Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 264
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
Hum Mol Genet ; 33(4): 333-341, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37903058

ABSTRACT

Transcriptome-wide association studies (TWAS) have identified many putative susceptibility genes for colorectal cancer (CRC) risk. However, susceptibility miRNAs, critical dysregulators of gene expression, remain unexplored. We genotyped DNA samples from 313 CRC East Asian patients and performed small RNA sequencing in their normal colon tissues distant from tumors to build genetic models for predicting miRNA expression. We applied these models and data from genome-wide association studies (GWAS) including 23 942 cases and 217 267 controls of East Asian ancestry to investigate associations of predicted miRNA expression with CRC risk. Perturbation experiments separately by promoting and inhibiting miRNAs expressions and further in vitro assays in both SW480 and HCT116 cells were conducted. At a Bonferroni-corrected threshold of P < 4.5 × 10-4, we identified two putative susceptibility miRNAs, miR-1307-5p and miR-192-3p, located in regions more than 500 kb away from any GWAS-identified risk variants in CRC. We observed that a high predicted expression of miR-1307-5p was associated with increased CRC risk, while a low predicted expression of miR-192-3p was associated with increased CRC risk. Our experimental results further provide strong evidence of their susceptible roles by showing that miR-1307-5p and miR-192-3p play a regulatory role, respectively, in promoting and inhibiting CRC cell proliferation, migration, and invasion, which was consistently observed in both SW480 and HCT116 cells. Our study provides additional insights into the biological mechanisms underlying CRC development.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Transcriptome/genetics , Genome-Wide Association Study , Colorectal Neoplasms/metabolism , HCT116 Cells , Gene Expression Regulation, Neoplastic/genetics , Cell Proliferation/genetics
2.
Hum Mol Genet ; 33(8): 687-697, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38263910

ABSTRACT

BACKGROUND: Expansion of genome-wide association studies across population groups is needed to improve our understanding of shared and unique genetic contributions to breast cancer. We performed association and replication studies guided by a priori linkage findings from African ancestry (AA) relative pairs. METHODS: We performed fixed-effect inverse-variance weighted meta-analysis under three significant AA breast cancer linkage peaks (3q26-27, 12q22-23, and 16q21-22) in 9241 AA cases and 10 193 AA controls. We examined associations with overall breast cancer as well as estrogen receptor (ER)-positive and negative subtypes (193,132 SNPs). We replicated associations in the African-ancestry Breast Cancer Genetic Consortium (AABCG). RESULTS: In AA women, we identified two associations on chr12q for overall breast cancer (rs1420647, OR = 1.15, p = 2.50×10-6; rs12322371, OR = 1.14, p = 3.15×10-6), and one for ER-negative breast cancer (rs77006600, OR = 1.67, p = 3.51×10-6). On chr3, we identified two associations with ER-negative disease (rs184090918, OR = 3.70, p = 1.23×10-5; rs76959804, OR = 3.57, p = 1.77×10-5) and on chr16q we identified an association with ER-negative disease (rs34147411, OR = 1.62, p = 8.82×10-6). In the replication study, the chr3 associations were significant and effect sizes were larger (rs184090918, OR: 6.66, 95% CI: 1.43, 31.01; rs76959804, OR: 5.24, 95% CI: 1.70, 16.16). CONCLUSION: The two chr3 SNPs are upstream to open chromatin ENSR00000710716, a regulatory feature that is actively regulated in mammary tissues, providing evidence that variants in this chr3 region may have a regulatory role in our target organ. Our study provides support for breast cancer variant discovery using prioritization based on linkage evidence.


Subject(s)
Black People , Breast Neoplasms , Genetic Predisposition to Disease , Female , Humans , Black People/genetics , Breast Neoplasms/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide
3.
Nature ; 582(7811): 240-245, 2020 06.
Article in English | MEDLINE | ID: mdl-32499647

ABSTRACT

Meta-analyses of genome-wide association studies (GWAS) have identified more than 240 loci that are associated with type 2 diabetes (T2D)1,2; however, most of these loci have been identified in analyses of individuals with European ancestry. Here, to examine T2D risk in East Asian individuals, we carried out a meta-analysis of GWAS data from 77,418 individuals with T2D and 356,122 healthy control individuals. In the main analysis, we identified 301 distinct association signals at 183 loci, and across T2D association models with and without consideration of body mass index and sex, we identified 61 loci that are newly implicated in predisposition to T2D. Common variants associated with T2D in both East Asian and European populations exhibited strongly correlated effect sizes. Previously undescribed associations include signals in or near GDAP1, PTF1A, SIX3, ALDH2, a microRNA cluster, and genes that affect the differentiation of muscle and adipose cells3. At another locus, expression quantitative trait loci at two overlapping T2D signals affect two genes-NKX6-3 and ANK1-in different tissues4-6. Association studies in diverse populations identify additional loci and elucidate disease-associated genes, biology, and pathways.


Subject(s)
Asian People/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Aldehyde Dehydrogenase, Mitochondrial/genetics , Alleles , Ankyrins/genetics , Body Mass Index , Case-Control Studies , Europe/ethnology , Eye Proteins/genetics , Asia, Eastern/ethnology , Female , Genome-Wide Association Study , Homeodomain Proteins/genetics , Humans , Male , Nerve Tissue Proteins/genetics , RNA, Messenger/analysis , Transcription Factors/genetics , Transcription, Genetic , Homeobox Protein SIX3
4.
Cancer ; 130(11): 2014-2030, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38319284

ABSTRACT

BACKGROUND: Little research has focused on the relationship between gut microbiome and chemotherapy-induced toxicity. METHODS: This prospective study involves 301 patients with breast cancer who had prechemotherapy stool samples collected. Gut microbiome was sequenced by shotgun metagenomics; associations with chemotherapy-induced toxicities during first-line treatment by gut microbial diversity, composition, and metabolic pathways with severe (i.e., grade ≥3) hematological and gastrointestinal toxicities were evaluated via multivariable logistic regression. RESULTS: High prechemotherapy α-diversity was associated with a significantly reduced risk of both severe hematological toxicity (odds ratio [OR] = 0.94; 95% CI, 0.89-0.99; p = .048) and neutropenia (OR = 0.94; 95% CI, 0.89-0.99; p = .016). A high abundance of phylum Synergistota, class Synergistia, and order Synergistales were significantly associated with a reduced risk of severe neutropenia; conversely, enrichment of phylum Firmicutes C, class Negativicutes, phylum Firmicutes I, and class Bacilli A, order Paenibacillales were significantly associated with an increased risk of severe neutropenia (p range: 0.012-2.32 × 10-3; false discovery rate <0.1). Significant positive associations were also observed between severe nausea/vomiting and high Chao1 indexes, ß-diversity (p < .05), 20 species belonging to the family Lachnospiraceae, Oscillospiraceae, and Ruminococcaceae (p value range: 6.14 × 10-3 to 1.33 × 10-5; false discovery rate <0.1), and three metabolic pathways involved in reductive tricarboxylic acid cycle I and cycle II, and an incomplete reductive tricarboxylic acid cycle (p < .01). Conversely, a high abundance of species Odoribacter laneus and the pathway related to the L-proline biosynthesis II were inversely associated with severe nausea/vomiting. CONCLUSIONS: Our study suggests that gut microbiota may be a potential preventive target to reduce chemotherapy-induced toxicity.


Subject(s)
Breast Neoplasms , Gastrointestinal Microbiome , Humans , Breast Neoplasms/drug therapy , Gastrointestinal Microbiome/drug effects , Female , Middle Aged , Prospective Studies , Aged , Adult , Neutropenia/chemically induced , Neutropenia/microbiology , Metagenomics/methods , Feces/microbiology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Agents/adverse effects
5.
Thorax ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702190

ABSTRACT

BACKGROUND: The aetiology of lung cancer among individuals who never smoked remains elusive, despite 15% of lung cancer cases in men and 53% in women worldwide being unrelated to smoking. Epigenetic alterations, particularly DNA methylation (DNAm) changes, have emerged as potential drivers. Yet, few prospective epigenome-wide association studies (EWAS), primarily focusing on peripheral blood DNAm with limited representation of never smokers, have been conducted. METHODS: We conducted a nested case-control study of 80 never-smoking incident lung cancer cases and 83 never-smoking controls within the Shanghai Women's Health Study and Shanghai Men's Health Study. DNAm was measured in prediagnostic oral rinse samples using Illumina MethylationEPIC array. Initially, we conducted an EWAS to identify differentially methylated positions (DMPs) associated with lung cancer in the discovery sample of 101 subjects. The top 50 DMPs were further evaluated in a replication sample of 62 subjects, and results were pooled using fixed-effect meta-analysis. RESULTS: Our study identified three DMPs significantly associated with lung cancer at the epigenome-wide significance level of p<8.22×10-8. These DMPs were identified as cg09198866 (MYH9; TXN2), cg01411366 (SLC9A10) and cg12787323. Furthermore, examination of the top 1000 DMPs indicated significant enrichment in epithelial regulatory regions and their involvement in small GTPase-mediated signal transduction pathways. Additionally, GrimAge acceleration was identified as a risk factor for lung cancer (OR=1.19 per year; 95% CI 1.06 to 1.34). CONCLUSIONS: While replication in a larger sample size is necessary, our findings suggest that DNAm patterns in prediagnostic oral rinse samples could provide novel insights into the underlying mechanisms of lung cancer in never smokers.

6.
Mol Carcinog ; 63(5): 849-858, 2024 May.
Article in English | MEDLINE | ID: mdl-38517045

ABSTRACT

The association between metformin use and risk of prostate cancer remains controversial, while data from randomized trials is lacking. We aim to evaluate the association of genetically proxied metformin effects with prostate cancer risk using a drug-target Mendelian randomization (MR) approach. Summary statistics for prostate cancer were obtained from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome Consortium (79,148 cases and 61,106 controls). Cis-expression quantitative trait loci (cis-eQTL) variants in the gene targets of metformin were identified in the GTEx project and eQTLGen consortium. We also obtained male-specific genome-wide association study data for type 2 diabetes, body mass index (BMI), total testosterone, bioavailable testosterone, estradiol, and sex hormone binding globulin for mediation analysis. Inverse-variance weighted (IVW) regression, weighted median, MR-Egger regression, and MR-PRESSO were performed in the main MR analysis. Multivariable MR was used to identify potential mediators and genetic colocalization analysis was performed to assess any shared genetic basis between two traits of interest. We found that genetically proxied metformin effects (1-SD HbA1c reduction, equivalent to 6.75 mmol/mol) were associated with higher risk of prostate cancer (odds ratioIVW [ORIVW]: 1.55, 95% confidence interval, CI: 1.23-1.96, p = 3.0 × 10-3). Two metformin targets, mitochondrial complex I (ORIVW: 1.48, 95% CI: 1.07-2.03, p = 0.016) and gamma-secretase complex (ORIVW: 2.58, 95%CI :1.47-4.55, p = 0.001), showed robust associations with prostate cancer risk, and their effects were partly mediated through BMI (16.4%) and total testosterone levels (34.3%), respectively. These results were further supported by colocalization analysis that expressions of NDUFA13 and BMI, APH1A, and total testosterone may be influenced by shared genetic factors, respectively. In summary, our study indicated that genetically proxied metformin effects may be associated with an increased risk of prostate cancer. Repurposing metformin for prostate cancer prevention in general populations is not supported by our findings.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Prostatic Neoplasms , Male , Humans , Metformin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Testosterone , Polymorphism, Single Nucleotide
7.
Cancer Causes Control ; 35(6): 897-906, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38332239

ABSTRACT

PURPOSE: We aimed to characterize genetic correlations and causal associations between circulating C-reactive protein (CRP) levels and the risk of lung cancer (LC). METHODS: Leveraging summary statistics from genome-wide association studies of circulating CRP levels among 575,531 individuals of European ancestry, and LC risk among 29,266 cases and 56,450 controls, we investigated genetic associations of circulating CRP levels with the risk of overall lung cancer and its histological subtypes, by using linkage disequilibrium score (LDSC) regression and Mendelian randomization (MR) analyses. RESULTS: Significant positive genetic correlations between circulating CRP levels and the risk of LC and its histological subtypes were identified from LDSC regression, with correlation coefficients ranging from 0.12 to 0.26, and all false discovery adjusted p < 0.05. Univariable MR demonstrated a nominal association between CRP levels and an increased risk of lung squamous cell carcinoma (SCC) (inverse variance-weighted OR = 1.15, 95% CI 1.01-1.30). However, this association disappeared when multivariable MR included cigarettes per day and/or body mass index. By using our recently developed constrained maximum likelihood-based MR method, we identified significant associations of CRP levels with the risk of overall LC (OR 1.06, 95% CI 1.03-1.09), SCC (OR 1.06, 95% CI 1.02-1.09), and small cell lung cancer (SCLC, OR 1.09, 95% CI 1.03-1.15). Moreover, most univariable and multivariable MR analyses also revealed consistent CRP-SCLC associations. CONCLUSION: There may be a genetic and causal association between circulating CRP levels and the risk of SCLC, which is in line with previous population-based observational studies.


Subject(s)
C-Reactive Protein , Genome-Wide Association Study , Lung Neoplasms , Mendelian Randomization Analysis , Humans , Lung Neoplasms/genetics , Lung Neoplasms/blood , Lung Neoplasms/epidemiology , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , C-Reactive Protein/genetics , Risk Factors , Case-Control Studies , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Linkage Disequilibrium , Male , Female
8.
Prev Med ; 180: 107886, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316272

ABSTRACT

OBJECTIVE: We aimed to evaluate potential modifying effects of genetic susceptibility to obesity on the association of lifestyle factors with coronary artery disease (CAD) risk. METHODS: A total of 328,606 participants (54% women) were included using data from the UK Biobank. We evaluated the risk of developing CAD associated with obesity-related polygenic scores (PGSs) and healthy lifestyle scores (HLSs). HLSs were constructed using six lifestyle factors. Obesity PGSs were created using genetic variants identified by genome-wide association studies, including 941 variants for body mass index (BMI) and 457 for waist-to-hip ratio (WHR). Both HLSs and PGSs were categorized into three groups. RESULTS: During a 9-year median follow-up, 14,541 participants developed CAD. An unhealthy lifestyle was significantly associated with an increased CAD risk (hazard ratio [HR] = 2.24, 95% confidence interval [CI] = 2.09-2.40). High BMI and WHR PGSs were each significantly associated with an increased CAD risk (HRBMI = 1.23, 1.17-1.29; HRWHR = 1.15, 1.09-1.21). Lifestyle factors explained 41% (95% CI = 38%-45%) of CAD, while genetic variants for BMI explained only 10% (7%-14%). Risks of CAD were increased with poorer HLS independent of obesity-related PGSs. Individuals with the most unhealthy lifestyle and highest BMI PGS had the highest risk of CAD risk (HR = 2.59, 95% CI = 2.26-2.97), compared with participants with the healthiest lifestyle and lowest BMI PGS. CONCLUSIONS: While the observational nature of the study precludes the establishment of causality, our study provides supports for a causal association between obesity and CAD risk and the importance of lifestyle modification in the prevention of CAD.


Subject(s)
Coronary Artery Disease , Humans , Female , Male , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Risk Factors , Cohort Studies , Genome-Wide Association Study , Biological Specimen Banks , UK Biobank , Obesity/genetics , Life Style , Genetic Predisposition to Disease
9.
Int J Cancer ; 152(11): 2314-2320, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36779764

ABSTRACT

Genome-wide association studies (GWAS) have identified around 200 loci associated with breast cancer risk. However, protein targets for these loci remain largely unknown. Identifying protein targets and biomarkers can improve the understanding of cancer biology and etiology and identify high-risk individuals for cancer prevention. In this study, we investigated genetically predicted levels of 1142 circulating proteins with breast cancer risk in 133 384 cases and 113 789 controls of European ancestry included in the Breast Cancer Association Consortium (BCAC). We identified 22 blood protein biomarkers associated with the risk of overall breast cancer at a false discovery rate (FDR) <0.05, including nine proteins encoded by genes located at least 500 kb away from previously reported risk variants for breast cancer. Analyses focusing on 124 encoding genes located at GWAS-identified breast cancer risk loci found 20 proteins associated with overall breast cancer risk and one protein associated with triple-negative breast cancer risk at FDR <0.05. Adjustment for the GWAS-identified risk variants significantly attenuated the association for 13 of these proteins, suggesting that these proteins may be the targets of these GWAS-identified risk loci. The identified proteins are involved in various biological processes, including glutathione conjugation, STAT5 signaling and NF-κB signaling pathways. Our study identified novel protein targets and risk biomarkers for breast cancer risk.


Subject(s)
Breast Neoplasms , Genetic Predisposition to Disease , Humans , Female , Genome-Wide Association Study , Breast Neoplasms/genetics , Proteomics , Genetic Loci , Genomics , Polymorphism, Single Nucleotide
10.
Hum Mol Genet ; 30(5): 321-330, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33481017

ABSTRACT

Most genetic variants for colorectal cancer (CRC) identified in genome-wide association studies (GWAS) are located in intergenic regions, implying pathogenic dysregulations of gene expression. However, comprehensive assessments of target genes in CRC remain to be explored. We conducted a multi-omics analysis using transcriptome and/or DNA methylation data from the Genotype-Tissue Expression, The Cancer Genome Atlas and the Colonomics projects. We identified 116 putative target genes for 45 GWAS-identified variants. Using summary-data-based Mendelian randomization approach (SMR), we demonstrated that the CRC susceptibility for 29 out of the 45 CRC variants may be mediated by cis-effects on gene regulation. At a cutoff of the Bonferroni-corrected PSMR < 0.05, we determined 66 putative susceptibility genes, including 39 genes that have not been previously reported. We further performed in vitro assays for two selected genes, DIP2B and SFMBT1, and provide functional evidence that they play a vital role in colorectal carcinogenesis via disrupting cell behavior, including migration, invasion and epithelial-mesenchymal transition. Our study reveals a large number of putative novel susceptibility genes and provides additional insight into the underlying mechanisms for CRC genetic risk loci.


Subject(s)
Carcinogenesis/genetics , Colorectal Neoplasms/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Nerve Tissue Proteins/genetics , Repressor Proteins/genetics , Transcriptome , Cell Line, Tumor , Cell Proliferation , DNA Methylation , Gene Expression Regulation, Neoplastic , Genome , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Risk Factors
11.
Br J Cancer ; 129(9): 1510-1515, 2023 10.
Article in English | MEDLINE | ID: mdl-37679517

ABSTRACT

BACKGROUND: Plasma proteins are potential biomarkers for complex diseases. We aimed to identify plasma protein biomarkers for lung cancer. METHODS: We investigated genetically predicted plasma levels of 1130 proteins in association with lung cancer risk among 29,266 cases and 56,450 controls of European descent. For proteins significantly associated with lung cancer risk, we evaluated associations of genetically predicted expression of their coding genes with the risk of lung cancer. RESULTS: Nine proteins were identified with genetically predicted plasma levels significantly associated with overall lung cancer risk at a false discovery rate (FDR) of <0.05. Proteins C2, MICA, AIF1, and CTSH were associated with increased lung cancer risk, while proteins SFTPB, HLA-DQA2, MICB, NRP1, and GMFG were associated with decreased lung cancer risk. Stratified analyses by histological types revealed the cross-subtype consistency of these nine associations and identified an additional protein, ICAM5, significantly associated with lung adenocarcinoma risk (FDR < 0.05). Coding genes of NRP1 and ICAM5 proteins are located at two loci that have never been reported by previous GWAS. Genetically predicted blood levels of genes C2, AIF1, and CTSH were associated with lung cancer risk, in directions consistent with those shown in protein-level analyses. CONCLUSION: Identification of novel plasma protein biomarkers provided new insights into the biology of lung cancer.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/metabolism , Biomarkers, Tumor/genetics , Proteomics , Genetic Predisposition to Disease , Biomarkers , Blood Proteins/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide
12.
Carcinogenesis ; 43(1): 12-20, 2022 02 11.
Article in English | MEDLINE | ID: mdl-34919666

ABSTRACT

We have previously identified a genetic variant, rs34331122 in the 22q11.21 locus, as being associated with breast cancer risk in a genome-wide association study. This novel variant is located in the intronic region of the T-box transcription factor 1 (TBX1) gene. Cis-expression quantitative trait loci analysis showed that expression of TBX1 was regulated by the rs34331122 variant. In the current study, we investigated biological functions and potential molecular mechanisms of TBX1 in breast cancer. We found that TBX1 expression was significantly higher in breast cancer tumor tissues than adjacent normal breast tissues and increased with tumor stage (P < 0.05). We further knocked-down TBX1 gene expression in three breast cancer cell lines, MDA-MB-231, MCF-7 and T47D, using small interfering RNAs and examined consequential changes on cell oncogenicity and gene expression. TBX1 knock-down significantly inhibited breast cancer cell proliferation, colony formation, migration and invasion. RNA sequencing and flow cytometry analysis revealed that TBX1 knock-down in breast cancer cells induced cell cycle arrest in the G1 phase through disrupting expression of genes involved in the cell cycle pathway. Furthermore, survival analysis using the online Kaplan-Meier Plotter suggested that higher TBX1 expression was associated with worse outcomes in breast cancer patients, especially for estrogen receptor-positive breast cancer, with HRs (95% CIs) for overall survival (OS) and distant metastasis free survival (DMFS) of 1.5 (1.05-2.15) and 1.55 (1.10-2.18), respectively. In conclusion, our results suggest that the TBX1 gene may act as a putative oncogene of breast cancer through regulating expressions of cell cycle-related genes.


Subject(s)
Breast Neoplasms/genetics , Cell Cycle/genetics , Oncogenes/genetics , T-Box Domain Proteins/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , MCF-7 Cells , RNA, Small Interfering/genetics
13.
Genet Epidemiol ; 45(5): 471-484, 2021 07.
Article in English | MEDLINE | ID: mdl-33739539

ABSTRACT

Previous genome-wide association studies (GWASs) have been largely focused on European (EUR) populations. However, polygenic risk scores (PRSs) derived from EUR have been shown to perform worse in non-EURs compared with EURs. In this study, we aim to improve PRS prediction in East Asians (EASs). We introduce a rescaled meta-analysis framework to combine both EUR (N = 122,175) and EAS (N = 30,801) GWAS summary statistics. To improve PRS prediction in EASs, we use a scaling factor to up-weight the EAS data, such that the resulting effect size estimates are more relevant to EASs. We then derive PRSs for EAS from the rescaled meta-analysis results of EAS and EUR data. Evaluated in an independent EAS validation data set, this approach increases the prediction liability-adjusted Nagelkerke's pseudo R2 by 40%, 41%, and 5%, respectively, compared with PRSs derived from an EAS GWAS only, EUR GWAS only, and conventional fixed-effects meta-analysis of EAS and EUR data. The PRS derived from the rescaled meta-analysis approach achieved an area under the receiver operating characteristic curve (AUC) of 0.6059, higher than AUC = 0.5782, 0.5809, 0.6008 for EAS, EUR, and conventional meta-analysis of EAS and EUR. We further compare PRSs constructed by single-nucleotide polymorphisms that have different linkage disequilibrium (LD) scores and minor allele frequencies (MAFs) between EUR and EAS, and observe that lower LD scores or MAF in EAS correspond to poorer PRS performance (AUC = 0.5677, 0.5530, respectively) than higher LD scores or MAF (AUC = 0.589, 0.5993, respectively). We finally build a PRS stratified by LD score differences in EUR and EAS using rescaled meta-analysis, and obtain an AUC of 0.6096, with improvement over other strategies investigated.


Subject(s)
Breast Neoplasms , Genome-Wide Association Study , Asian People/genetics , Breast Neoplasms/genetics , Female , Genetic Predisposition to Disease , Humans , Multifactorial Inheritance , Polymorphism, Single Nucleotide
14.
Int J Cancer ; 151(3): 372-380, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35403707

ABSTRACT

Many risk factors have been identified for breast cancer. The potential causality for some of them remains uncertain, and few studies have comprehensively investigated these associations by molecular subtypes. We performed a two-sample Mendelian randomization (MR) study to evaluate potential causal associations of 23 known and suspected risk factors and biomarkers with breast cancer risk overall and by molecular subtypes using data from the Breast Cancer Association Consortium. The inverse-variance weighted method was used to estimate odds ratios (OR) and 95% confidence interval (CI) for association of each trait with breast cancer risk. Significant associations with breast cancer risk were found for 15 traits, including age at menarche, age at menopause, body mass index, waist-to-hip ratio, height, physical activity, cigarette smoking, sleep duration, and morning-preference chronotype, and six blood biomarkers (estrogens, insulin-like growth factor-1, sex hormone-binding globulin [SHBG], telomere length, HDL-cholesterol and fasting insulin). Noticeably, an increased circulating SHBG was associated with a reduced risk of estrogen receptor (ER)-positive cancer (OR = 0.83, 95% CI: 0.73-0.94), but an elevated risk of ER-negative (OR = 1.12, 95% CI: 0.93-1.36) and triple negative cancer (OR = 1.19, 95% CI: 0.92-1.54) (Pheterogeneity  = 0.01). Fasting insulin was most strongly associated with an increased risk of HER2-negative cancer (OR = 1.94, 95% CI: 1.18-3.20), but a reduced risk of HER2-enriched cancer (OR = 0.46, 95% CI: 0.26-0.81) (Pheterogeneity  = 0.006). Results from sensitivity analyses using MR-Egger and MR-PRESSO were generally consistent. Our study provides strong evidence supporting potential causal associations of several risk factors for breast cancer and suggests potential heterogeneous associations of SHBG and fasting insulin levels with subtypes of breast cancer.


Subject(s)
Breast Neoplasms , Mendelian Randomization Analysis , Biomarkers , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Female , Genome-Wide Association Study , Humans , Insulin , Polymorphism, Single Nucleotide , Risk Factors
15.
Int J Cancer ; 150(6): 916-927, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34664266

ABSTRACT

Colonization of specific bacteria in the human mouth was reported to be associated with gastric cancer risk. However, previous studies were limited by retrospective study designs and low taxonomic resolutions. We performed a prospective case-control study nested within three cohorts to investigate the relationship between oral microbiome and gastric cancer risk. Shotgun metagenomic sequencing was employed to characterize the microbiome in prediagnostic buccal samples from 165 cases and 323 matched controls. Associations of overall microbial richness and abundance of microbial taxa, gene families and metabolic pathways with gastric cancer risk were evaluated via conditional logistic regression. Analyses were performed within each cohort, and results were combined by meta-analyses. We found that overall microbial richness was associated with decreased gastric cancer risk, with an odds ratio (OR) per standard deviation (SD) increase in Simpson's reciprocal index of 0.77 (95% confidence interval [CI] = 0.61-0.99). Nine taxa, 38 gene families and six pathways also showed associations with gastric cancer risk at P < .05. Neisseria mucosa and Prevotella pleuritidis were enriched, while Mycoplasma orale and Eubacterium yurii were depleted among cases with ORs and 95% CIs per SD increase in centered log-ratio transformed taxa abundance of 1.31 (1.03-1.67), 1.26 (1.00-1.57), 0.74 (0.59-0.94) and 0.80 (0.65-0.98), respectively. The top two gene families (P = 3.75 × 10-4 and 3.91 × 10-4 ) and pathways (P = 1.75 × 10-3 and 1.53 × 10-3 ) associated with gastric cancer were related to the decreased risk and are involved in hexitol metabolism. Our study supports the hypothesis that oral microbiota may play a role in gastric cancer etiology.


Subject(s)
Gastrointestinal Microbiome/physiology , Mouth/microbiology , Stomach Neoplasms/etiology , Adult , Black or African American , Aged , Asian People , Female , Humans , Male , Metabolic Networks and Pathways , Middle Aged , Prospective Studies , Risk , Stomach Neoplasms/ethnology , Stomach Neoplasms/metabolism , Stomach Neoplasms/microbiology , White People
16.
Int J Cancer ; 150(6): 928-940, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34664721

ABSTRACT

Evidence suggests that Helicobacter pylori plays a role in gastric cancer (GC) initiation. However, epidemiologic studies on the specific role of other bacteria in the development of GC are lacking. We conducted a case-control study of 89 cases with gastric intestinal metaplasia (IM) and 89 matched controls who underwent upper gastrointestinal endoscopy at three sites affiliated with NYU Langone Health. We performed shotgun metagenomic sequencing using oral wash samples from 89 case-control pairs and antral mucosal brushing samples from 55 case-control pairs. We examined the associations of relative abundances of bacterial taxa and functional pathways with IM using conditional logistic regression with and without elastic-net penalty. Compared with controls, oral species Peptostreptococcus stomatis, Johnsonella ignava, Neisseria elongata and Neisseria flavescens were enriched in cases (odds ratios [ORs] = 1.29-1.50, P = .004-.01) while Lactobacillus gasseri, Streptococcus mutans, S parasanguinis and S sanguinis were under-represented (ORs = 0.66-0.76, P = .006-.042) in cases. Species J ignava and Filifactor alocis in the gastric microbiota were enriched (ORs = 3.27 and 1.43, P = .005 and .035, respectively), while S mutans, S parasanguinis and S sanguinis were under-represented (ORs = 0.61-0.75, P = .024-.046), in cases compared with controls. The lipopolysaccharide and ubiquinol biosynthesis pathways were more abundant in IM, while the sugar degradation pathways were under-represented in IM. The findings suggest potential roles of certain oral and gastric microbiota, which are correlated with regulation of pathways associated with inflammation, in the development of gastric precancerous lesions.


Subject(s)
Gastric Mucosa/pathology , Gastrointestinal Microbiome/physiology , Mouth Mucosa/microbiology , Precancerous Conditions/etiology , Stomach Neoplasms/etiology , Aged , Case-Control Studies , Female , Helicobacter pylori/isolation & purification , Humans , Male , Metagenomics , Metaplasia , Middle Aged
17.
Int J Cancer ; 151(10): 1726-1736, 2022 11 15.
Article in English | MEDLINE | ID: mdl-35765848

ABSTRACT

Several polygenic risk scores (PRSs) have been developed to predict the risk of colorectal cancer (CRC) in European descendants. We used genome-wide association study (GWAS) data from 22 702 cases and 212 486 controls of Asian ancestry to develop PRSs and validated them in two case-control studies (1454 Korean and 1736 Chinese). Eleven PRSs were derived using three approaches: GWAS-identified CRC risk SNPs, CRC risk variants identified through fine-mapping of known risk loci and genome-wide risk prediction algorithms. Logistic regression was used to estimate odds ratios (ORs) and area under the curve (AUC). PRS115-EAS , a PRS with 115 GWAS-reported risk variants derived from East-Asian data, validated significantly better than PRS115-EUR derived from European descendants. In the Korea validation set, OR per SD increase of PRS115-EAS was 1.63 (95% CI = 1.46-1.82; AUC = 0.63), compared with OR of 1.44 (95% CI = 1.29-1.60, AUC = 0.60) for PRS115-EUR . PRS115-EAS/EUR derived using meta-analysis results of both populations slightly improved the AUC to 0.64. Similar but weaker associations were found in the China validation set. Individuals among the highest 5% of PRS115-EAS/EUR have a 2.52-fold elevated CRC risk compared with the medium (41-60th) risk group and have a 12% to 20% risk of developing CRC by age 85. PRSs constructed using results from fine-mapping and genome-wide algorithms did not perform as well as PRS115-EAS and PRS115-EAS/EUR in risk prediction, possibly due to a small sample size. Our results indicate that CRC PRSs are promising in predicting CRC risk in East Asians and highlights the importance of using population-specific data to build CRC risk prediction models.


Subject(s)
Colorectal Neoplasms , Genome-Wide Association Study , Aged, 80 and over , Asian People/genetics , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics , Genetic Predisposition to Disease , Humans , Polymorphism, Single Nucleotide , Risk Factors
18.
Br J Cancer ; 127(8): 1507-1514, 2022 11.
Article in English | MEDLINE | ID: mdl-35882941

ABSTRACT

BACKGROUND: The aetiologic role of circulating proteins in the development of breast cancer subtypes is not clear. We aimed to examine the potential causal effects of circulating proteins on the risk of breast cancer by intrinsic-like subtypes within the Mendelian randomisation (MR) framework. METHODS: MR was performed using summary statistics from two sources: the INTERVAL protein quantitative trait loci (pQTL) Study (1890 circulating proteins and 3301 healthy individuals) and the Breast Cancer Association Consortium (BCAC; 106,278 invasive cases and 91,477 controls). The inverse-variance (IVW)-weighted method was used as the main analysis to evaluate the associations between genetically predicted proteins and the risk of five different intrinsic-like breast cancer subtypes and the weighted median MR method, the Egger regression, the MR-PRESSO, and the MRLocus method were performed as secondary analysis. RESULTS: We identified 98 unique proteins significantly associated with the risk of one or more subtypes (Benjamini-Hochberg false discovery rate < 0.05). Among them, 51 were potentially specific to luminal A-like subtype, 14 to luminal B/Her2-negative-like, 11 to triple negative, 3 to luminal B-like, and 2 to Her2-enriched-like breast cancer (ntotal = 81). Associations for three proteins (ICAM1, PLA2R1 and TXNDC12) showed evident heterogeneity across the subtypes. For example, higher levels of genetically predicted ICAM1 (per unit of increase) were associated with an increased risk of luminal B/HER2-negative-like cancer (OR = 1.06, 95% CI = 1.03-1.08, BH-FDR = 2.43 × 10-4) while inversely associated with triple-negative breast cancer with borderline significance (OR = 0.97, 95% CI = 0.95-0.99, BH-FDR = 0.065, Pheterogeneity < 0.005). CONCLUSIONS: Our study found potential causal associations with the risk of subtypes of breast cancer for 98 proteins. Associations of ICAM1, PLA2R1 and TXNDC12 varied substantially across the subtypes. The identified proteins may partly explain the heterogeneity in the aetiology of distinct subtypes of breast cancer and facilitate the personalised risk assessment of the malignancy.


Subject(s)
Breast Neoplasms , Protein Disulfide Reductase (Glutathione) , Triple Negative Breast Neoplasms , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Female , Humans , Mendelian Randomization Analysis , Receptors, Phospholipase A2
19.
Br J Cancer ; 126(2): 287-296, 2022 02.
Article in English | MEDLINE | ID: mdl-34718358

ABSTRACT

BACKGROUND: African Americans have the highest pancreatic cancer incidence of any racial/ethnic group in the United States. The oral microbiome was associated with pancreatic cancer risk in a recent study, but no such studies have been conducted in African Americans. Poor oral health, which can be a cause or effect of microbial populations, was associated with an increased risk of pancreatic cancer in a single study of African Americans. METHODS: We prospectively investigated the oral microbiome in relation to pancreatic cancer risk among 122 African-American pancreatic cancer cases and 354 controls. DNA was extracted from oral wash samples for metagenomic shotgun sequencing. Alpha and beta diversity of the microbial profiles were calculated. Multivariable conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between microbes and pancreatic cancer risk. RESULTS: No associations were observed with alpha or beta diversity, and no individual microbial taxa were differentially abundant between cases and control, after accounting for multiple comparisons. Among never smokers, there were elevated ORs for known oral pathogens: Porphyromonas gingivalis (OR = 1.69, 95% CI: 0.80-3.56), Prevotella intermedia (OR = 1.40, 95% CI: 0.69-2.85), and Tannerella forsythia (OR = 1.36, 95% CI: 0.66-2.77). CONCLUSIONS: Previously reported associations between oral taxa and pancreatic cancer were not present in this African-American population overall.


Subject(s)
Black People/genetics , Microbiota , Mouth/microbiology , Pancreatic Neoplasms/pathology , Case-Control Studies , Female , Humans , Male , Middle Aged , Pancreatic Neoplasms/epidemiology , Pancreatic Neoplasms/microbiology , Prospective Studies , Risk Factors , United States/epidemiology
20.
Am J Hum Genet ; 105(3): 477-492, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31402092

ABSTRACT

Genome-wide association studies (GWASs) have identified hundreds of genetic risk variants for human cancers. However, target genes for the majority of risk loci remain largely unexplored. It is also unclear whether GWAS risk-loci-associated genes contribute to mutational signatures and tumor mutational burden (TMB) in cancer tissues. We systematically conducted cis-expression quantitative trait loci (cis-eQTL) analyses for 294 GWAS-identified variants for six major types of cancer-colorectal, lung, ovary, prostate, pancreas, and melanoma-by using transcriptome data from the Genotype-Tissue Expression (GTEx) Project, the Cancer Genome Atlas (TCGA), and other public data sources. By using integrative analysis strategies, we identified 270 candidate target genes, including 99 with previously unreported associations, for six cancer types. By analyzing functional genomic data, our results indicate that 180 genes (66.7% of 270) had evidence of cis-regulation by putative functional variants via proximal promoter or distal enhancer-promoter interactions. Together with our previously reported associations for breast cancer risk, our results show that 24 genes are shared by at least two cancer types, including four genes for both breast and ovarian cancer. By integrating mutation data from TCGA, we found that expression levels of 33 and 66 putative susceptibility genes were associated with specific mutational signatures and TMB of cancer-driver genes, respectively, at a Bonferroni-corrected p < 0.05. Together, these findings provide further insight into our understanding of how genetic risk variants might contribute to carcinogenesis through the regulation of susceptibility genes that are related to the biogenesis of somatic mutations.


Subject(s)
Genetic Predisposition to Disease , Mutation , Neoplasms/genetics , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL