Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
J Pineal Res ; 74(4): e12867, 2023 May.
Article in English | MEDLINE | ID: mdl-36942915

ABSTRACT

Due to time zones, sun time and local time rarely match. The difference between local and sun time, which we designate by Solar Jet Lag (SoJL), depends on location within a time zone and can range from zero to several hours. Daylight saving time (DST) simply adds 1 h to SoJL, independently of the location. We hypothesised that the impact of DST is particularly problematic in patients with delayed sleep-wake phase disorder (DSWPD), worsening their sleep debt. DSWPD is characterised by a chronic misalignment between the internal and social timing, reflected by an inability to fall asleep and wake-up at conventional or socially acceptable times. We analysed the clinical records of 162 DSWPD patients from a sleep medicine centre in Lisbon, Portugal (GMTzone), and separated them into two groups: the ones diagnosed across DST or across Standard Time (ST). We included 82 patients (54.9% male; age: median [Q1 , Q3 ] 34.5 [25.0, 45.3]; range 16-92; 54 in DST and 28 in ST) who had Dim Light Melatonin Onset (DLMO) measured as a marker for the circadian phase and sleep timing (onset, SO, mid-point, MS and end, SE) self-reported separately for work- and work-free days. Differences between ST and DST were compared using Mann-Whitney or Student's t-tests. On a weekly average, patients in DST slept less (difference between medians of 37 min. p < .01), mainly due to sleep on workdays (SDw, p < .01), which also correlated with SoJL (rsp = .38, p < .01). While the time from DLMO to SO was similar in those in ST or those in DST, the time from DLMO to SE was significantly shorter for those in DST. The average duration between DLMO and sleep end was close to 10.5 h in ST, the biological night length described in the literature. Our results favour perennial ST and suggest assigning time-zones close to sun time to prevent social jetlag and sleep deprivation.


Subject(s)
Circadian Rhythm , Melatonin , Humans , Male , Female , Sleep , Sleep Deprivation , Time
2.
Neurobiol Dis ; 163: 105603, 2022 02.
Article in English | MEDLINE | ID: mdl-34954322

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia, which is neuropathologically characterized by extracellular senile plaques containing amyloid-ß and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein. Previous studies have suggested a role for septin (SEPTIN) protein family members in AD-associated cellular processes. Here, we elucidated the potential role of presynaptic SEPTIN5 protein and its post-translational modifications in the molecular pathogenesis of AD. RNA and protein levels of SEPTIN5 showed a significant decrease in human temporal cortex in relation to the increasing degree of AD-related neurofibrillary pathology. Conversely, an increase in the phosphorylation of the functionally relevant SEPTIN5 phosphorylation site S327 was observed already in the early phases of AD-related neurofibrillary pathology, but not in the cerebrospinal fluid of individuals fulfilling the criteria for mild cognitive impairment due to AD. According to the mechanistic assessments, a link between SEPTIN5 S327 phosphorylation status and the effects of SEPTIN5 on amyloid precursor protein processing and markers of autophagy was discovered in mouse primary cortical neurons transduced with lentiviral constructs encoding wild type SEPTIN5 or SEPTIN5 phosphomutants (S327A and S327D). C57BL/6 J mice intrahippocampally injected with lentiviral wild type SEPTIN5 or phosphomutant constructs did not show changes in cognitive performance after five to six weeks from the start of injections. However, SEPTIN5 S327 phosphorylation status was linked to changes in short-term synaptic plasticity ex vivo at the CA3-CA1 synapse. Collectively, these data suggest that SEPTIN5 and its S327 phosphorylation status play a pivotal role in several cellular processes relevant for AD.


Subject(s)
Hippocampus/metabolism , Neurofibrillary Tangles/metabolism , Septins/metabolism , Synapses/metabolism , Animals , Autophagy/physiology , Disease Models, Animal , Hippocampus/pathology , Humans , Mice , Neurofibrillary Tangles/pathology , Neurons/metabolism , Neurons/pathology , Phosphorylation , Synapses/pathology
3.
Mol Psychiatry ; 25(8): 1876-1900, 2020 08.
Article in English | MEDLINE | ID: mdl-29950682

ABSTRACT

Synaptic dysfunction plays a central role in Alzheimer's disease (AD), since it drives the cognitive decline. An association between a polymorphism of the adenosine A2A receptor (A2AR) encoding gene-ADORA2A, and hippocampal volume in AD patients was recently described. In this study, we explore the synaptic function of A2AR in age-related conditions. We report, for the first time, a significant overexpression of A2AR in hippocampal neurons of aged humans, which is aggravated in AD patients. A similar profile of A2AR overexpression in rats was sufficient to drive age-like memory impairments in young animals and to uncover a hippocampal LTD-to-LTP shift. This was accompanied by increased NMDA receptor gating, dependent on mGluR5 and linked to enhanced Ca2+ influx. We confirmed the same plasticity shift in memory-impaired aged rats and APP/PS1 mice modeling AD, which was rescued upon A2AR blockade. This A2AR/mGluR5/NMDAR interaction might prove a suitable alternative for regulating aberrant mGluR5/NMDAR signaling in AD without disrupting their constitutive activity.


Subject(s)
Aging/metabolism , Long-Term Synaptic Depression , Neurons/metabolism , Receptor, Adenosine A2A/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Adenosine/metabolism , Alzheimer Disease/metabolism , Animals , Cells, Cultured , Hippocampus/metabolism , Humans , Mice , Rats , Rats, Sprague-Dawley , Spatial Memory
4.
Brain ; 142(11): 3636-3654, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31599329

ABSTRACT

Accumulating data support the role of tau pathology in cognitive decline in ageing and Alzheimer's disease, but underlying mechanisms remain ill-defined. Interestingly, ageing and Alzheimer's disease have been associated with an abnormal upregulation of adenosine A2A receptor (A2AR), a fine tuner of synaptic plasticity. However, the link between A2AR signalling and tau pathology has remained largely unexplored. In the present study, we report for the first time a significant upregulation of A2AR in patients suffering from frontotemporal lobar degeneration with the MAPT P301L mutation. To model these alterations, we induced neuronal A2AR upregulation in a tauopathy mouse model (THY-Tau22) using a new conditional strain allowing forebrain overexpression of the receptor. We found that neuronal A2AR upregulation increases tau hyperphosphorylation, potentiating the onset of tau-induced memory deficits. This detrimental effect was linked to a singular microglial signature as revealed by RNA sequencing analysis. In particular, we found that A2AR overexpression in THY-Tau22 mice led to the hippocampal upregulation of C1q complement protein-also observed in patients with frontotemporal lobar degeneration-and correlated with the loss of glutamatergic synapses, likely underlying the observed memory deficits. These data reveal a key impact of overactive neuronal A2AR in the onset of synaptic loss in tauopathies, paving the way for new therapeutic approaches.


Subject(s)
Complement C1q/metabolism , Neurons/metabolism , Receptor, Adenosine A2A/genetics , Receptor, Adenosine A2A/metabolism , Synapses/pathology , Tauopathies/genetics , Tauopathies/pathology , Animals , Autopsy , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Humans , Memory Disorders/etiology , Memory Disorders/psychology , Mice , Mice, Transgenic , Mutation , Spatial Learning , Tauopathies/psychology , tau Proteins/genetics
5.
Mov Disord ; 33(11): 1675-1684, 2018 11.
Article in English | MEDLINE | ID: mdl-30423195

ABSTRACT

Parkinson's disease and other synucleinopathies are characterized by the accumulation of aggregated α-synuclein in intracellular proteinaceous inclusions. The progressive nature of synucleinopathies seems to be related to the cell-to-cell spreading of α-synuclein pathology, and several possible mechanisms have been put forward to explain this phenomenon. In our recent study, we found that α-synuclein oligomers interact with cellular prion protein in glutamatergic synapses. This interaction triggered a signaling cascade involving phosphorylation of Fyn kinase and activation of the N-methyl-d-aspartate receptor, thereby leading to synaptic dysfunction. Here, we present relevant plasma membrane proteins that have been described to interact with α-synuclein and discuss the possible pathological implications. We focus primarily on the prion protein and propose a pathological mechanism in which the interaction between α-synuclein and prion protein leads to the formation of cofilin/actin rods, culminating in long-term potentiation impairment and cognitive dysfunction. We posit that deciphering the mechanisms involved in sensing specific forms of extracellular α-synuclein and transducing this information may prove invaluable in our quest to devise novel diagnostic and therapeutic approaches in PD and other synucleinopathies. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Brain/pathology , Neurodegenerative Diseases/pathology , Prion Proteins/metabolism , Synapses/metabolism , alpha-Synuclein/metabolism , Animals , Brain/metabolism , Cognition Disorders/etiology , Humans , Models, Biological , Neurodegenerative Diseases/complications , Neurodegenerative Diseases/metabolism , Signal Transduction , Synapses/pathology
6.
Brain ; 140(5): 1399-1419, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28398476

ABSTRACT

α-Synuclein misfolding and aggregation is a hallmark in Parkinson's disease and in several other neurodegenerative diseases known as synucleinopathies. The toxic properties of α-synuclein are conserved from yeast to man, but the precise underpinnings of the cellular pathologies associated are still elusive, complicating the development of effective therapeutic strategies. Combining molecular genetics with target-based approaches, we established that glycation, an unavoidable age-associated post-translational modification, enhanced α-synuclein toxicity in vitro and in vivo, in Drosophila and in mice. Glycation affected primarily the N-terminal region of α-synuclein, reducing membrane binding, impaired the clearance of α-synuclein, and promoted the accumulation of toxic oligomers that impaired neuronal synaptic transmission. Strikingly, using glycation inhibitors, we demonstrated that normal clearance of α-synuclein was re-established, aggregation was reduced, and motor phenotypes in Drosophila were alleviated. Altogether, our study demonstrates glycation constitutes a novel drug target that can be explored in synucleinopathies as well as in other neurodegenerative conditions.


Subject(s)
Neurodegenerative Diseases/metabolism , Protein Aggregation, Pathological/metabolism , alpha-Synuclein/metabolism , alpha-Synuclein/toxicity , Aging/metabolism , Animals , Cell Differentiation/drug effects , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Disease Models, Animal , Drosophila , Enzyme Inhibitors/pharmacology , Female , Glycosylation/drug effects , Hippocampus/drug effects , Hippocampus/physiology , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/physiology , Male , Mice , Mice, Transgenic , Protein Processing, Post-Translational , Pyruvaldehyde/pharmacology , Rats , Yeasts/drug effects , Yeasts/physiology , alpha-Synuclein/drug effects , alpha-Synuclein/physiology
7.
Cereb Cortex ; 27(1): 718-730, 2017 01 01.
Article in English | MEDLINE | ID: mdl-26534909

ABSTRACT

Abnormal accumulation of aggregated α-synuclein (aSyn) is a hallmark of sporadic and familial Parkinson's disease (PD) and related synucleinopathies. Recent studies suggest a neuroprotective role of adenosine A2A receptor (A2AR) antagonists in PD. Nevertheless, the precise molecular mechanisms underlying this neuroprotection remain unclear. We assessed the impact of A2AR blockade or genetic deletion (A2AR KO) on synaptic plasticity and neuronal cell death induced by aSyn oligomers. We found that impairment of LTP associated with aSyn exposure was rescued in A2AR KO mice or upon A2AR blockade, through an NMDA receptor-dependent mechanism. The mechanisms underlying these effects were evaluated in SH-SY5Y cells overexpressing aSyn and rat primary neuronal cultures exposed to aSyn. Cell death in both conditions was prevented by selective A2AR antagonists. Interestingly, blockade of these receptors did not interfere with aSyn oligomerization but, instead, reduced the percentage of cells displaying aSyn inclusions. Altogether, our data raise the possibility that the well-documented effects of A2AR antagonists involve the control of the latter stages of aSyn aggregation, thereby preventing the associated neurotoxicity. These findings suggest that A2AR represent an important target for the development of effective drugs for the treatment of PD and related synucleinopathies.


Subject(s)
Neurons/metabolism , Receptor, Adenosine A2A/metabolism , alpha-Synuclein/metabolism , Adenosine A2 Receptor Antagonists/toxicity , Animals , Cell Death/drug effects , Cell Death/physiology , Cell Line, Tumor , Excitatory Postsynaptic Potentials , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Neurons/drug effects , Neurons/pathology , Rats, Wistar , Receptor, Adenosine A2A/genetics , Recombinant Proteins/metabolism , Tissue Culture Techniques , alpha-Synuclein/genetics
9.
J Enzyme Inhib Med Chem ; 32(1): 850-864, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28661196

ABSTRACT

The development of adenosine A2A receptor antagonists has received much interest in recent years for the treatment of neurodegenerative diseases. Based on docking studies, a new series of 2-arylbenzoxazoles has been identified as potential A2AR antagonists. Structure-affinity relationship was investigated in position 2, 5 and 6 of the benzoxazole heterocycle leading to compounds with a micromolar affinity towards the A2A receptor. Compound F1, with an affinity of 1 µm, presented good absorption, distribution, metabolism and excretion properties with an excellent aqueous solubility (184 µm) without being cytotoxic at 100 µm. This compound, along with low-molecular weight compound D1 (Ki = 10 µm), can be easily modulated and thus considered as relevant starting points for further hit-to-lead optimisation.


Subject(s)
Adenosine A2 Receptor Antagonists/pharmacology , Benzoxazoles/pharmacology , Drug Design , Receptor, Adenosine A2A/metabolism , Adenosine A2 Receptor Antagonists/chemical synthesis , Adenosine A2 Receptor Antagonists/chemistry , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Cell Death/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Models, Molecular , Molecular Structure , Solubility , Structure-Activity Relationship , Tumor Cells, Cultured
10.
Biochem Soc Trans ; 42(2): 587-92, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24646282

ABSTRACT

AD (Alzheimer's disease) is the most prevalent form of dementia in the aged population. Definitive diagnosis of AD is based on the presence of senile plaques and neurofibrillary tangles that are identified in post-mortem brain specimens. A third pathological component is inflammation. AD results from multiple genetic and environmental risk factors. Among other factors, epidemiological studies report beneficial effects of caffeine, a non-selective antagonist of adenosine receptors. In the present review, we discuss the impact of caffeine and the adenosinergic system in AD pathology as well as consequences in terms of pathology and therapeutics.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Caffeine/therapeutic use , Purinergic P1 Receptor Antagonists/therapeutic use , Animals , Humans , Receptors, Purinergic P1/metabolism
11.
J Neurosci ; 32(34): 11750-62, 2012 Aug 22.
Article in English | MEDLINE | ID: mdl-22915117

ABSTRACT

Parkinson's disease (PD) is the most common representative of a group of disorders known as synucleinopathies, in which misfolding and aggregation of α-synuclein (a-syn) in various brain regions is the major pathological hallmark. Indeed, the motor symptoms in PD are caused by a heterogeneous degeneration of brain neurons not only in substantia nigra pars compacta but also in other extrastriatal areas of the brain. In addition to the well known motor dysfunction in PD patients, cognitive deficits and memory impairment are also an important part of the disorder, probably due to disruption of synaptic transmission and plasticity in extrastriatal areas, including the hippocampus. Here, we investigated the impact of a-syn aggregation on AMPA and NMDA receptor-mediated rat hippocampal (CA3-CA1) synaptic transmission and long-term potentiation (LTP), the neurophysiological basis for learning and memory. Our data show that prolonged exposure to a-syn oligomers, but not monomers or fibrils, increases basal synaptic transmission through NMDA receptor activation, triggering enhanced contribution of calcium-permeable AMPA receptors. Slices treated with a-syn oligomers were unable to respond with further potentiation to theta-burst stimulation, leading to impaired LTP. Prior delivery of a low-frequency train reinstated the ability to express LTP, implying that exposure to a-syn oligomers drives the increase of glutamatergic synaptic transmission, preventing further potentiation by physiological stimuli. Our novel findings provide mechanistic insight on how a-syn oligomers may trigger neuronal dysfunction and toxicity in PD and other synucleinopathies.


Subject(s)
Long-Term Potentiation/drug effects , Synapses/drug effects , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , alpha-Synuclein/pharmacology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Animals , Biophysics , Biotinylation , Cell Line, Tumor , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Extracellular Fluid/metabolism , Hippocampus/cytology , Humans , Insulin/pharmacology , L-Lactate Dehydrogenase/metabolism , Long-Term Potentiation/physiology , Male , Neuroblastoma/pathology , Organ Culture Techniques , Patch-Clamp Techniques , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism , Valine/analogs & derivatives , Valine/pharmacology , alpha-Synuclein/biosynthesis , alpha-Synuclein/chemistry
12.
Aging Cell ; 22(3): e13778, 2023 03.
Article in English | MEDLINE | ID: mdl-36704841

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) are critical for the maturation and plasticity of glutamatergic synapses. In the hippocampus, NMDARs mainly contain GluN2A and/or GluN2B regulatory subunits. The amyloid precursor protein (APP) has emerged as a putative regulator of NMDARs, but the impact of this interaction to their function is largely unknown. By combining patch-clamp electrophysiology and molecular approaches, we unravel a dual mechanism by which APP controls GluN2B-NMDARs, depending on the life stage. We show that APP is highly abundant specifically at the postnatal postsynapse. It interacts with GluN2B-NMDARs, controlling its synaptic content and mediated currents, both in infant mice and primary neuronal cultures. Upon aging, the APP amyloidogenic-derived C-terminal fragments, rather than APP full-length, contribute to aberrant GluN2B-NMDAR currents. Accordingly, we found that the APP processing is increased upon aging, both in mice and human brain. Interfering with stability or production of the APP intracellular domain normalized the GluN2B-NMDARs currents. While the first mechanism might be essential for synaptic maturation during development, the latter could contribute to age-related synaptic impairments.


Subject(s)
Amyloid beta-Protein Precursor , Receptors, N-Methyl-D-Aspartate , Mice , Humans , Animals , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction , Hippocampus/metabolism , Synapses/metabolism
13.
J Neurochem ; 123(6): 1030-40, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23057965

ABSTRACT

In situations of hypoxia, glutamate excitotoxicity induces neuronal death. The release of extracellular adenosine is also triggered and is accompanied by an increase of the stress mediator, corticotrophin-releasing factor (CRF). Adenosine A(2A) receptors contribute to glutamate excitoxicity and their blockade is effective in stress-induced neuronal deficits, but the involvement of CRF on this effect was never explored. We now evaluated the interaction between A(2A) and CRF receptors (CRFR) function, upon glutamate insult. Primary rat cortical neuronal cultures (9 days in vitro) expressing both CRF(1)R and CRF(2)R were challenged with glutamate (20-1000 µM, 24 h). CRF(1)R was found to co-localize with neuronal markers and CRF(2)R to be present in both neuronal and glial cells. The effects of the CRF and A(2A) receptors ligands on cell viability were measured using propidium iodide and Syto-13 fluorescence staining. Glutamate decreased cell viability in a concentration-dependent manner. Urocortin (10 pM), an agonist of CRF receptors, increased cell survival in the presence of glutamate. This neuroprotective effect was abolished by blocking either CRF(1)R or CRF(2)R with antalarmin (10 nM) or anti-Sauvagine-30 (10 nM), respectively. The blockade of A(2A) receptors with a selective antagonist SCH 58261 (50 nM) improved cell viability against the glutamate insult. This effect was dependent on CRF(2)R, but not on CRF(1)R activation. Overall, these data show a protective role of CRF in cortical neurons, against glutamate-induced death. The neuroprotection achieved by A(2A) receptors blockade requires CRF(2)R activation. This interaction between the adenosine and CRF receptors can explain the beneficial effects of using A(2A) receptor antagonists against stress-induced noxious effects.


Subject(s)
Adenosine A2 Receptor Antagonists/pharmacology , Corticotropin-Releasing Hormone/physiology , Glutamic Acid/toxicity , Neural Inhibition/drug effects , Neurons/drug effects , Neuroprotective Agents/pharmacology , Receptor, Adenosine A2A/metabolism , Animals , Cerebral Cortex/pathology , Glutamic Acid/metabolism , Neural Inhibition/physiology , Neurons/metabolism , Neurons/pathology , Primary Cell Culture , Pyrimidines/pharmacology , Pyrroles/pharmacology , Rats , Rats, Sprague-Dawley , Triazoles/pharmacology
14.
NPJ Parkinsons Dis ; 8(1): 51, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35468899

ABSTRACT

Alpha-synuclein (aSyn) is a central player in the pathogenesis of synucleinopathies due to its accumulation in typical protein aggregates in the brain. However, it is still unclear how it contributes to neurodegeneration. Type-2 diabetes mellitus is a risk factor for Parkinson's disease (PD). Interestingly, a common molecular alteration among these disorders is the age-associated increase in protein glycation. We hypothesized that glycation-induced neuronal dysfunction is a contributing factor in synucleinopathies. Here, we dissected the impact of methylglyoxal (MGO, a glycating agent) in mice overexpressing aSyn in the brain. We found that MGO-glycation potentiates motor, cognitive, olfactory, and colonic dysfunction in aSyn transgenic (Thy1-aSyn) mice that received a single dose of MGO via intracerebroventricular injection. aSyn accumulates in the midbrain, striatum, and prefrontal cortex, and protein glycation is increased in the cerebellum and midbrain. SWATH mass spectrometry analysis, used to quantify changes in the brain proteome, revealed that MGO mainly increase glutamatergic-associated proteins in the midbrain (NMDA, AMPA, glutaminase, VGLUT and EAAT1), but not in the prefrontal cortex, where it mainly affects the electron transport chain. The glycated proteins in the midbrain of MGO-injected Thy1-aSyn mice strongly correlate with PD and dopaminergic pathways. Overall, we demonstrated that MGO-induced glycation accelerates PD-like sensorimotor and cognitive alterations and suggest that the increase of glutamatergic signaling may underly these events. Our study sheds new light into the enhanced vulnerability of the midbrain in PD-related synaptic dysfunction and suggests that glycation suppressors and anti-glutamatergic drugs may hold promise as disease-modifying therapies for synucleinopathies.

15.
J Clin Invest ; 132(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35536645

ABSTRACT

Caffeine is the most widely consumed psychoactive substance in the world. Strikingly, the molecular pathways engaged by its regular consumption remain unclear. We herein addressed the mechanisms associated with habitual (chronic) caffeine consumption in the mouse hippocampus using untargeted orthogonal omics techniques. Our results revealed that chronic caffeine exerts concerted pleiotropic effects in the hippocampus at the epigenomic, proteomic, and metabolomic levels. Caffeine lowered metabolism-related processes (e.g., at the level of metabolomics and gene expression) in bulk tissue, while it induced neuron-specific epigenetic changes at synaptic transmission/plasticity-related genes and increased experience-driven transcriptional activity. Altogether, these findings suggest that regular caffeine intake improves the signal-to-noise ratio during information encoding, in part through fine-tuning of metabolic genes, while boosting the salience of information processing during learning in neuronal circuits.


Subject(s)
Caffeine , Proteomics , Animals , Caffeine/metabolism , Caffeine/pharmacology , Hippocampus/metabolism , Learning , Mice , Neuronal Plasticity/physiology
16.
Expert Rev Proteomics ; 8(5): 605-14, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21999831

ABSTRACT

Gut functions such as digestion and absorption are essential to life and the emerging insights into the gut-brain axis - that is, the cross talk between the enteric and CNS - point towards critical links between (eating) behavior, psychology, whole body and gut physiology, and digestive and overall health. While proteomics is ideally positioned to shed more light on these interactions, be it applied to the periphery (e.g., blood) or the locus of action (i.e., the gut), it is to date largely underexploited, mainly because of challenging sampling and tissue complexity. In view of the contrast between potential and current delivery of proteomics in the context of intestinal health, this article briefs the reader on the state-of-the-art of molecular intestinal research, reviews current proteomic studies (explicitly focusing on the most recent ones that target inflammatory bowel disease patient samples) and argues for an expansion of this research field.


Subject(s)
Enteric Nervous System/metabolism , Gastrointestinal Tract/metabolism , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/psychology , Proteome/analysis , Proteomics/methods , Animals , Behavior/physiology , Central Nervous System/metabolism , Central Nervous System/physiology , Digestion/physiology , Enteric Nervous System/physiology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/physiology , Humans , Immune System/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/physiology
17.
Science ; 374(6568): 684-685, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34735229

ABSTRACT

Adenosine fine-tunes the fate of nascent synapses in brain development.


Subject(s)
Synapses
18.
eNeuro ; 8(4)2021.
Article in English | MEDLINE | ID: mdl-34210659

ABSTRACT

Stereotaxic access to brain areas underneath the superior sagittal sinus (SSS) is notoriously challenging. As a major drainage vessel, covering the whole extension of the sagittal fissure, the SSS impedes direct bilateral access to underlying regions for recording and stimulation probes, drug-delivery cannulas, and injection devices. We now describe a new method for transection and retraction of the SSS in rats, that allows the accurate placement of microinjection devices, or chronic electrode probes, while avoiding hemorrhage and the ensuing deleterious consequences for local structures, animal health, and behavior. To demonstrate the feasibility of this approach we evaluated its consequences acutely during surgery, and thereafter during surgical survival, recovery, behavioral testing, as well as postmortem analysis of histologic impact in the related brain structures of male rats. This method provides a new approach enabling direct access for manipulation and recording of activity in brain areas previously obstructed by the SSS.


Subject(s)
Rodentia , Superior Sagittal Sinus , Animals , Brain , Male , Rats
19.
Cell Rep ; 36(9): 109574, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34469732

ABSTRACT

Neuroinflammation in patients with Alzheimer's disease (AD) and related mouse models has been recognized for decades, but the contribution of the recently described meningeal immune population to AD pathogenesis remains to be addressed. Here, using the 3xTg-AD model, we report an accumulation of interleukin-17 (IL-17)-producing cells, mostly γδ T cells, in the brain and the meninges of female, but not male, mice, concomitant with the onset of cognitive decline. Critically, IL-17 neutralization into the ventricles is sufficient to prevent short-term memory and synaptic plasticity deficits at early stages of disease. These effects precede blood-brain barrier disruption and amyloid-beta or tau pathology, implying an early involvement of IL-17 in AD pathology. When IL-17 is neutralized at later stages of disease, the onset of short-memory deficits and amyloidosis-related splenomegaly is delayed. Altogether, our data support the idea that cognition relies on a finely regulated balance of "inflammatory" cytokines derived from the meningeal immune system.


Subject(s)
Alzheimer Disease/metabolism , Behavior, Animal , Brain/metabolism , Cognition , Inflammation Mediators/metabolism , Interleukin-17/metabolism , Intraepithelial Lymphocytes/metabolism , Neuroinflammatory Diseases/metabolism , Synapses/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/prevention & control , Alzheimer Disease/psychology , Animals , Anti-Inflammatory Agents/pharmacology , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Behavior, Animal/drug effects , Brain/drug effects , Brain/pathology , Cognition/drug effects , Disease Models, Animal , Female , Inflammation Mediators/antagonists & inhibitors , Interleukin-17/antagonists & inhibitors , Intraepithelial Lymphocytes/drug effects , Male , Memory, Short-Term , Mice, 129 Strain , Mice, Transgenic , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/prevention & control , Neuroinflammatory Diseases/psychology , Neuronal Plasticity , Synapses/drug effects , Synapses/pathology
20.
Front Physiol ; 11: 795, 2020.
Article in English | MEDLINE | ID: mdl-32760292

ABSTRACT

INTRODUCTION: Differences in the manner circadian clocks entrain to the 24-h day are expressions of different chronotypes that can range from extreme early to extreme late, from proverbial larks to owls. The Morningness Eveningness Questionnaire (MEQ) was one of the first to assess daily preference based on subjective self-assessment - a psychological construct. The later developed Munich Chronotype Questionnaire (MCTQ) uses instead the actual sleep timing to assess chronotype. It calculates the mid-sleep point, halfway between onset and offset on work-free days (MSF), which is then corrected for potential oversleep on free days compensating for sleep debt accumulated over the workweek (MSFsc). MSFsc is expressed in local time and is thought to be a proxy for "phase of entrainment" of the circadian clock. The MCTQ-derived chronotype is therefore a biological construct. In the present report, we validate the Portuguese variant (MCTQPT) of the MCTQ. Portugal is of particular interest, since it is thought to consist of especially late chronotypes. METHODS: We have used three methods to assess the timing of daily behavior, namely, the chronotype (MCTQ), the daily preference (rMEQ), and a simple self-assessment (time-of-day type). A total of 80 healthy adults living in Portugal, with age and sex distributed according to the Portuguese population, were recruited. We analyzed 4 weeks of continuous records of actimetry data to validate the MCTQPT and used the rMEQ to compare between a biological chronotype (sleep timing) and a psychological chronotype (daily preference). MCTQ variables were analyzed by descriptive statistics; correspondence between measurements was done by Spearman correlations or cross-tabulation; in a subset of 41 individuals, test-retest reliability was assessed. RESULTS: MCTQ-derived variables (MSF, MSW, MSFsc) correlated highly with their counterparts calculated from actimetry (MSW: rho = 0.697; MSF: rho = 0.747; MSFsc: rho = 0.646; all p < 0.001). The MCTQ assessment of the chronotype showed good test-retest reliability (rho = 0.905; p < 0.001). The rMEQ score correlates with MSFsc (rho = -0.695; p < 0.001), and the agreement for the self-assessment with the MSFsc was fair (kw = 0.386; p < 0.001). CONCLUSION: The Portuguese variant of the MCTQ revealed to be a reliable questionnaire to assess the chronotype for the Portuguese adult population, as previously reported for other countries.

SELECTION OF CITATIONS
SEARCH DETAIL