Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 181(3): 702-715.e20, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32315619

ABSTRACT

Protein phosphatase 2A (PP2A) enzymes can suppress tumors, but they are often inactivated in human cancers overexpressing inhibitory proteins. Here, we identify a class of small-molecule iHAPs (improved heterocyclic activators of PP2A) that kill leukemia cells by allosterically assembling a specific heterotrimeric PP2A holoenzyme consisting of PPP2R1A (scaffold), PPP2R5E (B56ε, regulatory), and PPP2CA (catalytic) subunits. One compound, iHAP1, activates this complex but does not inhibit dopamine receptor D2, a mediator of neurologic toxicity induced by perphenazine and related neuroleptics. The PP2A complex activated by iHAP1 dephosphorylates the MYBL2 transcription factor on Ser241, causing irreversible arrest of leukemia and other cancer cells in prometaphase. In contrast, SMAPs, a separate class of compounds, activate PP2A holoenzymes containing a different regulatory subunit, do not dephosphorylate MYBL2, and arrest tumor cells in G1 phase. Our findings demonstrate that small molecules can serve as allosteric switches to activate distinct PP2A complexes with unique substrates.


Subject(s)
Protein Phosphatase 2/metabolism , Apoptosis , Cell Cycle Proteins/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Enzyme Activators/metabolism , G1 Phase , Humans , Multiprotein Complexes/metabolism , Multiprotein Complexes/physiology , Phenothiazines/pharmacology , Phosphorylation , Protein Phosphatase 2/physiology , Protein Subunits/metabolism , Trans-Activators/drug effects , Trans-Activators/metabolism , Transcription Factors/metabolism
3.
Br J Haematol ; 201(3): 489-501, 2023 05.
Article in English | MEDLINE | ID: mdl-36746437

ABSTRACT

TET2 inactivating mutations serve as initiating genetic lesions in the transformation of haematopoietic stem and progenitor cells (HSPCs). In this study, we analysed known drugs in zebrafish embryos for their ability to selectively kill tet2-mutant HSPCs in vivo. We found that the exportin 1 (XPO1) inhibitors, selinexor and eltanexor, selectively kill tet2-mutant HSPCs. In serial replating colony assays, these small molecules were selectively active in killing murine Tet2-deficient Lineage-, Sca1+, Kit+ (LSK) cells, and also TET2-inactivated human acute myeloid leukaemia (AML) cells. Selective killing of TET2-mutant HSPCs and human AML cells by these inhibitors was due to increased levels of apoptosis, without evidence of DNA damage based on increased γH2AX expression. The finding that TET2 loss renders HSPCs and AML cells selectively susceptible to cell death induced by XPO1 inhibitors provides preclinical evidence of the selective activity of these drugs, justifying further clinical studies of these small molecules for the treatment of TET2-mutant haematopoietic malignancies, and to suppress clonal expansion in age-related TET2-mutant clonal haematopoiesis.


Subject(s)
Dioxygenases , Leukemia, Myeloid, Acute , Animals , Humans , Mice , Zebrafish , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , DNA-Binding Proteins/genetics , Dioxygenases/metabolism , Exportin 1 Protein
4.
Cell ; 133(5): 864-77, 2008 May 30.
Article in English | MEDLINE | ID: mdl-18510930

ABSTRACT

Evasion of DNA damage-induced cell death, via mutation of the p53 tumor suppressor or overexpression of prosurvival Bcl-2 family proteins, is a key step toward malignant transformation and therapeutic resistance. We report that depletion or acute inhibition of checkpoint kinase 1 (Chk1) is sufficient to restore gamma-radiation-induced apoptosis in p53 mutant zebrafish embryos. Surprisingly, caspase-3 is not activated prior to DNA fragmentation, in contrast to classical intrinsic or extrinsic apoptosis. Rather, an alternative apoptotic program is engaged that cell autonomously requires atm (ataxia telangiectasia mutated), atr (ATM and Rad3-related) and caspase-2, and is not affected by p53 loss or overexpression of bcl-2/xl. Similarly, Chk1 inhibitor-treated human tumor cells hyperactivate ATM, ATR, and caspase-2 after gamma-radiation and trigger a caspase-2-dependent apoptotic program that bypasses p53 deficiency and excess Bcl-2. The evolutionarily conserved "Chk1-suppressed" pathway defines a novel apoptotic process, whose responsiveness to Chk1 inhibitors and insensitivity to p53 and BCL2 alterations have important implications for cancer therapy.


Subject(s)
Apoptosis , Caspase 2/metabolism , DNA Damage , Protein Kinases/metabolism , Signal Transduction , Zebrafish/metabolism , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Caspase 3/metabolism , Cell Line, Tumor , Checkpoint Kinase 1 , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/radiation effects , Enzyme Inhibitors/pharmacology , Gamma Rays , Humans , Proto-Oncogene Proteins c-bcl-2/metabolism , Tumor Suppressor Protein p53/metabolism , Zebrafish/genetics , Zebrafish Proteins/metabolism
5.
Proc Natl Acad Sci U S A ; 117(28): 16516-16526, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32601179

ABSTRACT

LIN28B is highly expressed in neuroblastoma and promotes tumorigenesis, at least, in part, through inhibition of let-7 microRNA biogenesis. Here, we report that overexpression of either wild-type (WT) LIN28B or a LIN28B mutant that is unable to inhibit let-7 processing increases the penetrance of MYCN-induced neuroblastoma, potentiates the invasion and migration of transformed sympathetic neuroblasts, and drives distant metastases in vivo. Genome-wide chromatin immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-seq) and coimmunoprecipitation experiments show that LIN28B binds active gene promoters in neuroblastoma cells through protein-protein interaction with the sequence-specific zinc-finger transcription factor ZNF143 and activates the expression of downstream targets, including transcription factors forming the adrenergic core regulatory circuitry that controls the malignant cell state in neuroblastoma as well as GSK3B and L1CAM that are involved in neuronal cell adhesion and migration. These findings reveal an unexpected let-7-independent function of LIN28B in transcriptional regulation during neuroblastoma pathogenesis.


Subject(s)
N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/metabolism , RNA-Binding Proteins/metabolism , Trans-Activators/metabolism , Animals , Animals, Genetically Modified , Cell Movement , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics , Neuroblastoma/physiopathology , Protein Binding , RNA-Binding Proteins/genetics , Trans-Activators/genetics , Zebrafish
6.
Nat Chem Biol ; 16(6): 635-643, 2020 06.
Article in English | MEDLINE | ID: mdl-32251410

ABSTRACT

Doublecortin like kinase 1 (DCLK1) is an understudied kinase that is upregulated in a wide range of cancers, including pancreatic ductal adenocarcinoma (PDAC). However, little is known about its potential as a therapeutic target. We used chemoproteomic profiling and structure-based design to develop a selective, in vivo-compatible chemical probe of the DCLK1 kinase domain, DCLK1-IN-1. We demonstrate activity of DCLK1-IN-1 against clinically relevant patient-derived PDAC organoid models and use a combination of RNA-sequencing, proteomics and phosphoproteomics analysis to reveal that DCLK1 inhibition modulates proteins and pathways associated with cell motility in this context. DCLK1-IN-1 will serve as a versatile tool to investigate DCLK1 biology and establish its role in cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Pancreatic Neoplasms/drug therapy , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Movement , Doublecortin Protein , Doublecortin-Like Kinases , Drug Screening Assays, Antitumor , Gene Expression Regulation , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/pharmacokinetics , Proteomics , Rats , Structure-Activity Relationship , Zebrafish , Pancreatic Neoplasms
7.
PLoS Genet ; 15(4): e1008039, 2019 04.
Article in English | MEDLINE | ID: mdl-30970016

ABSTRACT

The SWI/SNF-family chromatin remodeling protein ATRX is a tumor suppressor in sarcomas, gliomas and other malignancies. Its loss of function facilitates the alternative lengthening of telomeres (ALT) pathway in tumor cells, while it also affects Polycomb repressive complex 2 (PRC2) silencing of its target genes. To further define the role of inactivating ATRX mutations in carcinogenesis, we knocked out atrx in our previously reported p53/nf1-deficient zebrafish line that develops malignant peripheral nerve sheath tumors and gliomas. Complete inactivation of atrx using CRISPR/Cas9 was lethal in developing fish and resulted in an alpha-thalassemia-like phenotype including reduced alpha-globin expression. In p53/nf1-deficient zebrafish neither peripheral nerve sheath tumors nor gliomas showed accelerated onset in atrx+/- fish, but these fish developed various tumors that were not observed in their atrx+/+ siblings, including epithelioid sarcoma, angiosarcoma, undifferentiated pleomorphic sarcoma and rare types of carcinoma. These cancer types are included in the AACR Genie database of human tumors associated with mutant ATRX, indicating that our zebrafish model reliably mimics a role for ATRX-loss in the early pathogenesis of these human cancer types. RNA-seq of p53/nf1- and p53/nf1/atrx-deficient tumors revealed that down-regulation of telomerase accompanied ALT-mediated lengthening of the telomeres in atrx-mutant samples. Moreover, inactivating mutations in atrx disturbed PRC2-target gene silencing, indicating a connection between ATRX loss and PRC2 dysfunction in cancer development.


Subject(s)
Sarcoma, Experimental/etiology , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , X-linked Nuclear Protein/deficiency , X-linked Nuclear Protein/genetics , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics , Animals , Animals, Genetically Modified , CRISPR-Cas Systems , Carcinogenesis/genetics , Carcinogenesis/metabolism , Disease Models, Animal , Erythropoiesis , Female , Gene Knockout Techniques , Globins/genetics , Humans , Loss of Function Mutation , Male , Neurofibromin 1/deficiency , Neurofibromin 1/genetics , Sarcoma, Experimental/genetics , Sarcoma, Experimental/metabolism , Telomere Homeostasis/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism
8.
Nature ; 528(7582): 418-21, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26560027

ABSTRACT

Neuroblastoma is a paediatric malignancy that typically arises in early childhood, and is derived from the developing sympathetic nervous system. Clinical phenotypes range from localized tumours with excellent outcomes to widely metastatic disease in which long-term survival is approximately 40% despite intensive therapy. A previous genome-wide association study identified common polymorphisms at the LMO1 gene locus that are highly associated with neuroblastoma susceptibility and oncogenic addiction to LMO1 in the tumour cells. Here we investigate the causal DNA variant at this locus and the mechanism by which it leads to neuroblastoma tumorigenesis. We first imputed all possible genotypes across the LMO1 locus and then mapped highly associated single nucleotide polymorphism (SNPs) to areas of chromatin accessibility, evolutionary conservation and transcription factor binding sites. We show that SNP rs2168101 G>T is the most highly associated variant (combined P = 7.47 × 10(-29), odds ratio 0.65, 95% confidence interval 0.60-0.70), and resides in a super-enhancer defined by extensive acetylation of histone H3 lysine 27 within the first intron of LMO1. The ancestral G allele that is associated with tumour formation resides in a conserved GATA transcription factor binding motif. We show that the newly evolved protective TATA allele is associated with decreased total LMO1 expression (P = 0.028) in neuroblastoma primary tumours, and ablates GATA3 binding (P < 0.0001). We demonstrate allelic imbalance favouring the G-containing strand in tumours heterozygous for this SNP, as demonstrated both by RNA sequencing (P < 0.0001) and reporter assays (P = 0.002). These findings indicate that a recently evolved polymorphism within a super-enhancer element in the first intron of LMO1 influences neuroblastoma susceptibility through differential GATA transcription factor binding and direct modulation of LMO1 expression in cis, and this leads to an oncogenic dependency in tumour cells.


Subject(s)
DNA-Binding Proteins/genetics , Enhancer Elements, Genetic/genetics , Genetic Predisposition to Disease/genetics , LIM Domain Proteins/genetics , Neuroblastoma/genetics , Polymorphism, Single Nucleotide/genetics , Transcription Factors/genetics , Acetylation , Alleles , Allelic Imbalance , Binding Sites , Epigenomics , GATA3 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic/genetics , Genome-Wide Association Study , Genotype , Histones/chemistry , Histones/metabolism , Humans , Introns/genetics , Lysine/metabolism , Organ Specificity , Reproducibility of Results
9.
Mol Cell ; 47(5): 681-93, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22854598

ABSTRACT

Biochemical evidence implicates the death-domain (DD) protein PIDD as a molecular switch capable of signaling cell survival or death in response to genotoxic stress. PIDD activity is determined by binding-partner selection at its DD: whereas recruitment of RIP1 triggers prosurvival NF-κB signaling, recruitment of RAIDD activates proapoptotic caspase-2 via PIDDosome formation. However, it remains unclear how interactor selection, and thus fate decision, is regulated at the PIDD platform. We show that the PIDDosome functions in the "Chk1-suppressed" apoptotic response to DNA damage, a conserved ATM/ATR-caspase-2 pathway antagonized by Chk1. In this pathway, ATM phosphorylates PIDD on Thr788 within the DD. This phosphorylation is necessary and sufficient for RAIDD binding and caspase-2 activation. Conversely, nonphosphorylatable PIDD fails to bind RAIDD or activate caspase-2, and engages prosurvival RIP1 instead. Thus, ATM phosphorylation of the PIDD DD enables a binary switch through which cells elect to survive or die upon DNA injury.


Subject(s)
Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Death Domain Receptor Signaling Adaptor Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Tumor Suppressor Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins , CRADD Signaling Adaptor Protein/metabolism , Caspase 2/metabolism , Cell Death , Cell Survival , Cells, Cultured , DNA Damage , HEK293 Cells , HeLa Cells , Humans , Phosphorylation
10.
Blood ; 129(24): 3221-3226, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28270453

ABSTRACT

Somatic mutations within noncoding genomic regions that aberrantly activate oncogenes have remained poorly characterized. Here we describe recurrent activating intronic mutations of LMO2, a prominent oncogene in T-cell acute lymphoblastic leukemia (T-ALL). Heterozygous mutations were identified in PF-382 and DU.528 T-ALL cell lines in addition to 3.7% of pediatric (6 of 160) and 5.5% of adult (9 of 163) T-ALL patient samples. The majority of indels harbor putative de novo MYB, ETS1, or RUNX1 consensus binding sites. Analysis of 5'-capped RNA transcripts in mutant cell lines identified the usage of an intermediate promoter site, with consequential monoallelic LMO2 overexpression. CRISPR/Cas9-mediated disruption of the mutant allele in PF-382 cells markedly downregulated LMO2 expression, establishing clear causality between the mutation and oncogene dysregulation. Furthermore, the spectrum of CRISPR/Cas9-derived mutations provides important insights into the interconnected contributions of functional transcription factor binding. Finally, these mutations occur in the same intron as retroviral integration sites in gene therapy-induced T-ALL, suggesting that such events occur at preferential sites in the noncoding genome.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Response Elements , Adolescent , Adult , Child , Child, Preschool , Female , Gene Expression Regulation, Leukemic , Humans , Jurkat Cells , Male , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
11.
J Immunol ; 199(5): 1706-1715, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28739882

ABSTRACT

CD79a and CD79b proteins associate with Ig receptors as integral signaling components of the B cell Ag receptor complex. To study B cell development in zebrafish, we isolated orthologs of these genes and performed in situ hybridization, finding that their expression colocalized with IgH-µ in the kidney, which is the site of B cell development. CD79 transgenic lines were made by linking the promoter and upstream regulatory segments of CD79a and CD79b to enhanced GFP to identify B cells, as demonstrated by PCR analysis of IgH-µ expression in sorted cells. We crossed these CD79-GFP lines to a recombination activating gene (Rag)2:mCherry transgenic line to identify B cell development stages in kidney marrow. Initiation of CD79:GFP expression in Rag2:mCherry+ cells and the timing of Ig H and L chain expression revealed simultaneous expression of both IgH-µ- and IgL-κ-chains, without progressing through the stage of IgH-µ-chain alone. Rag2:mCherry+ cells without CD79:GFP showed the highest Rag1 and Rag2 mRNAs compared with CD79a and CD79b:GFP+ B cells, which showed strongly reduced Rag mRNAs. Thus, B cell development in zebrafish does not go through a Raghi CD79+IgH-µ+ pre-B cell stage, different from mammals. After the generation of CD79:GFP+ B cells, decreased CD79 expression occurred upon differentiation to Ig secretion, as detected by alteration from membrane to secreted IgH-µ exon usage, similar to in mammals. This confirmed a conserved role for CD79 in B cell development and differentiation, without the requirement of a pre-B cell stage in zebrafish.


Subject(s)
B-Lymphocytes/physiology , CD79 Antigens/metabolism , Fish Proteins/metabolism , Kidney/physiology , Precursor Cells, B-Lymphoid/physiology , Zebrafish/immunology , Animals , Animals, Genetically Modified , CD79 Antigens/genetics , Cell Differentiation , Cloning, Molecular , DNA-Binding Proteins/genetics , Fish Proteins/genetics , Genes, Reporter/genetics , Green Fluorescent Proteins/genetics , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/metabolism , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/metabolism , Lymphocyte Activation , Transgenes/genetics , Zebrafish Proteins/genetics
12.
Br J Haematol ; 177(2): 271-282, 2017 04.
Article in English | MEDLINE | ID: mdl-28295194

ABSTRACT

Activation of tyrosine kinase 2 (TYK2) contributes to the aberrant survival of T-cell acute lymphoblastic leukaemia (T-ALL) cells. Here we demonstrate the anti-leukaemic activity of a novel TYK2 inhibitor, NDI-031301. NDI-031301 is a potent and selective inhibitor of TYK2 that induced robust growth inhibition of human T-ALL cell lines. NDI-031301 treatment of human T-ALL cell lines resulted in induction of apoptosis that was not observed with the JAK inhibitors tofacitinib and baricitinib. Further investigation revealed that NDI-031301 treatment uniquely leads to activation of three mitogen-activated protein kinases (MAPKs), resulting in phosphorylation of ERK, SAPK/JNK and p38 MAPK coincident with PARP cleavage. Activation of p38 MAPK occurred within 1 h of NDI-031301 treatment and was responsible for NDI-031301-induced T-ALL cell death, as pharmacological inhibition of p38 MAPK partially rescued apoptosis induced by TYK2 inhibitor. Finally, daily oral administration of NDI-031301 at 100 mg/kg bid to immunodeficient mice engrafted with KOPT-K1 T-ALL cells was well tolerated, and led to decreased tumour burden and a significant survival benefit. These results support selective inhibition of TYK2 as a promising potential therapeutic strategy for T-ALL.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Protein Kinase Inhibitors/pharmacology , TYK2 Kinase/antagonists & inhibitors , Animals , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/enzymology , Xenograft Model Antitumor Assays
13.
Blood ; 123(16): 2451-9, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24608975

ABSTRACT

The Notch signaling pathway is a regulator of self-renewal and differentiation in several tissues and cell types. Notch is a binary cell-fate determinant, and its hyperactivation has been implicated as oncogenic in several cancers including breast cancer and T-cell acute lymphoblastic leukemia (T-ALL). Recently, several studies also unraveled tumor-suppressor roles for Notch signaling in different tissues, including tissues where it was before recognized as an oncogene in specific lineages. Whereas involvement of Notch as an oncogene in several lymphoid malignancies (T-ALL, B-chronic lymphocytic leukemia, splenic marginal zone lymphoma) is well characterized, there is growing evidence involving Notch signaling as a tumor suppressor in myeloid malignancies. It therefore appears that Notch signaling pathway's oncogenic or tumor-suppressor abilities are highly context dependent. In this review, we summarize and discuss latest advances in the understanding of this dual role in hematopoiesis and the possible consequences for the treatment of hematologic malignancies.


Subject(s)
Genes, Tumor Suppressor/physiology , Oncogenes/physiology , Receptors, Notch/physiology , Animals , Erythrocytes/physiology , Genes, Switch , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/metabolism , Hematopoiesis/genetics , Hematopoietic Stem Cells/physiology , Humans , Megakaryocytes/physiology , Signal Transduction/physiology
14.
Blood ; 123(7): 1040-50, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24394663

ABSTRACT

Although prognosis has improved for children with T-cell acute lymphoblastic leukemia (T-ALL), 20% to 30% of patients undergo induction failure (IF) or relapse. Leukemia-initiating cells (LICs) are hypothesized to be resistant to chemotherapy and to mediate relapse. We and others have shown that Notch1 directly regulates c-Myc, a known regulator of quiescence in stem and progenitor populations, leading us to examine whether c-Myc inhibition results in efficient targeting of T-ALL-initiating cells. We demonstrate that c-Myc suppression by small hairpin RNA or pharmacologic approaches prevents leukemia initiation in mice by eliminating LIC activity. Consistent with its anti-LIC activity in mice, treatment with the BET bromodomain BRD4 inhibitor JQ1 reduces C-MYC expression and inhibits the growth of relapsed and IF pediatric T-ALL samples in vitro. These findings demonstrate a critical role for c-Myc in LIC maintenance and provide evidence that MYC inhibition may be an effective therapy for relapsed/IF T-ALL patients.


Subject(s)
Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/drug effects , Induction Chemotherapy , Neoplastic Stem Cells/drug effects , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , RNA, Small Interfering/pharmacology , Animals , Cell Transformation, Neoplastic/genetics , Cells, Cultured , Child , Gene Silencing , Humans , Mice , Mice, Transgenic , Neoplastic Stem Cells/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Proto-Oncogene Proteins c-myc/genetics , RNA, Small Interfering/therapeutic use , Recurrence , Treatment Failure
15.
Adv Exp Med Biol ; 916: 495-530, 2016.
Article in English | MEDLINE | ID: mdl-27165368

ABSTRACT

Malignant peripheral nerve sheath tumors (MPNST) are tumors derived from Schwann cells or Schwann cell precursors. Although rare overall, the incidence of MPNST has increased with improved clinical management of patients with the neurofibromatosis type 1 (NF1) tumor predisposition syndrome. Unfortunately, current treatment modalities for MPNST are limited, with no targeted therapies available and poor efficacy of conventional radiation and chemotherapeutic regimens. Many murine and zebrafish models of MPNST have been developed, which have helped to elucidate the genes and pathways that are dysregulated in MPNST tumorigenesis, including the p53, and the RB1, PI3K-Akt-mTOR, RAS-ERK and Wnt signaling pathways. Preclinical results have suggested that new therapies, including mTOR and ERK inhibitors, may synergize with conventional chemotherapy in human tumors. The discovery of new genome editing technologies, like CRISPR-cas9, and their successful application to the zebrafish model will enable rapid progress in the faithful modeling of MPNST molecular pathogenesis. The zebrafish model is especially suited for high throughput screening of new targeted therapeutics as well as drugs approved for other purposes, which may help to bring enhanced treatment modalities into human clinical trials for this devastating disease.


Subject(s)
Disease Models, Animal , Nerve Sheath Neoplasms/pathology , Animals , Mice , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/metabolism , Nerve Sheath Neoplasms/therapy , Rodentia , Zebrafish
16.
Br J Haematol ; 168(2): 230-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25256574

ABSTRACT

Activating mutations of the interleukin-7 receptor (IL7R) occur in approximately 10% of patients with T cell acute lymphoblastic leukaemia (T-ALL). Most mutations generate a cysteine at the transmembrane domain leading to receptor homodimerization through disulfide bond formation and ligand-independent activation of STAT5. We hypothesized that the reducing agent N-acetylcysteine (NAC), a well-tolerated drug used widely in clinical practice to treat acetaminophen overdose, would reduce disulfide bond formation, and inhibit mutant IL7R-mediated oncogenic signalling. We found that treatment with NAC disrupted IL7R homodimerization in IL7R-mutant DND-41 cells as assessed by non-reducing Western blot, as well as in a luciferase complementation assay. NAC led to STAT5 dephosphorylation and cell apoptosis at clinically achievable concentrations in DND-41 cells, and Ba/F3 cells transformed by an IL7R-mutant construct containing a cysteine insertion. The apoptotic effects of NAC could be rescued in part by a constitutively active allele of STAT5. Despite using doses lower than those tolerated in humans, NAC treatment significantly inhibited the progression of human DND-41 cells engrafted in immunodeficient mice. Thus, targeting leukaemogenic IL7R homodimerization with NAC offers a potentially effective and feasible therapeutic strategy that warrants testing in patients with T-ALL.


Subject(s)
Acetylcysteine/pharmacology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Laminin/metabolism , Ribosomal Proteins/metabolism , Animals , Apoptosis/physiology , Female , Heterografts , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptors, Laminin/genetics , Ribosomal Proteins/genetics , Signal Transduction
17.
Gastroenterology ; 147(4): 882-892.e8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24998203

ABSTRACT

BACKGROUND & AIMS: Development of pancreatic ductal adenocarcinoma (PDAC) involves activation of c-Ki-ras2 Kirsten rat sarcoma oncogene homolog (KRAS) signaling, but little is known about the roles of proteins that regulate the activity of oncogenic KRAS. We investigated the activities of proteins that interact with KRAS in PDAC cells. METHODS: We used mass spectrometry to demonstrate that heterogeneous nuclear ribonucleoproteins (HNRNP) A2 and B1 (encoded by the gene HNRNPA2B1) interact with KRAS G12V. We used co-immunoprecipitation analyses to study interactions between HNRNPA2B1 and KRAS in KRAS-dependent and KRAS-independent PDAC cell lines. We knocked down HNRNPA2B1 using small hairpin RNAs and measured viability, anchorage-independent proliferation, and growth of xenograft tumors in mice. We studied KRAS phosphorylation using the Phos-tag system. RESULTS: We found that interactions between HRNPA2B1 and KRAS correlated with KRAS-dependency of some human PDAC cell lines. Knock down of HNRNPA2B1 significantly reduced viability, anchorage-independent proliferation, and formation of xenograft tumors by KRAS-dependent PDAC cells. HNRNPA2B1 knock down also increased apoptosis of KRAS-dependent PDAC cells, inactivated c-akt murine thymoma oncogene homolog 1 signaling via mammalian target of rapamycin, and reduced interaction between KRAS and phosphatidylinositide 3-kinase. Interaction between HNRNPA2B1 and KRAS required KRAS phosphorylation at serine 181. CONCLUSIONS: In KRAS-dependent PDAC cell lines, HNRNPA2B1 interacts with and regulates the activity of KRAS G12V and G12D. HNRNPA2B1 is required for KRAS activation of c-akt murine thymoma oncogene homolog 1-mammalian target of rapamycin signaling, interaction with phosphatidylinositide 3-kinase, and PDAC cell survival and tumor formation in mice. HNRNPA2B1 might be a target for treatment of pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins/metabolism , ras Proteins/metabolism , Animals , Apoptosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Adhesion , Cell Proliferation , Cell Survival , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , HeLa Cells , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Humans , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Phosphatidylinositol 3-Kinase/metabolism , Phosphorylation , Protein Binding , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins p21(ras) , RNA Interference , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Time Factors , Transfection , Tumor Burden , Xenograft Model Antitumor Assays , ras Proteins/genetics
18.
Cancer Cell ; 12(5): 411-3, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17996644

ABSTRACT

Constitutive signaling by the NOTCH1 receptor contributes to more than half of all cases of T cell acute lymphoblastic leukemia (T-ALL). However, blocking the proteolytic activation of NOTCH1 with gamma-secretase inhibitors (GSIs) fails to alter the growth of some T-ALL cell lines carrying the mutated receptor. A recent report by Palomero et al. in Nature Medicine identifies loss of PTEN as a critical event leading to resistance to NOTCH inhibition, which causes the transfer of "oncogene addiction" from the NOTCH1 to the PI3K/AKT pathway. This novel observation suggests the need to simultaneously inhibit both pathways as a means to improve therapeutic efficacy in human T-ALL.


Subject(s)
Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Notch1/metabolism , Humans , Leukemia, T-Cell/metabolism , Models, Biological , Mutation , Oncogenes/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Signal Transduction , Transcription, Genetic
19.
Nature ; 459(7249): 996-9, 2009 Jun 18.
Article in English | MEDLINE | ID: mdl-19494811

ABSTRACT

Barrier structures (for example, epithelia around tissues and plasma membranes around cells) are required for internal homeostasis and protection from pathogens. Wound detection and healing represent a dormant morphogenetic program that can be rapidly executed to restore barrier integrity and tissue homeostasis. In animals, initial steps include recruitment of leukocytes to the site of injury across distances of hundreds of micrometres within minutes of wounding. The spatial signals that direct this immediate tissue response are unknown. Owing to their fast diffusion and versatile biological activities, reactive oxygen species, including hydrogen peroxide (H(2)O(2)), are interesting candidates for wound-to-leukocyte signalling. Here we probe the role of H(2)O(2) during the early events of wound responses in zebrafish larvae expressing a genetically encoded H(2)O(2) sensor. This reporter revealed a sustained rise in H(2)O(2) concentration at the wound margin, starting approximately 3 min after wounding and peaking at approximately 20 min, which extended approximately 100-200 microm into the tail-fin epithelium as a decreasing concentration gradient. Using pharmacological and genetic inhibition, we show that this gradient is created by dual oxidase (Duox), and that it is required for rapid recruitment of leukocytes to the wound. This is the first observation, to our knowledge, of a tissue-scale H(2)O(2) pattern, and the first evidence that H(2)O(2) signals to leukocytes in tissues, in addition to its known antiseptic role.


Subject(s)
Hydrogen Peroxide/metabolism , Wounds and Injuries/metabolism , Zebrafish/metabolism , Animals , Diffusion , Larva/metabolism , Leukocytes/cytology , Leukocytes/physiology , NADPH Oxidases/metabolism , Wound Healing/physiology , Wounds and Injuries/enzymology , Wounds and Injuries/pathology , Zebrafish/genetics , Zebrafish Proteins/metabolism
20.
Nat Rev Cancer ; 6(5): 347-59, 2006 May.
Article in English | MEDLINE | ID: mdl-16612405

ABSTRACT

The chromosomal translocation t(7;9) in human T-cell acute lymphoblastic leukaemia (T-ALL) results in deregulated expression of a truncated, activated form of Notch 1 (TAN1) under the control of the T-cell receptor-beta (TCRB) locus. Although TAN1 efficiently induces T-ALL in mouse models, t(7;9) is present in less than 1% of human T-ALL cases. The recent discovery of novel activating mutations in NOTCH1 in more than 50% of human T-ALL samples has made it clear that Notch 1 is far more important in human T-ALL pathogenesis than previously suspected.


Subject(s)
Gene Expression Regulation, Leukemic , Leukemia-Lymphoma, Adult T-Cell/metabolism , Receptor, Notch1/metabolism , Humans , Receptor, Notch1/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL