Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phys Rev Lett ; 104(13): 135504, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20481894

ABSTRACT

Experimental results showing significant reductions from classical in the Rayleigh-Taylor instability growth rate due to high pressure effective lattice viscosity are presented. Using a laser created ramped drive, vanadium samples are compressed and accelerated quasi-isentropically at approximately 1 Mbar peak pressures, while maintaining the sample in the solid state. Comparisons with simulations and theory indicate that the high pressure, high strain rate conditions trigger a phonon drag mechanism, resulting in the observed high effective lattice viscosity and strong stabilization of the Rayleigh-Taylor instability.

2.
Science ; 293(5537): 2063-6, 2001 Sep 14.
Article in English | MEDLINE | ID: mdl-11557886

ABSTRACT

The preferred sense of product molecule rotation (clockwise or counterclockwise) in a bimolecular collision system has been measured. Rotationally inelastic collisions of nitric oxide (NO) molecules with Ar atoms were studied by combining crossed molecular beams, circularly polarized resonant multiphoton ionization probing, and velocity-mapped ion imaging detection. The observed sense of NO product rotation varies with deflection angle and is a strong function of the NO final rotational state. The largest preferences for sense of rotation are observed at the highest kinematically allowed product rotational states; for lower rotational states, the variation with deflection angle becomes oscillatory. Quantum calculations on the most recently reported NO-Ar potential give good agreement with the observed oscillation patterns in the sense of rotation.

3.
Phys Rev Lett ; 92(7): 075002, 2004 Feb 20.
Article in English | MEDLINE | ID: mdl-14995863

ABSTRACT

A new method for shockless compression and acceleration of solid materials is presented. A plasma reservoir pressurized by a laser-driven shock unloads across a vacuum gap and piles up against an Al sample thus providing the drive. The rear surface velocity of the Al was measured with a line VISAR, and used to infer load histories. These peaked between approximately 0.14 and 0.5 Mbar with strain rates approximately 10(6)-10(8) s(-1). Detailed simulations suggest that apart from surface layers the samples can remain close to the room temperature isentrope. The experiments, analysis, and future prospects are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL