Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Nanomedicine ; 11(5): 1253-63, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25791811

ABSTRACT

Nanotechnology represents a major frontier with potential to significantly advance the field of bone tissue engineering. Current limitations in regenerative strategies include impaired cellular proliferation and differentiation, insufficient mechanical strength of scaffolds, and inadequate production of extrinsic factors necessary for efficient osteogenesis. Here we review several major areas of research in nanotechnology with potential implications in bone regeneration: 1) nanoparticle-based methods for delivery of bioactive molecules, growth factors, and genetic material, 2) nanoparticle-mediated cell labeling and targeting, and 3) nano-based scaffold construction and modification to enhance physicochemical interactions, biocompatibility, mechanical stability, and cellular attachment/survival. As these technologies continue to evolve, ultimate translation to the clinical environment may allow for improved therapeutic outcomes in patients with large bone deficits and osteodegenerative diseases. FROM THE CLINICAL EDITOR: Traditionally, the reconstruction of bony defects has relied on the use of bone grafts. With advances in nanotechnology, there has been significant development of synthetic biomaterials. In this article, the authors provided a comprehensive review on current research in nanoparticle-based therapies for bone tissue engineering, which should be useful reading for clinicians as well as researchers in this field.


Subject(s)
Bone Regeneration , Nanotechnology/methods , Tissue Engineering/methods , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Drug Delivery Systems/methods , Humans , Nanomedicine/methods , Nanoparticles/chemistry , Nanoparticles/metabolism , Regenerative Medicine/methods , Staining and Labeling/methods , Tissue Scaffolds/chemistry
2.
Plast Reconstr Surg ; 116(5): 1387-90; discussion 1391-2, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16217483

ABSTRACT

BACKGROUND: Hypertrophic scars and keloids respond to dermal disruption with excessive collagen deposition and increased transforming growth factor (TFG)-beta expression. Connective tissue growth factor (CTGF) is a downstream mediator of TGF-beta activity that is associated with scar and fibrosis. The authors hypothesize that there is increased expression of CTGF by hypertrophic scar and keloid fibroblasts in response to TGF-beta stimulation. METHODS: Primary fibroblasts were isolated in culture from human hypertrophic scar (n = 2), keloid (n = 2), and normal skin (n = 2). After 18 hours of serum starvation, the cells were stimulated with 10 ng/ml of TGF-beta1, TGF-beta2, and TGF-beta3 for 24 hours. Quantitative real-time polymerase chain reaction was performed on extracted RNA samples to assay for CTGF mRNA expression. RESULTS: Baseline CTGF expression was increased 20-fold in unstimulated hypertrophic scar fibroblasts and 15-fold in keloid fibroblasts compared with normal fibroblasts. CTGF expression increased greater than 150-fold when stimulated with TGF-beta1 (p < 0.002) and greater than 100-fold when stimulated by TGF-beta2 or TGF-beta3 compared with normal fibroblasts (p < 0.02 and p < 0.002, respectively). CTGF expression was greatest after TGF-beta1 stimulation in hypertrophic scar fibroblasts compared with TGF-beta2 (p < 0.04) and TGF-beta3 (p < 0.02). Keloid fibroblast CTGF expression also increased greater than 100-fold after stimulation with TGF-beta1 (p = 0.16) and greater than 75-fold after addition of TGF-beta2 and TGF-beta3 (p = 0.06 and p = 0.22, respectively). CONCLUSIONS: Hypertrophic scar fibroblasts have both intrinsic up-regulation of CTGF transcription and an exaggerated capacity for CTGF transcription in response to TGF-beta stimulation. These data suggest that blockage of CTGF activity may reduce pathologic scar formation.


Subject(s)
Cicatrix, Hypertrophic/metabolism , Fibroblasts/metabolism , Immediate-Early Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Transforming Growth Factor beta/physiology , Adult , Cells, Cultured , Child , Connective Tissue Growth Factor , Female , Humans , Keloid/metabolism , Male
SELECTION OF CITATIONS
SEARCH DETAIL