Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Beilstein J Org Chem ; 19: 1198-1215, 2023.
Article in English | MEDLINE | ID: mdl-37592934

ABSTRACT

This review surveys advances in the literature that impact organic sacrificial electron donor recycling in artificial photosynthesis. Systems for photocatalytic carbon dioxide reduction are optimized using sacrificial electron donors. One strategy for coupling carbon dioxide reduction and water oxidation to achieve artificial photosynthesis is to use a redox mediator, or recyclable electron donor. This review highlights photo- and electrochemical methods for recycling amines and NADH analogues that can be used as electron donors in artificial photosynthesis. Important properties of sacrificial donors and recycling strategies are also discussed. Compounds from other fields, such as redox flow batteries and decoupled water splitting research, are introduced as alternative recyclable sacrificial electron donors and their oxidation potentials are compared to the redox potentials of some model photosensitizers. The aim of this review is to act as a reference for researchers developing photocatalytic systems with sacrificial electron donors, and for researchers interested in designing new redox mediator and recyclable electron donor species.

2.
Angew Chem Int Ed Engl ; 61(8): e202115619, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-34919306

ABSTRACT

We describe the preparation of hybrid redox materials based on polyoxomolybdates encapsulated within single-walled carbon nanotubes (SWNTs). Polyoxomolybdates readily oxidize SWNTs under ambient conditions in solution, and here we study their charge-transfer interactions with SWNTs to provide detailed mechanistic insights into the redox-driven encapsulation of these and similar nanoclusters. We are able to correlate the relative redox potentials of the encapsulated clusters with the level of SWNT oxidation in the resultant hybrid materials and use this to show that precise redox tuning is a necessary requirement for successful encapsulation. The host-guest redox materials described here exhibit exceptional electrochemical stability, retaining up to 86 % of their charge capacity over 1000 oxidation/reduction cycles, despite the typical lability and solution-phase electrochemical instability of the polyoxomolybdates we have explored. Our findings illustrate the broad applicability of the redox-driven encapsulation approach to the design and fabrication of tunable, highly conductive, ultra-stable nanoconfined energy materials.

3.
Angew Chem Int Ed Engl ; 60(14): 7522-7532, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-32881270

ABSTRACT

Molecular vanadium oxides, or polyoxovanadates (POVs), have recently emerged as a new class of molecular energy conversion/storage materials, which combine diverse, chemically tunable redox behavior and reversible multielectron storage capabilities. This Review explores current challenges, major breakthroughs, and future opportunities in the use of POVs for energy conversion and storage. The reactivity, advantages, and limitations of POVs are explored, with a focus on their use in lithium and post-lithium-ion batteries, redox-flow batteries, and light-driven energy conversion. Finally, emerging themes and new research directions are critically assessed to provide inspiration for how this promising materials class can advance research in sustainable energy technologies.

4.
Chem Sci ; 12(39): 12918-12927, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34745522

ABSTRACT

Despite their technological importance for water splitting, the reaction mechanisms of most water oxidation catalysts (WOCs) are poorly understood. This paper combines theoretical and experimental methods to reveal mechanistic insights into the reactivity of the highly active molecular manganese vanadium oxide WOC [Mn4V4O17(OAc)3]3- in aqueous acetonitrile solutions. Using density functional theory together with electrochemistry and IR-spectroscopy, we propose a sequential three-step activation mechanism including a one-electron oxidation of the catalyst from [Mn2 3+Mn2 4+] to [Mn3+Mn3 4+], acetate-to-water ligand exchange, and a second one-electron oxidation from [Mn3+Mn3 4+] to [Mn4 4+]. Analysis of several plausible ligand exchange pathways shows that nucleophilic attack of water molecules along the Jahn-Teller axis of the Mn3+ centers leads to significantly lower activation barriers compared with attack at Mn4+ centers. Deprotonation of one water ligand by the leaving acetate group leads to the formation of the activated species [Mn4V4O17(OAc)2(H2O)(OH)]- featuring one H2O and one OH ligand. Redox potentials based on the computed intermediates are in excellent agreement with electrochemical measurements at various solvent compositions. This intricate interplay between redox chemistry and ligand exchange controls the formation of the catalytically active species. These results provide key reactivity information essential to further study bio-inspired molecular WOCs and solid-state manganese oxide catalysts.

5.
Adv Mater ; 31(41): e1904182, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31448465

ABSTRACT

The development of next-generation molecular-electronic, electrocatalytic, and energy-storage systems depends on the availability of robust materials in which molecular charge-storage sites and conductive hosts are in intimate contact. It is shown here that electron transfer from single-walled carbon nanotubes (SWNTs) to polyoxometalate (POM) clusters results in the spontaneous formation of host-guest POM@SWNT redox-active hybrid materials. The SWNTs can conduct charge to and from the encapsulated guest molecules, allowing electrical access to >90% of the encapsulated redox species. Furthermore, the SWNT hosts provide a physical barrier, protecting the POMs from chemical degradation during charging/discharging and facilitating efficient electron transfer throughout the composite, even in electrolytes that usually destroy POMs.

SELECTION OF CITATIONS
SEARCH DETAIL