex IHC or immunofluorescence (mIHC), and gene expression assay by NanoString. RESULTS: Quantification using mIHC but not conventional IHC or NanoString correlated with the CyTOF results. The specificity and sensitivity of mIHC were then evaluated in a separate retrospective NSCLC cohort. CD39+CD8+ T cell proportion, as determined by mIHC, successfully stratified responders and nonresponders to PD-1 or PD-L1 inhibitors (objective response rate of 63.6%, compared with 0% for the negative group). This predictive capability was independent from other confounding factors, such as total CD8+ T cell proportion, CD39+ lymphocyte proportion, PD-L1 positivity, EGFR mutation status, and other clinicopathologic parameters. CONCLUSIONS: Our results suggest that the mIHC platform is a clinically relevant method to evaluate CD39+CD8+ T cell proportion and that this marker can serve as a potential biomarker that predicts response to PD-1 or PD-L1 blockade in patients with NSCLC. Further validation in additional NSCLC cohorts is warranted.


Subject(s)
B7-H1 Antigen , Lung Neoplasms , Apoptosis Regulatory Proteins , Biomarkers, Tumor/genetics , CD8-Positive T-Lymphocytes , Humans , Lung Neoplasms/drug therapy , Programmed Cell Death 1 Receptor , Retrospective Studies
2.
J Clin Invest ; 130(11): 5833-5846, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33016928

ABSTRACT

Angiosarcomas are rare, clinically aggressive tumors with limited treatment options and a dismal prognosis. We analyzed angiosarcomas from 68 patients, integrating information from multiomic sequencing, NanoString immuno-oncology profiling, and multiplex immunohistochemistry and immunofluorescence for tumor-infiltrating immune cells. Through whole-genome sequencing (n = 18), 50% of the cutaneous head and neck angiosarcomas exhibited higher tumor mutation burden (TMB) and UV mutational signatures; others were mutationally quiet and non-UV driven. NanoString profiling revealed 3 distinct patient clusters represented by lack (clusters 1 and 2) or enrichment (cluster 3) of immune-related signaling and immune cells. Neutrophils (CD15+), macrophages (CD68+), cytotoxic T cells (CD8+), Tregs (FOXP3+), and PD-L1+ cells were enriched in cluster 3 relative to clusters 2 and 1. Likewise, tumor inflammation signature (TIS) scores were highest in cluster 3 (7.54 vs. 6.71 vs. 5.75, respectively; P < 0.0001). Head and neck angiosarcomas were predominant in clusters 1 and 3, providing the rationale for checkpoint immunotherapy, especially in the latter subgroup with both high TMB and TIS scores. Cluster 2 was enriched for secondary angiosarcomas and exhibited higher expression of DNMT1, BRD3/4, MYC, HRAS, and PDGFRB, in keeping with the upregulation of epigenetic and oncogenic signaling pathways amenable to targeted therapies. Molecular and immunological dissection of angiosarcomas may provide insights into opportunities for precision medicine.


Subject(s)
Hemangiosarcoma , Neoplasm Proteins , Cell Line, Tumor , Female , Hemangiosarcoma/classification , Hemangiosarcoma/genetics , Hemangiosarcoma/immunology , Humans , Inflammation/classification , Inflammation/genetics , Inflammation/immunology , Male , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL