Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Ecol Appl ; 28(6): 1606-1615, 2018 09.
Article in English | MEDLINE | ID: mdl-29874410

ABSTRACT

The effects of anthropogenic stressors on community structure and ecosystem functioning can be strongly influenced by local habitat structure and dispersal from source communities. Catchment land uses increase the input of fine sediments into stream channels, clogging the interstitial spaces of benthic habitats. Aquatic macrophytes enhance habitat heterogeneity and mediate important ecosystem functions, being thus a key component of habitat structure in many streams. Therefore, the recovery of macrophytes following in-stream habitat modification may be prerequisite for successful stream restoration. Restoration success is also affected by dispersal of organisms from the source community, with potentially the strongest responses in relatively isolated headwater sites that receive a limited amount of dispersing individuals. We used a factorial design in a set of stream mesocosms to study the independent and combined effects of an anthropogenic stressor (sand sedimentation), local habitat (macrophytes, i.e., moss transplants), and enhanced dispersal (two levels: high vs. low) on organic matter retention, algal accrual rate, leaf decomposition, and macroinvertebrate community structure. Overall, all responses were simple additive effects with no interactions between treatments. Sand reduced algal accumulation, total invertebrate density, and density of a few individual taxa. Mosses reduced algal accrual rate and algae-grazing invertebrates, but enhanced organic matter retention and the number of detritus and filter feeders. Mosses also reduced macroinvertebrate diversity by increasing the dominance by a few taxa. Mosses reduced leaf mass loss, possibly because the organic matter retained by mosses provided an additional food source for leaf-shredding invertebrates and thus reduced shredder aggregation into leaf packs. The effect of mosses on macroinvertebrate communities and ecosystem functioning was distinct irrespective of the level of dispersal, suggesting strong environmental control of community structure. The strong environmental control of macroinvertebrate community composition even under enhanced dispersal suggests that re-establishing key habitat features, such as natural stream vegetation, could aid ecosystem recovery in boreal streams.


Subject(s)
Animal Distribution , Ecosystem , Invertebrates , Rivers , Animals , Bryophyta , Finland , Geologic Sediments , Population Density
2.
Ecol Appl ; 26(7): 2116-2129, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27755727

ABSTRACT

Stream ecosystems are affected by multiple abiotic stressors, and species responses to simultaneous stressors may differ from those predicted based on single-stressor responses. Using 12 semi-natural stream channels, we examined the individual and interactive effects of flow level (low or high flow) and addition of fine sediments (grain size <2 mm) on key ecosystem processes (leaf breakdown, algal biomass accrual) and benthic macroinvertebrate and fungal communities. Both stressors had mostly independent effects on biological responses, with sand addition being the more influential of the two. Sand addition decreased algal biomass and microbe-mediated leaf breakdown significantly, whereas invertebrate shredder-mediated breakdown only responded to flow level. Macroinvertebrate community composition responded significantly to both stressors. Fungal biomass decreased and shredder abundance increased when sand was added; thus, organisms at different trophic levels can exhibit highly variable responses to the same stressor. Terrestrial endophytic fungi were abundant in low-flow flumes where leaf mass loss was also highest, indicating that terrestrial endophytes may contribute importantly to leaf decomposition in the aquatic environment. Leaf breakdown rates depended on the identity and abundance of the dominant decomposer species, suggesting that the effects of anthropogenic activities on ecosystem processes may be driven by changes in the abundance of a few key species. The few observed interactive effects were all antagonistic (i.e., less than the sum of the individual effects); for example, increased flow stimulated algal biomass accumulation but this effect was largely cancelled by sand. While our finding that sand and stream flow did not have strong synergistic effects can be considered reassuring for management, future experiments should manipulate these and other human stressors in experiments that run for much longer periods, thus focusing on the long-term impacts of multiple simultaneously operating stressors.


Subject(s)
Ecosystem , Geologic Sediments , Rivers , Water Movements , Animals , Biomass , Environmental Monitoring/methods , Finland , Fungi/physiology , Geologic Sediments/chemistry , Invertebrates/physiology , Nitrogen/chemistry , Phosphorus/chemistry , Plant Leaves , Plants/classification , Rivers/chemistry , Temperature
3.
Ecol Appl ; 21(6): 1950-61, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21939036

ABSTRACT

The primary focus of many in-stream restoration projects is to enhance habitat diversity for salmonid fishes, yet the lack of properly designed monitoring studies, particularly ones with pre-restoration data, limits any attempts to assess whether restoration has succeeded in improving salmonid habitat. Even less is known about the impacts of fisheries-related restoration on other, non-target biota. We examined how restoration aiming at the enhancement of juvenile brown trout (Salmo trutta L.) affects benthic macroinvertebrates, using two separate data sets: (1) a before-after-control-impact (BACI) design with three years before and three after restoration in differently restored and control reaches of six streams; and (2) a space-time substitution design including channelized, restored, and near-natural streams with an almost 20-year perspective on the recovery of invertebrate communities. In the BACI design, total macroinvertebrate density differed significantly from before to after restoration. Following restoration, densities decreased in all treatments, but less so in the controls than in restored sections. Taxonomic richness also decreased from before to after restoration, but this happened similarly in all treatments. In the long-term comparative study, macroinvertebrate species richness showed no difference between the channel types. Community composition differed significantly between the restored and natural streams, but not between restored and channelized streams. Overall, the in-stream restoration measures used increased stream habitat diversity but did not enhance benthic biodiversity. While many macroinvertebrates may be dispersal limited, our study sites should not have been too distant to reach within almost two decades. A key explanation for the weak responses by macroinvertebrate communities may have been historical. When Fennoscandian streams were channelized for log floating, the loss of habitat heterogeneity was only partial. Therefore, habitat may not have been limiting the macroinvertebrate communities to begin with. Stream restoration to support trout fisheries has strong public acceptance in Finland and will likely continue to increase in the near future. Therefore, more effort should be placed on assessing restoration success from a biodiversity perspective using multiple organism groups in both stream and riparian ecosystems.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Environmental Restoration and Remediation/methods , Invertebrates/physiology , Rivers , Animals , Environmental Monitoring/methods , Finland
SELECTION OF CITATIONS
SEARCH DETAIL