Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters

Publication year range
1.
J Neurol Neurosurg Psychiatry ; 95(3): 201-205, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38041684

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) leads to paralysis and death by progressive degeneration of motor neurons. Recently, specific gain-of-function mutations in SPTLC1 were identified in patients with juvenile form of ALS. SPTLC2 encodes the second catalytic subunit of the serine-palmitoyltransferase (SPT) complex. METHODS: We used the GENESIS platform to screen 700 ALS whole-genome and whole-exome data sets for variants in SPTLC2. The de-novo status was confirmed by Sanger sequencing. Sphingolipidomics was performed using liquid chromatography and high-resolution mass spectrometry. RESULTS: Two unrelated patients presented with early-onset progressive proximal and distal muscle weakness, oral fasciculations, and pyramidal signs. Both patients carried the novel de-novo SPTLC2 mutation, c.203T>G, p.Met68Arg. This variant lies within a single short transmembrane domain of SPTLC2, suggesting that the mutation renders the SPT complex irresponsive to regulation through ORMDL3. Confirming this hypothesis, ceramide and complex sphingolipid levels were significantly increased in patient plasma. Accordingly, excessive sphingolipid production was shown in mutant-expressing human embryonic kindney (HEK) cells. CONCLUSIONS: Specific gain-of-function mutations in both core subunits affect the homoeostatic control of SPT. SPTLC2 represents a new Mendelian ALS gene, highlighting a key role of dysregulated sphingolipid synthesis in the pathogenesis of juvenile ALS. Given the direct interaction of SPTLC1 and SPTLC2, this knowledge might open new therapeutic avenues for motor neuron diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Serine C-Palmitoyltransferase , Humans , Amyotrophic Lateral Sclerosis/genetics , Ceramides , Gain of Function Mutation , Mutation/genetics , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/chemistry , Sphingolipids
2.
J Neurol Neurosurg Psychiatry ; 95(2): 103-113, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38041679

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the upper and lower motor neurons with varying ages of onset, progression and pathomechanisms. Monogenic childhood-onset ALS, although rare, forms an important subgroup of ALS. We recently reported specific SPTLC1 variants resulting in sphingolipid overproduction as a cause for juvenile ALS. Here, we report six patients from six independent families with a recurrent, de novo, heterozygous variant in SPTLC2 c.778G>A [p.Glu260Lys] manifesting with juvenile ALS. METHODS: Clinical examination of the patients along with ancillary and genetic testing, followed by biochemical investigation of patients' blood and fibroblasts, was performed. RESULTS: All patients presented with early-childhood-onset progressive weakness, with signs and symptoms of upper and lower motor neuron degeneration in multiple myotomes, without sensory neuropathy. These findings were supported on ancillary testing including nerve conduction studies and electromyography, muscle biopsies and muscle ultrasound studies. Biochemical investigations in plasma and fibroblasts showed elevated levels of ceramides and unrestrained de novo sphingolipid synthesis. Our studies indicate that SPTLC2 variant [c.778G>A, p.Glu260Lys] acts distinctly from hereditary sensory and autonomic neuropathy (HSAN)-causing SPTLC2 variants by causing excess canonical sphingolipid biosynthesis, similar to the recently reported SPTLC1 ALS associated pathogenic variants. Our studies also indicate that serine supplementation, which is a therapeutic in SPTLC1 and SPTCL2-associated HSAN, is expected to exacerbate the excess sphingolipid synthesis in serine palmitoyltransferase (SPT)-associated ALS. CONCLUSIONS: SPTLC2 is the second SPT-associated gene that underlies monogenic, juvenile ALS and further establishes alterations of sphingolipid metabolism in motor neuron disease pathogenesis. Our findings also have important therapeutic implications: serine supplementation must be avoided in SPT-associated ALS, as it is expected to drive pathogenesis further.


Subject(s)
Amyotrophic Lateral Sclerosis , Hereditary Sensory and Autonomic Neuropathies , Neurodegenerative Diseases , Child , Humans , Amyotrophic Lateral Sclerosis/genetics , Sphingolipids , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Hereditary Sensory and Autonomic Neuropathies/genetics , Serine
3.
Proc Natl Acad Sci U S A ; 117(27): 15591-15598, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32576697

ABSTRACT

Sphingolipids (SLs) are chemically diverse lipids that have important structural and signaling functions within mammalian cells. SLs are commonly defined by the presence of a long-chain base (LCB) that is normally formed by the conjugation of l-serine and palmitoyl-CoA. This pyridoxal 5-phosphate (PLP)-dependent reaction is mediated by the enzyme serine-palmitoyltransferase (SPT). However, SPT can also metabolize other acyl-CoAs, in the range of C14 to C18, forming a variety of LCBs that differ by structure and function. Mammalian SPT consists of three core subunits: SPTLC1, SPTLC2, and SPTLC3. Whereas SPTLC1 and SPTLC2 are ubiquitously expressed, SPTLC3 expression is restricted to certain tissues only. The influence of the individual subunits on enzyme activity is not clear. Using cell models deficient in SPTLC1, SPTLC2, and SPTLC3, we investigated the role of each subunit on enzyme activity and the LCB product spectrum. We showed that SPTLC1 is essential for activity, whereas SPTLC2 and SPTLC3 are partly redundant but differ in their enzymatic properties. SPTLC1 in combination with SPTLC2 specifically formed C18, C19, and C20 LCBs while the combination of SPTLC1 and SPTLC3 yielded a broader product spectrum. We identified anteiso-branched-C18 SO (meC18SO) as the primary product of the SPTLC3 reaction. The meC18SO was synthesized from anteiso-methyl-palmitate, in turn synthesized from a precursor metabolite generated in the isoleucine catabolic pathway. The meC18SO is metabolized to ceramides and complex SLs and is a constituent of human low- and high-density lipoproteins.


Subject(s)
Serine C-Palmitoyltransferase/metabolism , Sphingolipids/metabolism , Sphingosine/metabolism , Animals , Cell Line , Gene Knockout Techniques , Humans , Mice , Serine C-Palmitoyltransferase/genetics , Substrate Specificity
4.
J Anat ; 241(5): 1169-1185, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34875719

ABSTRACT

Animal models of neurodegenerative diseases such as inherited peripheral neuropathies sometimes accurately recreate the pathophysiology of the human disease, and sometimes accurately recreate the genetic perturbations found in patients. Ideally, models achieve both, but this is not always possible; nonetheless, such models are informative. Here we describe two animal models of inherited peripheral neuropathy: mice with a mutation in tyrosyl tRNA-synthetase, YarsE196K , modeling dominant intermediate Charcot-Marie-Tooth disease type C (diCMTC), and mice with a mutation in serine palmitoyltransferase long chain 1, Sptlc1C133W , modeling hereditary sensory and autonomic neuropathy type 1 (HSAN1). YarsE196K mice develop disease-relevant phenotypes including reduced motor performance and reduced nerve conduction velocities by 4 months of age. Peripheral motor axons are reduced in size, but there is no reduction in axon number and plasma neurofilament light chain levels are not increased. Unlike the dominant human mutations, the YarsE196K mice only show these phenotypes as homozygotes, or as compound heterozygotes with a null allele, and no phenotype is observed in E196K or null heterozygotes. The Sptlc1C133W mice carry a knockin allele and show the anticipated increase in 1-deoxysphingolipids in circulation and in a variety of tissues. They also have mild behavioral defects consistent with HSAN1, but do not show neurophysiological defects or axon loss in peripheral nerves or in the epidermis of the hind paw or tail. Thus, despite the biochemical phenotype, the Sptlc1C133W mice do not show a strong neuropathy phenotype. Surprisingly, these mice were lethal as homozygotes, but the heterozygous genotype studied corresponds to the dominant genetics seen in humans. Thus, YarsE196K homozygous mice have a relevant phenotype, but imprecisely reproduce the human genetics, whereas the Sptlc1C133W mice precisely reproduce the human genetics, but do not recreate the disease phenotype. Despite these shortcomings, both models are informative and will be useful for future research.


Subject(s)
Charcot-Marie-Tooth Disease , Hereditary Sensory and Autonomic Neuropathies , Animals , Charcot-Marie-Tooth Disease/genetics , Disease Models, Animal , Hereditary Sensory and Autonomic Neuropathies/genetics , Humans , Ligases/genetics , Mice , Mutation , Peripheral Nervous System Diseases , RNA, Transfer , Serine C-Palmitoyltransferase/genetics
5.
Adv Exp Med Biol ; 1372: 47-56, 2022.
Article in English | MEDLINE | ID: mdl-35503173

ABSTRACT

Sphingolipids (SL) are a class of chemically diverse lipids that have important structural and physiological functions in eukaryotic cells. SL entail a long chain base (LCB) as the common structural element, which is typically formed by the condensation of L-serine and long chain acyl-CoA. This condensation is the first and the rate-limiting step in the de novo SL synthesis and catalyzed by the enzyme serine palmitoyltransferase (SPT). Although palmitoyl-CoA is the preferred substrate, SPT can also metabolize other acyl-CoAs, thereby forming a variety of LCBs, which differ in structures and functions. The mammalian SPT enzyme is composed of three core subunits: SPTLC1, SPTLC2, and SPTLC3. Whereas SPTLC1 and SPTLC2 are ubiquitously expressed, SPTLC3 expression is restricted to a few specific tissues. The SPTLC1 subunit is essential and can associate with either SPTLC2 or SPTLC3 to form an active enzyme. Depending on the stoichiometry of the SPTLC2 and SPTLC3 subunits, the spectrum of SPT products varies. While SPTLC1 and SPTLC2 primarily form C18 and C20 LCBs, the combination of SPTLC1 and SPTLC3 produces a broader spectrum of LCBs. Genetic and population based studies have shown that SPTLC3 expression and function are associated with an altered plasma SL profile and an increased risk for cardio-metabolic diseases. Animal and in vitro studies showed that SPTLC3 might be involved in hepatic and cardiac pathology and could be a therapeutic target for these conditions.Here we present an overview of the current data on the role of SPTLC3 in normal and pathological conditions.


Subject(s)
Metabolic Diseases , Serine C-Palmitoyltransferase , Animals , Coenzyme A , Humans , Mammals/metabolism , Metabolic Diseases/genetics , Serine , Serine C-Palmitoyltransferase/chemistry , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Sphingolipids/metabolism
6.
J Lipid Res ; 62: 100122, 2021.
Article in English | MEDLINE | ID: mdl-34563520

ABSTRACT

Hereditary sensory neuropathy type 1 (HSAN1) is a rare axonopathy, characterized by a progressive loss of sensation (pain, temperature, and vibration), neuropathic pain, and wound healing defects. HSAN1 is caused by several missense mutations in the serine palmitoyltransferase long-chain base subunit 1 and serine palmitoyltransferase long-chain base subunit 2 of the enzyme serine palmitoyltransferase-the key enzyme for the synthesis of sphingolipids. The mutations change the substrate specificity of serine palmitoyltransferase, which then forms an atypical class of 1-deoxy-sphinglipids (1-deoxySLs). Similarly, patients with type 2 diabetes mellitus also present with elevated 1-deoxySLs and a comparable clinical phenotype. The effect of 1-deoxySLs on neuronal cells was investigated in detail, but their impact on other cell types remains elusive. Here, we investigated the consequences of externally added 1-deoxySLs on the migration of fibroblasts in a scratch assay as a simplified cellular wound-healing model. We showed that 1-deoxy-sphinganine (1-deoxySA) inhibits the migration of NIH-3T3 fibroblasts in a dose- and time-dependent manner. This was not seen for a non-native, L-threo stereoisomer. Supplemented 1-deoxySA was metabolized to 1-deoxy-(dihydro)ceramide and downstream to 1-deoxy-sphingosine. Inhibiting downstream metabolism by blocking N-acylation rescued the migration phenotype. In contrast, adding 1-deoxy-sphingosine had a lesser effect on cell migration but caused the massive formation of intracellular vacuoles. Further experiments showed that the effect on cell migration was primarily mediated by 1-deoxy-dihydroceramides rather than by the free base or 1-deoxyceramides. Based on these findings, we suggest that limiting the N-acylation of 1-deoxySA could be a therapeutic approach to improve cell migration and wound healing in patients with HSAN1 and type 2 diabetes mellitus.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Fibroblasts/drug effects , Hereditary Sensory and Autonomic Neuropathies/metabolism , Sphingolipids/pharmacology , Animals , Cell Movement/drug effects , Cells, Cultured , Fibroblasts/metabolism , Mice , NIH 3T3 Cells
7.
J Biol Chem ; 295(7): 1889-1897, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31862735

ABSTRACT

Sphingolipids (SLs) are structurally diverse lipids that are defined by the presence of a long-chain base (LCB) backbone. Typically, LCBs contain a single Δ4E double bond (DB) (mostly d18:1), whereas the dienic LCB sphingadienine (d18:2) contains a second DB at the Δ14Z position. The enzyme introducing the Δ14Z DB is unknown. We analyzed the LCB plasma profile in a gender-, age-, and BMI-matched subgroup of the CoLaus cohort (n = 658). Sphingadienine levels showed a significant association with gender, being on average ∼30% higher in females. A genome-wide association study (GWAS) revealed variants in the fatty acid desaturase 3 (FADS3) gene to be significantly associated with the plasma d18:2/d18:1 ratio (p = -log 7.9). Metabolic labeling assays, FADS3 overexpression and knockdown approaches, and plasma LCB profiling in FADS3-deficient mice confirmed that FADS3 is a bona fide LCB desaturase and required for the introduction of the Δ14Z double bond. Moreover, we showed that FADS3 is required for the conversion of the atypical cytotoxic 1-deoxysphinganine (1-deoxySA, m18:0) to 1-deoxysphingosine (1-deoxySO, m18:1). HEK293 cells overexpressing FADS3 were more resistant to m18:0 toxicity than WT cells. In summary, using a combination of metabolic profiling and GWAS, we identified FADS3 to be essential for forming Δ14Z DB containing LCBs, such as d18:2 and m18:1. Our results unravel FADS3 as a Δ14Z LCB desaturase, thereby disclosing the last missing enzyme of the SL de novo synthesis pathway.


Subject(s)
Fatty Acid Desaturases/genetics , Genome-Wide Association Study , Sphingolipids/genetics , Animals , Fatty Acid Desaturases/blood , HEK293 Cells , Humans , Lipids/genetics , Mice , Sphingolipids/blood , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Spine/metabolism
8.
Liver Int ; 40(4): 844-859, 2020 04.
Article in English | MEDLINE | ID: mdl-31883408

ABSTRACT

BACKGROUND & AIMS: Patients with non-alcoholic fatty liver disease (NAFLD) exhibit higher levels of plasma 1-deoxysphingolipids than healthy individuals. The aim of this study was to investigate the role of farnesoid X receptor (FXR) in 1-deoxysphingolipid de novo synthesis and degradation. METHODS: Mice were fed with a high-fat diet (HFD) to induce obesity and NAFLD, and then treated with the FXR ligand obeticholic acid (OCA). Histology and gene expression analysis were performed on liver tissue. Sphingolipid patterns from NAFLD patients and mouse models were assessed by liquid chromatography-mass spectrometry. The molecular mechanism underlying the effect of FXR activation on sphingolipid metabolism was studied in Huh7 cells and primary cultured hepatocytes, as well as in a 1-deoxysphinganine-treated mouse model. RESULTS: 1-deoxysphingolipids were increased in both NAFLD patients and mouse models. FXR activation by OCA protected the liver against oxidative stress, apoptosis, and reduced 1-deoxysphingolipid levels, both in a HFD-induced mouse model of obesity and in 1-deoxysphinganine-treated mice. In vitro, FXR activation lowered intracellular 1-deoxysphingolipid levels by inducing Cyp4f-mediated degradation, but not by inhibiting de novo synthesis, thereby protecting hepatocytes against doxSA-induced cytotoxicity, mitochondrial damage, and apoptosis. Overexpression of Cyp4f13 in cells was sufficient to ameliorate doxSA-induced cytotoxicity. Treatment with the Cyp4f pan-inhibitor HET0016 or FXR knock-down fully abolished the protective effect of OCA, indicating that OCA-mediated 1-deoxysphingolipid degradation is FXR and Cyp4f dependent. CONCLUSIONS: Our study identifies FXR-Cyp4f as a novel regulatory pathway for 1-deoxysphingolipid metabolism. FXR activation represents a promising therapeutic strategy for patients with metabolic syndrome and NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Amidines , Animals , Humans , Liver , Mice , Mice, Inbred C57BL , Receptors, Cytoplasmic and Nuclear , Sphingolipids
9.
J Lipid Res ; 57(11): 2040-2050, 2016 11.
Article in English | MEDLINE | ID: mdl-27561298

ABSTRACT

Long-chain bases (LCBs) are the precursors to ceramide and sphingolipids in eukaryotic cells. They are formed by the action of serine palmitoyl-CoA transferase (SPT), a complex of integral membrane proteins located in the endoplasmic reticulum. SPT activity is negatively regulated by Orm proteins to prevent the toxic overaccumulation of LCBs. Here we show that overaccumulation of LCBs in yeast results in their conversion to a hitherto undescribed LCB derivative, an LCB vinyl ether. The LCB vinyl ether is predominantly formed from phytosphingosine (PHS) as revealed by conversion of odd chain length tracers C17-dihydrosphingosine and C17-PHS into the corresponding LCB vinyl ether derivative. PHS vinyl ether formation depends on ongoing acetyl-CoA synthesis, and its levels are elevated when the LCB degradative pathway is blocked by deletion of the major LCB kinase, LCB4, or the LCB phosphate lyase, DPL1. PHS vinyl ether formation thus appears to constitute a shunt for the LCB phosphate- and lyase-dependent degradation of LCBs. Consistent with a role of PHS vinyl ether formation in LCB detoxification, the lipid is efficiently exported from the cells.


Subject(s)
Ceramides/metabolism , Serine C-Palmitoyltransferase/metabolism , Sphingolipids/metabolism , Vinyl Compounds/metabolism , Acetyl Coenzyme A/biosynthesis , Acetyl Coenzyme A/chemistry , Ceramides/chemistry , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/metabolism , Phosphates/chemistry , Phosphates/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Serine C-Palmitoyltransferase/chemistry , Sphingolipids/chemistry , Sphingosine/analogs & derivatives , Sphingosine/chemistry , Sphingosine/metabolism , Vinyl Compounds/chemistry
10.
Eukaryot Cell ; 14(12): 1217-27, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26432634

ABSTRACT

Proper functioning of intracellular membranes is critical for many cellular processes. A key feature of membranes is their ability to adapt to changes in environmental conditions by adjusting their composition so as to maintain constant biophysical properties, including fluidity and flexibility. Similar changes in the biophysical properties of membranes likely occur when intracellular processes, such as vesicle formation and fusion, require dramatic changes in membrane curvature. Similar modifications must also be made when nuclear pore complexes (NPCs) are constructed within the existing nuclear membrane, as occurs during interphase in all eukaryotes. Here we report on the role of the essential nuclear envelope/endoplasmic reticulum (NE/ER) protein Brl1 in regulating the membrane composition of the NE/ER. We show that Brl1 and two other proteins characterized previously-Brr6, which is closely related to Brl1, and Apq12-function together and are required for lipid homeostasis. All three transmembrane proteins are localized to the NE and can be coprecipitated. As has been shown for mutations affecting Brr6 and Apq12, mutations in Brl1 lead to defects in lipid metabolism, increased sensitivity to drugs that inhibit enzymes involved in lipid synthesis, and strong genetic interactions with mutations affecting lipid metabolism. Mutations affecting Brl1 or Brr6 or the absence of Apq12 leads to hyperfluid membranes, because mutant cells are hypersensitive to agents that increase membrane fluidity. We suggest that the defects in nuclear pore complex biogenesis and mRNA export seen in these mutants are consequences of defects in maintaining the biophysical properties of the NE.


Subject(s)
Membrane Proteins/metabolism , Nuclear Pore Complex Proteins/metabolism , Organelle Biogenesis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Adaptation, Physiological/drug effects , Benzyl Alcohol/pharmacology , Epistasis, Genetic/drug effects , Homeostasis/drug effects , Membrane Lipids/metabolism , Mutation/genetics , Nuclear Envelope/drug effects , Nuclear Envelope/metabolism , RNA Transport/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Sterols/metabolism , Viscosity
11.
Antimicrob Agents Chemother ; 58(1): 455-66, 2014.
Article in English | MEDLINE | ID: mdl-24189258

ABSTRACT

Human fungal infections represent a therapeutic challenge. Although effective strategies for treatment are available, resistance is spreading, and many therapies have unacceptable side effects. A clear need for novel antifungal targets and molecules is thus emerging. Here, we present the identification and characterization of the plant-derived diyne-furan fatty acid EV-086 as a novel antifungal compound. EV-086 has potent and broad-spectrum activity in vitro against Candida, Aspergillus, and Trichophyton spp., whereas activities against bacteria and human cell lines are very low. Chemical-genetic profiling of Saccharomyces cerevisiae deletion mutants identified lipid metabolic processes and organelle organization and biogenesis as targets of EV-086. Pathway modeling suggested that EV-086 inhibits delta-9 fatty acid desaturation, an essential process in S. cerevisiae, depending on the delta-9 fatty acid desaturase OLE1. Delta-9 unsaturated fatty acids-but not saturated fatty acids-antagonized the EV-086-mediated growth inhibition, and transcription of the OLE1 gene was strongly upregulated in the presence of EV-086. EV-086 increased the ratio of saturated to unsaturated free fatty acids and phosphatidylethanolamine fatty acyl chains, respectively. Furthermore, EV-086 was rapidly taken up into the lipid fraction of the cell and incorporated into phospholipids. Together, these findings demonstrate that EV-086 is an inhibitor of delta-9 fatty acid desaturation and that the mechanism of inhibition might involve an EV-086-phospholipid. Finally, EV-086 showed efficacy in a guinea pig skin dermatophytosis model of topical Trichophyton infection, which demonstrates that delta-9 fatty acid desaturation is a valid antifungal target, at least for dermatophytoses.


Subject(s)
Antifungal Agents/therapeutic use , Fatty Acid Desaturases/antagonists & inhibitors , Tinea/drug therapy , Animals , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal/drug effects , Guinea Pigs , Stearoyl-CoA Desaturase
12.
Proc Natl Acad Sci U S A ; 107(13): 5851-6, 2010 Mar 30.
Article in English | MEDLINE | ID: mdl-20212121

ABSTRACT

Yeast members of the ORMDL family of endoplasmic reticulum (ER) membrane proteins play a central role in lipid homeostasis and protein quality control. In the absence of yeast Orm1 and Orm2, accumulation of long chain base, a sphingolipid precursor, suggests dysregulation of sphingolipid synthesis. Physical interaction between Orm1 and Orm2 and serine palmitoyltransferase, responsible for the first committed step in sphingolipid synthesis, further supports a role for the Orm proteins in regulating sphingolipid synthesis. Phospholipid homeostasis is also affected in orm1Delta orm2Delta cells: the cells are inositol auxotrophs with impaired transcriptional regulation of genes encoding phospholipid biosynthesis enzymes. Strikingly, impaired growth of orm1Delta orm2Delta cells is associated with constitutive unfolded protein response, sensitivity to stress, and slow ER-to-Golgi transport. Inhibition of sphingolipid synthesis suppresses orm1Delta orm2Delta phenotypes, including ER stress, suggesting that disrupted sphingolipid homeostasis accounts for pleiotropic phenotypes. Thus, the yeast Orm proteins control membrane biogenesis by coordinating lipid homeostasis with protein quality control.


Subject(s)
Endoplasmic Reticulum/metabolism , Lipid Metabolism , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Genes, Fungal , Golgi Apparatus/metabolism , Homeostasis , Inositol/metabolism , Membrane Proteins/genetics , Mutation , Phenotype , Protein Transport , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Sphingolipids/biosynthesis , Stress, Physiological
13.
Article in English | MEDLINE | ID: mdl-37348646

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neuromuscular disease. Recently, several gain-of-function mutations in SPTLC1 were associated with juvenile ALS. SPTLC1 encodes for a subunit of the serine-palmitoyltransferase (SPT) - the rate-limiting enzyme in the de novo synthesis of sphingolipids (SL). SPT activity, and thus SL de novo synthesis, is tightly controlled by a homeostatic feedback mechanism mediated by ORMDL proteins. Here we report a novel SPTLC1p.L38R mutation in a young Chinese girl with a signature of juvenile ALS. The patient presented with muscular weakness and atrophy, tongue tremor and fasciculation, breathing problems and positive pyramidal signs. All SPTLC1-ALS mutations including the SPTLC1 p.L38R are located within a single membrane-spanning domain of the protein and impede the interaction with the regulatory ORMDL subunit of SPT. Pertinent to the altered homeostatic control, lipid analysis showed overall increased SL levels in the patient plasma. An increased SPT activity and SL de novo synthesis was confirmed in p.L38R expressing HEK293 cells. Particularily dihydro-sphingolipids (dhSL) were signficantly increased in patient plasma and p.L38R mutant expressing cells. Increased dhSL formation has been previously linked to neurotoxicity and may be involved in the pathomechanism of SPTLC1-ALS mutations.


Subject(s)
Amyotrophic Lateral Sclerosis , Female , Humans , Child , Amyotrophic Lateral Sclerosis/genetics , HEK293 Cells , Sphingolipids/metabolism , Mutation , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism
14.
J Clin Invest ; 133(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-36976648

ABSTRACT

Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome.


Subject(s)
Ceramides , Sphingolipids , Humans , Ceramides/metabolism , Homeostasis , Mutation , Sphingolipids/genetics , Sphingolipids/metabolism
15.
Mol Microbiol ; 80(1): 14-32, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21276093

ABSTRACT

Proper assembly of the kinetochore, a multi-protein complex that mediates attachment of centromere DNA to spindle microtubules on each chromosome, is required for faithful chromosome segregation. Each previously characterized member of the Mis12/Mtw1 protein family is part of an essential subcomplex in the kinetochore. In this work, we identify and characterize CaMTW1, which encodes the homologue of the human Mis12 protein in the pathogenic budding yeast Candida albicans. Subcellular localization and chromatin immunoprecipitation assays confirmed CaMtw1 is a kinetochore protein. CaMtw1 is essential for viability. CaMtw1-depleted cells and cells in which CaMtw1 was inactivated with a temperature-sensitive mutation had reduced viability, accumulated at the G2/M stage of the cell cycle, and exhibited increased chromosome missegregation. CaMtw1 depletion also affected spindle length and alignment. Interestingly, in C. albicans, CaMtw1 and the centromeric histone, CaCse4, influence each other for kinetochore localization. In addition, CaMtw1 is required for efficient kinetochore recruitment of another inner kinetochore protein, the CENP-C homologue, CaMif2. Mis12/Mtw1 proteins have well-established roles in the recruitment and maintenance of outer kinetochore proteins. We propose that Mis12/Mtw1 proteins also have important co-dependent interactions with inner kinetochore proteins and that these interactions may increase the fidelity of kinetochore formation.


Subject(s)
Candida albicans/metabolism , Cell Cycle Proteins/metabolism , Fungal Proteins/metabolism , Kinetochores/metabolism , Blotting, Western , Candida albicans/cytology , Candida albicans/genetics , Cell Cycle Proteins/genetics , Centromere/metabolism , Chromatin Immunoprecipitation , Flow Cytometry , Fluorescent Antibody Technique, Indirect , Fungal Proteins/genetics , Polymerase Chain Reaction
16.
J Clin Invest ; 132(18)2022 09 15.
Article in English | MEDLINE | ID: mdl-35900868

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects motor neurons. Mutations in the SPTLC1 subunit of serine palmitoyltransferase (SPT), which catalyzes the first step in the de novo synthesis of sphingolipids (SLs), cause childhood-onset ALS. SPTLC1-ALS variants map to a transmembrane domain that interacts with ORMDL proteins, negative regulators of SPT activity. We show that ORMDL binding to the holoenzyme complex is impaired in cells expressing pathogenic SPTLC1-ALS alleles, resulting in increased SL synthesis and a distinct lipid signature. C-terminal SPTLC1 variants cause peripheral hereditary sensory and autonomic neuropathy type 1 (HSAN1) due to the synthesis of 1-deoxysphingolipids (1-deoxySLs) that form when SPT metabolizes L-alanine instead of L-serine. Limiting L-serine availability in SPTLC1-ALS-expressing cells increased 1-deoxySL and shifted the SL profile from an ALS to an HSAN1-like signature. This effect was corroborated in an SPTLC1-ALS pedigree in which the index patient uniquely presented with an HSAN1 phenotype, increased 1-deoxySL levels, and an L-serine deficiency. These data demonstrate how pathogenic variants in different domains of SPTLC1 give rise to distinct clinical presentations that are nonetheless modifiable by substrate availability.


Subject(s)
Amyotrophic Lateral Sclerosis , Hereditary Sensory and Autonomic Neuropathies , Membrane Proteins/metabolism , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/genetics , Hereditary Sensory and Autonomic Neuropathies/genetics , Humans , Serine/chemistry , Serine C-Palmitoyltransferase/chemistry , Serine C-Palmitoyltransferase/genetics , Sphingolipids/genetics , Sphingolipids/metabolism
17.
Cell Rep Med ; 2(7): 100345, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34337561

ABSTRACT

Hereditary sensory neuropathy type 1 (HSN1) is caused by mutations in the SPTLC1 or SPTLC2 sub-units of the enzyme serine palmitoyltransferase, resulting in the production of toxic 1-deoxysphingolipid bases (DSBs). We used induced pluripotent stem cells (iPSCs) from patients with HSN1 to determine whether endogenous DSBs are neurotoxic, patho-mechanisms of toxicity and response to therapy. HSN1 iPSC-derived sensory neurons (iPSCdSNs) endogenously produce neurotoxic DSBs. Complex gangliosides, which are essential for membrane micro-domains and signaling, are reduced, and neurotrophin signaling is impaired, resulting in reduced neurite outgrowth. In HSN1 myelinating cocultures, we find a major disruption of nodal complex proteins after 8 weeks, which leads to complete myelin breakdown after 6 months. HSN1 iPSC models have, therefore, revealed that SPTLC1 mutation alters lipid metabolism, impairs the formation of complex gangliosides, and reduces axon and myelin stability. Many of these changes are prevented by l-serine supplementation, supporting its use as a rational therapy.


Subject(s)
Axons/metabolism , Gangliosides/metabolism , Hereditary Sensory and Autonomic Neuropathies/pathology , Induced Pluripotent Stem Cells/pathology , Models, Biological , Neuroglia/metabolism , Serine/pharmacology , Aging/pathology , Axons/drug effects , Axons/ultrastructure , Base Sequence , Caspase 3/metabolism , Cell Line , Gene Expression Regulation/drug effects , Hereditary Sensory and Autonomic Neuropathies/genetics , Humans , Induced Pluripotent Stem Cells/ultrastructure , Membrane Microdomains/drug effects , Membrane Microdomains/metabolism , Membrane Microdomains/ultrastructure , Myelin Sheath/metabolism , Nerve Growth Factors/metabolism , Neuroglia/drug effects , Neuronal Outgrowth/drug effects , Nodal Protein/metabolism , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/pathology , Sensory Receptor Cells/ultrastructure , Signal Transduction/drug effects , Sphingolipids/metabolism , Transcriptome/genetics
18.
Nat Med ; 27(7): 1197-1204, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34059824

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease of the lower and upper motor neurons with sporadic or hereditary occurrence. Age of onset, pattern of motor neuron degeneration and disease progression vary widely among individuals with ALS. Various cellular processes may drive ALS pathomechanisms, but a monogenic direct metabolic disturbance has not been causally linked to ALS. Here we show SPTLC1 variants that result in unrestrained sphingoid base synthesis cause a monogenic form of ALS. We identified four specific, dominantly acting SPTLC1 variants in seven families manifesting as childhood-onset ALS. These variants disrupt the normal homeostatic regulation of serine palmitoyltransferase (SPT) by ORMDL proteins, resulting in unregulated SPT activity and elevated levels of canonical SPT products. Notably, this is in contrast with SPTLC1 variants that shift SPT amino acid usage from serine to alanine, result in elevated levels of deoxysphingolipids and manifest with the alternate phenotype of hereditary sensory and autonomic neuropathy. We custom designed small interfering RNAs that selectively target the SPTLC1 ALS allele for degradation, leave the normal allele intact and normalize sphingolipid levels in vitro. The role of primary metabolic disturbances in ALS has been elusive; this study defines excess sphingolipid biosynthesis as a fundamental metabolic mechanism for motor neuron disease.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Sphingolipids/biosynthesis , Adolescent , Adult , Alleles , Amino Acid Sequence , Amyotrophic Lateral Sclerosis/enzymology , Amyotrophic Lateral Sclerosis/genetics , CRISPR-Cas Systems , Child , Female , Genes, Dominant , HEK293 Cells , Humans , Male , Middle Aged , Mutation , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Young Adult
19.
Elife ; 92020 02 25.
Article in English | MEDLINE | ID: mdl-32096469

ABSTRACT

In the nematode C. elegans, insulin signaling regulates development and aging in response to the secretion of numerous insulin peptides. Here, we describe a novel, non-signaling isoform of the nematode insulin receptor (IR), DAF-2B, that modulates insulin signaling by sequestration of insulin peptides. DAF-2B arises via alternative splicing and retains the extracellular ligand binding domain but lacks the intracellular signaling domain. A daf-2b splicing reporter revealed active regulation of this transcript through development, particularly in the dauer larva, a diapause stage associated with longevity. CRISPR knock-in of mScarlet into the daf-2b genomic locus confirmed that DAF-2B is expressed in vivo and is likely secreted. Genetic studies indicate that DAF-2B influences dauer entry, dauer recovery and adult lifespan by altering insulin sensitivity according to the prevailing insulin milieu. Thus, in C. elegans alternative splicing at the daf-2 locus generates a truncated IR that fine-tunes insulin signaling in response to the environment.


Subject(s)
Alternative Splicing , Caenorhabditis elegans/metabolism , Insulin/metabolism , Receptor, Insulin/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Genes, Helminth , Insulin/chemistry , Mutation , Signal Transduction
20.
Neuromolecular Med ; 21(2): 182-191, 2019 06.
Article in English | MEDLINE | ID: mdl-30955194

ABSTRACT

Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is a rare, autosomal dominantly inherited, slowly progressive and length-dependent axonal peripheral neuropathy. HSAN1 is associated with several mutations in serine-palmitoyltransferase (SPT), the first enzyme in the de novo sphingolipid biosynthetic pathway. HSAN1 mutations alter the substrate specificity of SPT, which leads to the formation of 1-deoxysphingolipids, an atypical and neurotoxic subclass of sphingolipids. This study describes the clinical and neurophysiological phenotype of a German family with a novel SPTCL2 mutation (c.529A > G; N177D) associated with HSAN1 and the biochemical characterization of this mutation.) The mutaion was identified in five family members that segregated with the diesease. Patients were characterized genetically and clinically for neurophysiological function. Their plasma sphingolipid profiles were analyzed by LC-MS. The biochemical properties of the mutation were characterized in a cell-based activity assay. Affected family members showed elevated 1-deoxysphingolipid plasma levels. HEK293 cells expressing the N177D SPTLC2 mutant showed increased de novo 1-deoxysphingolipid formation, but also displayed elevated canonical SPT activity and increased C20 sphingoid base production. This study identifies the SPTLC2 N177D variant as a novel disease-causing mutation with increased 1-deoxySL formation and its association with a typical HSAN1 phenotype.


Subject(s)
Hereditary Sensory and Autonomic Neuropathies/genetics , Mutation, Missense , Point Mutation , Serine C-Palmitoyltransferase/genetics , Alanine/metabolism , Amino Acid Sequence , Consensus Sequence , Female , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Male , Models, Molecular , Pedigree , Protein Conformation , Retrospective Studies , Sequence Alignment , Sequence Homology, Amino Acid , Serine C-Palmitoyltransferase/deficiency , Serine C-Palmitoyltransferase/physiology , Sphingolipids/biosynthesis , Sphingolipids/blood
SELECTION OF CITATIONS
SEARCH DETAIL