Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Immunol ; 212(4): 632-644, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38180236

ABSTRACT

Distinct subsets of T lymphocytes express CX3CR1 under inflammatory conditions, but little is known about CX3CR1+CD4+ T cells during type 2 inflammation in helminth infections. In this study, we used a fate-mapping mouse model to characterize CX3CR1+CD4+ T cells during both acute Nippostrongylus brasiliensis and chronic Schistosoma mansoni murine models of helminth infections, revealing CX3CR1+CD4+ T cells to be an activated tissue-homing subset with varying capacity for cytokine production. Tracking these cells over time revealed that maintenance of CX3CR1 itself along with a TH2 phenotype conferred a survival advantage in the inflamed tissue. Single-cell RNA sequencing analysis of fate-mapped CX3CR1+CD4+ T cells from both the peripheral tissue and the spleen revealed a considerable level of diversity and identified a distinct population of BCL6+TCF-1+PD1+CD4+ T cells in the spleen during helminth infections. Conditional deletion of BCL6 in CX3CR1+ cells resulted in fewer CX3CR1+CD4+ T cells during infection, indicating a role in sustaining CD4+ T cell responses to helminth infections. Overall, our studies revealed the behavior and heterogeneity of CX3CR1+CD4+ T cells during type 2 inflammation in helminth infections and identified BCL6 to be important in their maintenance.


Subject(s)
CD4-Positive T-Lymphocytes , Helminthiasis , Schistosoma mansoni , Animals , Mice , CD4-Positive T-Lymphocytes/metabolism , Helminthiasis/immunology , Inflammation/metabolism , Schistosoma mansoni/physiology
2.
J Immunol ; 211(5): 836-843, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37466391

ABSTRACT

Our previous studies identified a population of stem cell-like proliferating myeloid cells within inflamed tissues that could serve as a reservoir for tissue macrophages to adopt different activation states depending on the microenvironment. By lineage-tracing cells derived from CX3CR1+ precursors in mice during infection and profiling by single-cell RNA sequencing, in this study, we identify a cluster of BIRC5+ myeloid cells that expanded in the liver during chronic infection with either the parasite Schistosoma mansoni or the bacterial pathogen Staphylococcus aureus. In the absence of tissue-damaging toxins, S. aureus infection does not elicit these BIRC5+ cells. Moreover, deletion of BIRC5 from CX3CR1-expressing cells results in improved survival during S. aureus infection. Hence the combination of single-cell RNA sequencing and genetic fate-mapping CX3CR1+ cells revealed a toxin-dependent pathogenic role for BIRC5 in myeloid cells during S. aureus infection.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Mice , Animals , Myeloid Cells/pathology , Single-Cell Analysis , Staphylococcal Infections/microbiology
3.
J Hum Genet ; 62(5): 581-584, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28123174

ABSTRACT

Ataxia-telangiectasia (A-T) is an autosomal recessive chromosome breakage disorder caused by mutations in the ATM gene. Typically, it presents in early childhood with progressive cerebellar dysfunction along with immunodeficiency and oculocutaneous telangiectasia. An increased risk of malignancy is also associated with the syndrome and, rarely, may be the presenting feature in small children. We describe a 17-year-old boy with slurred speech, mild motor delays and learning disability diagnosed with atypical A-T in the setting of T-cell acute lymphoblastic leukemia. Suspicion for A-T was raised after review of a peripheral blood karyotype demonstrating rearrangements involving chromosomes 7 and/or 14. The diagnosis was confirmed after molecular testing identified a novel homozygous missense variant in ATM (c.5585T>A; p.Leu1862His) that resulted in protein instability and abolished serine/threonine protein kinase activity. To our knowledge, this is the first report of concurrent A-T and lymphoid malignancy diagnoses in an older child or adult with only mild neurological disease. Our experience suggests that screening for the disorder should be considered in any individual with lymphoid malignancy and neurological findings, especially as radiation and certain chemotherapy protocols are contraindicated in A-T.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia/complications , Ataxia Telangiectasia/diagnosis , Mutation/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Child , Child, Preschool , Humans , Infant , Male
4.
bioRxiv ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36909517

ABSTRACT

Our previous studies identified a population of stem cell-like proliferating myeloid cells within inflamed tissues that could serve as a reservoir for tissue macrophages to adopt different activation states depending on the microenvironment. By lineage tracing cells derived from CX3CR1 + precursors in mice during infection and profiling by scRNA-seq, here we identify a cluster of BIRC5 + myeloid cells that expanded in the liver during either chronic infection with the parasite Schistosoma mansoni or the bacterial pathogen Staphylococcus aureus . In the absence of tissue damaging toxins, S. aureus infection does not elicit these BIRC5 + cells. Moreover, deletion of BIRC5 from CX3CR1 expressing cells results in improved survival during S. aureus infection. Hence, the combination of scRNA-Seq and genetic fate mapping CX3CR1 + cells revealed a toxin dependent pathogenic role for BIRC5 in myeloid cells during S. aureus infection.

5.
Elife ; 52016 06 15.
Article in English | MEDLINE | ID: mdl-27304073

ABSTRACT

Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (Atm(KD/-)) is more oncogenic than loss of ATM (Atm(-/-)) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate Atm(KD/-), but not Atm-proficientor Atm(-/-) leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy.


Subject(s)
Carcinogenesis , Topoisomerase I Inhibitors/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Disease Models, Animal , Lymphoma/drug therapy , Lymphoma/physiopathology , Mice
6.
J Hematol Oncol ; 8: 94, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26219558

ABSTRACT

Bcl11b is a transcription factor important for T cell development and also a tumor-suppressor gene that is hemizygously inactivated in ~10% human T cell acute lymphoblastic leukemia (T-ALL) and several murine T-ALL models, including ATM(-/-) thymic lymphomas. Here we report that heterozygous loss of Bcl11b (Bcl11b(+/-)) unexpectedly reduced lethal thymic lymphoma in ATM(-/-) mice by suppressing lymphoma progression, but not initiation. The suppression was associated with a T cell-mediated immune response in ATM(-/-)Bcl11b(+/-) mice, revealing a haploid insufficient function of Bcl11b in immune modulation against lymphoma and offering an explanation for the complex relationship between Bcl11b status with T-ALL prognosis.


Subject(s)
Haploinsufficiency/immunology , Lymphoma, T-Cell/immunology , Repressor Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Disease Progression , Gene Expression Regulation , Humans , Lymphoma, T-Cell/pathology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL