ABSTRACT
BACKGROUND: In endemic regions naturally acquired immunity against Plasmodium falciparum develops as a function of age and exposure to parasite infections and is known to be mediated by IgG. The targets of protective antibodies remain to be fully defined. Several immunoepidemiological studies have indicated an association of cytophilic anti-parasite IgG with protection against malaria. It has been hypothesized that the initial antibody responses against parasite antigens upon first few Plasmodium falciparum infections is dominated by non-protective IgG2/IgG4 and IgM antibodies, which then gradually develop into protective response dominated by cytophilic IgG1 and IgG3 antibodies. METHODS: Naturally occurring IgG antibodies against P. falciparum blood-stage antigens were analysed from plasma samples collected from four groups of individuals differing in age and level of exposure to P. falciparum infections. Western Blot profiling of blood-stage parasite antigens displaying reactivity with individual plasma samples in terms of their subclass specificities was conducted. Parasite antigens detected by IgG were grouped based on their apparent molecular sizes resolved by SDS-PAGE as high molecular weight (≥ 70 kDa) or low molecular weight (< 70 kDa). The number of discernable low molecular weight parasite antigens detected by different IgG subclass antibodies from each plasma sample was recorded. Using Wilcoxons rank sum test these reactivities were compared amongst groups of individuals with different levels of exposure to P. falciparum infections. RESULTS: IgG4 and IgM antibodies in plasma samples from all groups detected very few parasite antigens. IgG2 antibodies from all groups detected a common pattern of high molecular weight parasite antigens. Cytophilic IgG subclasses in plasma samples from individuals with higher levels of exposure to P. falciparum infections distinctly detected higher numbers of low molecular weight parasite antigens. CONCLUSIONS: In the present study, there was no evidence for switching of antibody responses from non-cytophilic to cytophilic subclasses against blood-stage parasite antigens as a likely mechanism for induction of protective immunity against malaria.
Subject(s)
Antibodies, Protozoan/blood , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Adult , Antigens, Protozoan/analysis , Antigens, Protozoan/chemistry , Antigens, Protozoan/immunology , Blotting, Western , Child , Child, Preschool , Electrophoresis, Polyacrylamide Gel , Humans , Immunoglobulin G/blood , Infant , Infant, Newborn , Molecular Weight , Plasma/immunology , Plasmodium falciparum/chemistryABSTRACT
GMZ2 adjuvanted by aluminum hydroxide is a candidate malaria vaccine that has successfully passed phase 1 clinical testing in adult German and Gabonese volunteers and Gabonese children under five. Here we report a preclinical study screening a series of adjuvant vehicles and Toll-like receptor (TLR) agonists in CB6F1 mice to identify an improved formulation of GMZ2 suitable for further human clinical studies. GMZ2 formulated in an oil-in-water emulsion plus the synthetic TLR4 agonist GLA elicits the highest (a) vaccine-specific IgG2a and total IgG titers, (b) parasite-specific IFA titers, (c) levels of Type 1 cytokine responses (IFN-γ), and (d) number of long-lived-plasma cells (LLPC) secreting antibodies against both the GMZ2 fusion and its two components. Thus, GLA helps to elicit a vaccine-specific Type 1 antibody profile together with high levels of LLPC, both of which are thought to be essential for the development of long-term protective immunity against clinical malaria.