Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
Add more filters

Publication year range
1.
Nature ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39317240

ABSTRACT

Influenza A viruses (IAV) have caused more documented global pandemics in human history than any other pathogen1,2. High pathogenicity avian influenza (HPAI) viruses belonging to the H5N1 subtype are a leading pandemic risk. Two decades after H5N1 "bird flu" became established in poultry in Southeast Asia, its descendants have resurged3, setting off an H5N1 panzootic in wild birds that is fueled by (a) rapid intercontinental spread, reaching South America and Antarctica for the first time4,5; (b) fast evolution via genomic reassortment6; and (c) frequent spillover into terrestrial7,8 and marine mammals9. The virus has sustained mammal-to-mammal transmission in multiple settings, including European fur farms10,11, South American marine mammals12-15, and US dairy cattle16-19, raising questions about whether humans are next. Historically, swine are considered optimal intermediary hosts that help avian influenza viruses (AIV) adapt to mammals before jumping to humans20. However, the altered ecology of H5N1 has opened the door to new evolutionary pathways. Could dairy cattle, farmed mink, or South American sea lions serve as new mammalian gateways to humans? Here we explore the molecular and ecological factors driving H5N1's sudden expansion in host range and assess the likelihood of different zoonotic pathways leading to an H5N1 pandemic.

2.
Nature ; 626(7998): 392-400, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086420

ABSTRACT

An ideal vaccine both attenuates virus growth and disease in infected individuals and reduces the spread of infections in the population, thereby generating herd immunity. Although this strategy has proved successful by generating humoral immunity to measles, yellow fever and polio, many respiratory viruses evolve to evade pre-existing antibodies1. One approach for improving the breadth of antiviral immunity against escape variants is through the generation of memory T cells in the respiratory tract, which are positioned to respond rapidly to respiratory virus infections2-6. However, it is unknown whether memory T cells alone can effectively surveil the respiratory tract to the extent that they eliminate or greatly reduce viral transmission following exposure of an individual to infection. Here we use a mouse model of natural parainfluenza virus transmission to quantify the extent to which memory CD8+ T cells resident in the respiratory tract can provide herd immunity by reducing both the susceptibility of acquiring infection and the extent of transmission, even in the absence of virus-specific antibodies. We demonstrate that protection by resident memory CD8+ T cells requires the antiviral cytokine interferon-ƎĀ³ (IFNƎĀ³) and leads to altered transcriptional programming of epithelial cells within the respiratory tract. These results suggest that tissue-resident CD8+ T cells in the respiratory tract can have important roles in protecting the host against viral disease and limiting viral spread throughout the population.


Subject(s)
CD8-Positive T-Lymphocytes , Immunologic Memory , Memory T Cells , Paramyxoviridae Infections , Respiratory System , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Epithelial Cells/immunology , Epithelial Cells/metabolism , Immunity, Herd/immunology , Immunologic Memory/immunology , Interferon-gamma/immunology , Memory T Cells/immunology , Paramyxoviridae/immunology , Paramyxoviridae/physiology , Paramyxoviridae Infections/immunology , Paramyxoviridae Infections/prevention & control , Paramyxoviridae Infections/transmission , Paramyxoviridae Infections/virology , Respiratory System/cytology , Respiratory System/immunology , Respiratory System/virology , Transcription, Genetic , Humans
3.
Proc Natl Acad Sci U S A ; 121(33): e2322660121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39361828

ABSTRACT

Sustained community spread of influenza viruses relies on efficient person-to-person transmission. Current experimental transmission systems do not mimic environmental conditions (e.g., air exchange rates, flow patterns), host behaviors, or exposure durations relevant to real-world settings. Therefore, results from these traditional systems may not be representative of influenza virus transmission in humans. To address this pitfall, we developed a close-range transmission setup that implements a play-based scenario and used it to investigate the impact of ventilation rates on transmission. In this setup, four immunologically naive recipient ferrets were exposed to a donor ferret infected with a genetically barcoded 2009 H1N1 virus (H1N1pdm09) for 4 h. The ferrets interacted in a shared space that included toys, similar to a childcare setting. Transmission efficiency was assessed under low and high ventilation, with air exchange rates of ~1.3 h-1 and 23 h-1, respectively. Transmission efficiencies observed in three independent replicate studies were similar between ventilation conditions. The presence of infectious virus or viral RNA on surfaces and in air throughout the exposure area was also not impacted by the ventilation rate. While high viral genetic diversity in donor ferret nasal washes was maintained during infection, recipient ferret nasal washes displayed low diversity, revealing a narrow transmission bottleneck regardless of ventilation rate. Examining the frequency and duration of ferret physical touches revealed no link between these interactions and a successful transmission event. Our findings indicate that exposures characterized by frequent, close-range interactions and the presence of fomites can overcome the benefits of increased ventilation.


Subject(s)
Ferrets , Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections , Ventilation , Animals , Ferrets/virology , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H1N1 Subtype/genetics , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/veterinary , Male , Influenza, Human/transmission , Influenza, Human/virology , Female , Humans
4.
PLoS Pathog ; 20(4): e1012131, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626244

ABSTRACT

Patterns of within-host influenza A virus (IAV) diversity and evolution have been described in natural human infections, but these patterns remain poorly characterized in non-human hosts. Elucidating these dynamics is important to better understand IAV biology and the evolutionary processes that govern spillover into humans. Here, we sampled an IAV outbreak in pigs during a week-long county fair to characterize viral diversity and evolution in this important reservoir host. Nasal wipes were collected on a daily basis from all pigs present at the fair, yielding up to 421 samples per day. Subtyping of PCR-positive samples revealed the co-circulation of H1N1 and H3N2 subtype swine IAVs. PCR-positive samples with robust Ct values were deep-sequenced, yielding 506 sequenced samples from a total of 253 pigs. Based on higher-depth re-sequenced data from a subset of these initially sequenced samples (260 samples from 168 pigs), we characterized patterns of within-host IAV genetic diversity and evolution. We find that IAV genetic diversity in single-subtype infected pigs is low, with the majority of intrahost Single Nucleotide Variants (iSNVs) present at frequencies of <10%. The ratio of the number of nonsynonymous to the number of synonymous iSNVs is significantly lower than under the neutral expectation, indicating that purifying selection shapes patterns of within-host viral diversity in swine. The dynamic turnover of iSNVs and their pronounced frequency changes further indicate that genetic drift also plays an important role in shaping IAV populations within pigs. Taken together, our results highlight similarities in patterns of IAV genetic diversity and evolution between humans and swine, including the role of stochastic processes in shaping within-host IAV dynamics.


Subject(s)
Genetic Drift , Orthomyxoviridae Infections , Swine Diseases , Animals , Swine , Orthomyxoviridae Infections/virology , Swine Diseases/virology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A virus/genetics , Influenza A Virus, H1N1 Subtype/genetics , Genetic Variation , Evolution, Molecular , Selection, Genetic , Phylogeny
5.
Immunity ; 46(4): 587-595, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28423338

ABSTRACT

Although vaccines confer protection against influenza A viruses, antiviral treatment becomes the first line of defense during pandemics because there is insufficient time to produce vaccines. Current antiviral drugs are susceptible to drug resistance, and developing new antivirals is essential. We studied host defense peptides from the skin of the South Indian frog and demonstrated that one of these, which we named "urumin," is virucidal for H1 hemagglutinin-bearing human influenza A viruses. This peptide specifically targeted the conserved stalk region of H1 hemagglutinin and was effective against drug-resistant H1 influenza viruses. Using electron microscopy, we showed that this peptide physically destroyed influenza virions. It also protected naive mice from lethal influenza infection. Urumin represents a unique class of anti-influenza virucide that specifically targets the hemagglutinin stalk region, similar to targeting of antibodies induced by universal influenza vaccines. Urumin therefore has the potential to contribute to first-line anti-viral treatments during influenza outbreaks.


Subject(s)
Amphibian Proteins/pharmacology , Influenza A virus/drug effects , Influenza, Human/prevention & control , Orthomyxoviridae Infections/prevention & control , Peptides/pharmacology , Amino Acid Sequence , Amphibian Proteins/immunology , Animals , Antiviral Agents/immunology , Antiviral Agents/pharmacology , Dogs , Dose-Response Relationship, Drug , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Influenza A virus/immunology , Influenza A virus/metabolism , Influenza, Human/immunology , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Peptides/immunology , Ranidae/metabolism , Survival Analysis , Treatment Outcome , Virion/drug effects , Virion/immunology , Virion/metabolism
6.
PLoS Biol ; 21(2): e3001994, 2023 02.
Article in English | MEDLINE | ID: mdl-36848649

ABSTRACT

Viruses arriving late to an individual cell are blocked from replicating, an effect called superinfection exclusion. A study in PLOS Biology indicates that this exclusion at the level of individual cells gives rise to a heterogenous landscape of infection within a host.


Subject(s)
Orthomyxoviridae , Superinfection , Humans
7.
J Immunol ; 212(1): 107-116, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37982700

ABSTRACT

One potential advantage of live attenuated influenza vaccines (LAIVs) is their ability to establish both virus-specific Ab and tissue-resident memory T cells (TRM) in the respiratory mucosa. However, it is hypothesized that pre-existing immunity from past infections and/or immunizations prevents LAIV from boosting or generating de novo CD8+ T cell responses. To determine whether we can overcome this limitation, we generated a series of drifted influenza A/PR8 LAIVs with successive mutations in the hemagglutinin protein, allowing for increasing levels of escape from pre-existing Ab. We also inserted a CD8+ T cell epitope from the Sendai virus nucleoprotein (NP) to assess both generation of a de novo T cell response and boosting of pre-existing influenza-specific CD8+ T cells following LAIV immunization. Increasing the level of escape from Ab enabled boosting of pre-existing TRM, but we were unable to generate de novo Sendai virus NP+ CD8+ TRM following LAIV immunization in PR8 influenza-immune mice, even with LAIV strains that can fully escape pre-existing Ab. As these data suggested a role for cell-mediated immunity in limiting LAIV efficacy, we investigated several scenarios to assess the impact of pre-existing LAIV-specific TRM in the upper and lower respiratory tract. Ultimately, we found that deletion of the immunodominant influenza NP366-374 epitope allowed for sufficient escape from cellular immunity to establish de novo CD8+ TRM. When combined, these studies demonstrate that both pre-existing humoral and cellular immunity can limit the effectiveness of LAIV, which is an important consideration for future design of vaccine vectors against respiratory pathogens.


Subject(s)
Influenza Vaccines , Influenza, Human , Animals , Mice , Humans , Antibodies, Viral , Immunity, Cellular , CD8-Positive T-Lymphocytes , Vaccines, Attenuated
8.
Proc Natl Acad Sci U S A ; 120(17): e2208718120, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37068231

ABSTRACT

The hemagglutinin (HA) stem region is a major target of universal influenza vaccine efforts owing to the presence of highly conserved epitopes across multiple influenza A virus (IAV) strains and subtypes. To explore the potential impact of vaccine-induced immunity targeting the HA stem, we examined the fitness effects of viral escape from stem-binding broadly neutralizing antibodies (stem-bnAbs). Recombinant viruses containing each individual antibody escape substitution showed diminished replication compared to wild-type virus, indicating that stem-bnAb escape incurred fitness costs. A second-site mutation in the HA head domain (N129D; H1 numbering) reduced the fitness effects observed in primary cell cultures and likely enabled the selection of escape mutations. Functionally, this putative permissive mutation increased HA avidity for its receptor. These results suggest a mechanism of epistasis in IAV, wherein modulating the efficiency of attachment eases evolutionary constraints imposed by the requirement for membrane fusion. Taken together, the data indicate that viral escape from stem-bnAbs is costly but highlights the potential for epistatic interactions to enable evolution within the functionally constrained HA stem domain.


Subject(s)
Influenza A virus , Influenza Vaccines , Influenza, Human , Humans , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies/genetics , Epistasis, Genetic , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines/genetics , Hemagglutinins , Influenza, Human/genetics , Influenza, Human/prevention & control
9.
J Virol ; 98(1): e0179123, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38168672

ABSTRACT

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.


Subject(s)
Biomedical Research , Containment of Biohazards , Virology , Humans , COVID-19 , United States , Viruses , Biomedical Research/standards
10.
PLoS Pathog ; 19(3): e1010978, 2023 03.
Article in English | MEDLINE | ID: mdl-36862762

ABSTRACT

When multiple viral populations propagate within the same host environment, they often shape each other's dynamics. These interactions can be positive or negative and can occur at multiple scales, from coinfection of a cell to co-circulation at a global population level. For influenza A viruses (IAVs), the delivery of multiple viral genomes to a cell substantially increases burst size. However, despite its relevance for IAV evolution through reassortment, the implications of this positive density dependence for coinfection between distinct IAVs has not been explored. Furthermore, the extent to which these interactions within the cell shape viral dynamics at the level of the host remains unclear. Here we show that, within cells, diverse coinfecting IAVs strongly augment the replication of a focal strain, irrespective of their homology to the focal strain. Coinfecting viruses with a low intrinsic reliance on multiple infection offer the greatest benefit. Nevertheless, virus-virus interactions at the level of the whole host are antagonistic. This antagonism is recapitulated in cell culture when the coinfecting virus is introduced several hours prior to the focal strain or under conditions conducive to multiple rounds of viral replication. Together, these data suggest that beneficial virus-virus interactions within cells are counterbalanced by competition for susceptible cells during viral propagation through a tissue. The integration of virus-virus interactions across scales is critical in defining the outcomes of viral coinfection.


Subject(s)
Coinfection , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Humans , Virus Replication
11.
PLoS Pathog ; 19(3): e1011214, 2023 03.
Article in English | MEDLINE | ID: mdl-36897923

ABSTRACT

Central nervous system (CNS) disease is the most common extra-respiratory tract complication of influenza A virus infections in humans. Remarkably, zoonotic highly pathogenic avian influenza (HPAI) H5N1 virus infections are more often associated with CNS disease than infections with seasonal influenza viruses. Evolution of avian influenza viruses has been extensively studied in the context of respiratory infections, but evolutionary processes in CNS infections remain poorly understood. We have previously observed that the ability of HPAI A/Indonesia/5/2005 (H5N1) virus to replicate in and spread throughout the CNS varies widely between individual ferrets. Based on these observations, we sought to understand the impact of entrance into and replication within the CNS on the evolutionary dynamics of virus populations. First, we identified and characterized three substitutions-PB1 E177G and A652T and NP I119M - detected in the CNS of a ferret infected with influenza A/Indonesia/5/2005 (H5N1) virus that developed a severe meningo-encephalitis. We found that some of these substitutions, individually or collectively, resulted in increased polymerase activity in vitro. Nevertheless, in vivo, the virus bearing the CNS-associated mutations retained its capacity to infect the CNS but showed reduced dispersion to other anatomical sites. Analyses of viral diversity in the nasal turbinate and olfactory bulb revealed the lack of a genetic bottleneck acting on virus populations accessing the CNS via this route. Furthermore, virus populations bearing the CNS-associated mutations showed signs of positive selection in the brainstem. These features of dispersion to the CNS are consistent with the action of selective processes, underlining the potential for H5N1 viruses to adapt to the CNS.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Influenza, Human , Orthomyxoviridae Infections , Animals , Humans , Influenza A Virus, H5N1 Subtype/genetics , Ferrets , Central Nervous System , Zoonoses
12.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35017296

ABSTRACT

The 2'-5'-oligoadenylate synthetases (OAS) are innate immune sensors of cytosolic double-stranded RNA (dsRNA) that play a critical role in limiting viral infection. How these proteins are able to avoid aberrant activation by cellular RNAs is not fully understood, but adenosine-to-inosine (A-to-I) editing has been proposed to limit accumulation of endogenous RNAs that might otherwise cause stimulation of the OAS/RNase L pathway. Here, we aim to uncover whether and how such sequence modifications can restrict the ability of short, defined dsRNAs to activate the single-domain form of OAS, OAS1. Unexpectedly, we find that all tested inosine-containing dsRNAs have an increased capacity to activate OAS1, whether in a destabilizing (IĆ¢Ā€Ā¢U) or standard Watson-Crick-like base pairing (I-C) context. Additional variants with strongly destabilizing AĆ¢Ā€Ā¢C mismatches or stabilizing G-C pairs also exhibit increased capacity to activate OAS1, eliminating helical stability as a factor in the relative ability of the dsRNAs to activate OAS1. Using thermal difference spectra and molecular dynamics simulations, we identify both increased helical dynamics and specific local changes in helical structure as important factors in the capacity of short dsRNAs to activate OAS1. These helical features may facilitate more ready adoption of the distorted OAS1-bound conformation or stabilize important structures to predispose the dsRNA for optimal binding and activation of OAS1. These studies thus reveal the molecular basis for the greater capacity of some short dsRNAs to activate OAS1 in a sequence-independent manner.


Subject(s)
2',5'-Oligoadenylate Synthetase/chemistry , 2',5'-Oligoadenylate Synthetase/metabolism , Base Pair Mismatch , RNA, Double-Stranded/metabolism , Base Sequence , Endoribonucleases/metabolism , Enzyme Activation , Humans , Inosine/metabolism , Molecular Dynamics Simulation , Protein Structure, Secondary , RNA Editing , RNA Stability , Structure-Activity Relationship , Temperature
13.
J Virol ; 97(5): e0054423, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37166327

ABSTRACT

The interface between humans and wildlife is changing and, with it, the potential for pathogen introduction into humans has increased. Avian influenza is a prominent example, with an ongoing outbreak showing the unprecedented expansion of both geographic and host ranges. Research in the field is essential to understand this and other zoonotic threats. Only by monitoring dynamic viral populations and defining their biology in situ can we gather the information needed to ensure effective pandemic preparation.


Subject(s)
Influenza in Birds , Influenza, Human , Zoonoses , Animals , Humans , Animals, Wild , Disease Outbreaks , Host Specificity , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics , Zoonoses/epidemiology , Zoonoses/prevention & control
14.
J Virol ; 97(2): e0008923, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36700640

ABSTRACT

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Subject(s)
Research , Virology , Virus Diseases , Humans , COVID-19/prevention & control , Information Dissemination , Pandemics/prevention & control , Policy Making , Research/standards , Research/trends , SARS-CoV-2 , Virology/standards , Virology/trends , Virus Diseases/prevention & control , Virus Diseases/virology , Viruses
15.
PLoS Pathog ; 18(9): e1010865, 2022 09.
Article in English | MEDLINE | ID: mdl-36121893

ABSTRACT

For diverse viruses, cellular infection with single vs. multiple virions can yield distinct biological outcomes. We previously found that influenza A/guinea fowl/Hong Kong/WF10/99 (H9N2) virus (GFHK99) displays a particularly high reliance on multiple infection in mammalian cells. Here, we sought to uncover the viral processes underlying this phenotype. We found that the need for multiple infection maps to amino acid 26K of the viral PA protein. PA 26K suppresses endonuclease activity and viral transcription, specifically within cells infected at low multiplicity. In the context of the higher functioning PA 26E, inhibition of PA using baloxavir acid augments reliance on multiple infection. Together, these data suggest a model in which sub-optimal activity of the GFHK99 endonuclease results in inefficient priming of viral transcription, an insufficiency which can be overcome with the introduction of additional viral ribonucleoprotein templates to the cell. More broadly, the finding that deficiency in a core viral function is ameliorated through multiple infection suggests that the fitness effects of many viral mutations are likely to be modulated by multiplicity of infection, such that the shape of fitness landscapes varies with viral densities.


Subject(s)
Coinfection , Influenza A Virus, H9N2 Subtype , Influenza, Human , Amino Acids , Animals , Endonucleases/metabolism , Humans , Influenza A Virus, H9N2 Subtype/genetics , Influenza, Human/genetics , Mammals , Ribonucleoproteins/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Transcription
16.
PLoS Pathog ; 18(3): e1010181, 2022 03.
Article in English | MEDLINE | ID: mdl-35333914

ABSTRACT

Transmission efficiency is a critical factor determining the size of an outbreak of infectious disease. Indeed, the propensity of SARS-CoV-2 to transmit among humans precipitated and continues to sustain the COVID-19 pandemic. Nevertheless, the number of new cases among contacts is highly variable and underlying reasons for wide-ranging transmission outcomes remain unclear. Here, we evaluated viral spread in golden Syrian hamsters to define the impact of temporal and environmental conditions on the efficiency of SARS-CoV-2 transmission through the air. Our data show that exposure periods as brief as one hour are sufficient to support robust transmission. However, the timing after infection is critical for transmission success, with the highest frequency of transmission to contacts occurring at times of peak viral load in the donor animals. Relative humidity and temperature had no detectable impact on transmission when exposures were carried out with optimal timing and high inoculation dose. However, contrary to expectation, trends observed with sub-optimal exposure timing and lower inoculation dose suggest improved transmission at high relative humidity or high temperature. In sum, among the conditions tested, our data reveal the timing of exposure to be the strongest determinant of SARS-CoV-2 transmission success and implicate viral load as an important driver of transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , Mesocricetus , Pandemics , Viral Load
17.
J Virol ; 96(4): e0183221, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34935439

ABSTRACT

Segmentation of viral genomes provides the potential for genetic exchange within coinfected cells. However, for this potential to be realized, coinfecting genomes must mix during the viral life cycle. The efficiency of reassortment, in turn, dictates its potential to drive evolution. The opportunity for mixing within coinfected cells may vary greatly across virus families, such that the evolutionary implications of genome segmentation differ as a result of core features of the viral life cycle. To investigate the relationship between viral replication compartments and genetic exchange, we quantified reassortment in mammalian orthoreovirus (reovirus). Reoviruses carry a 10-segmented, double-stranded RNA genome, which is replicated within proteinaceous structures termed inclusion bodies. We hypothesized that inclusions impose a barrier to reassortment. We quantified reassortment between wild-type (wt) and variant (var) reoviruses that differ by one nucleotide per segment. Studies of wt/var systems in both T1L and T3D backgrounds revealed frequent reassortment without bias toward particular genotypes. However, reassortment was more efficient in the T3D serotype. Since T1L and T3D viruses exhibit different inclusion body morphologies, we tested the impact of this phenotype on reassortment. In both serotypes, reassortment levels did not differ by inclusion morphology. Reasoning that the merging of viral inclusions may be critical for genome mixing, we then tested the effect of blocking merging. Reassortment proceeded efficiently even under these conditions. Our findings indicate that reovirus reassortment is highly efficient despite the localization of many viral processes to inclusion bodies, and that the robustness of this genetic exchange is independent of inclusion body structure and fusion. IMPORTANCE Quantification of reassortment in diverse viral systems is critical to elucidate the implications of genome segmentation for viral evolution. In principle, genome segmentation offers a facile means of genetic exchange between coinfecting viruses. In practice, there may be physical barriers within the cell that limit the mixing of viral genomes. Here, we tested the hypothesis that localization of the various stages of the mammalian orthoreovirus life cycle within cytoplasmic inclusion bodies compartmentalizes viral replication and limits genetic exchange. Contrary to this hypothesis, our data indicate that reovirus reassortment occurs readily within coinfected cells and is not strongly affected by the structure or dynamics of viral inclusion bodies. We conclude that the potential for reassortment to contribute to reovirus evolution is high.


Subject(s)
Orthoreovirus, Mammalian/genetics , Reassortant Viruses/genetics , Animals , Cell Line , Genome, Viral/genetics , Genotype , Inclusion Bodies, Viral/ultrastructure , Mice , Microtubules/metabolism , Serogroup , Virus Replication
18.
PLoS Pathog ; 17(9): e1009321, 2021 09.
Article in English | MEDLINE | ID: mdl-34473799

ABSTRACT

Influenza A virus [IAV] genomes comprise eight negative strand RNAs packaged into virions in the form of viral ribonucleoproteins [vRNPs]. Rab11a plays a crucial role in the transport of vRNPs from the nucleus to the plasma membrane via microtubules, allowing assembly and virus production. Here, we identify a novel function for Rab11a in the inter-cellular transport of IAV vRNPs using tunneling nanotubes [TNTs]as molecular highways. TNTs are F-Actin rich tubules that link the cytoplasm of nearby cells. In IAV-infected cells, Rab11a was visualized together with vRNPs in these actin-rich intercellular connections. To better examine viral spread via TNTs, we devised an infection system in which conventional, virion-mediated, spread was not possible. Namely, we generated HA-deficient reporter viruses which are unable to produce progeny virions but whose genomes can be replicated and trafficked. In this system, vRNP transfer to neighboring cells was observed and this transfer was found to be dependent on both actin and Rab11a. Generation of infectious virus via TNT transfer was confirmed using donor cells infected with HA-deficient virus and recipient cells stably expressing HA protein. Mixing donor cells infected with genetically distinct IAVs furthermore revealed the potential for Rab11a and TNTs to serve as a conduit for genome mixing and reassortment in IAV infections. These data therefore reveal a novel role for Rab11a in the IAV life cycle, which could have significant implications for within-host spread, genome reassortment and immune evasion.


Subject(s)
Cell Communication , Influenza A virus/pathogenicity , Influenza, Human/virology , rab GTP-Binding Proteins/metabolism , A549 Cells , Animals , Dogs , Humans , Influenza A virus/genetics , Influenza, Human/genetics , Madin Darby Canine Kidney Cells , Nanotubes
19.
PLoS Pathog ; 17(5): e1009517, 2021 05.
Article in English | MEDLINE | ID: mdl-33970958

ABSTRACT

It is well documented that influenza A viruses selectively package 8 distinct viral ribonucleoprotein complexes (vRNPs) into each virion; however, the role of host factors in genome assembly is not completely understood. To evaluate the significance of cellular factors in genome assembly, we generated a reporter virus carrying a tetracysteine tag in the NP gene (NP-Tc virus) and assessed the dynamics of vRNP localization with cellular components by fluorescence microscopy. At early time points, vRNP complexes were preferentially exported to the MTOC; subsequently, vRNPs associated on vesicles positive for cellular factor Rab11a and formed distinct vRNP bundles that trafficked to the plasma membrane on microtubule networks. In Rab11a deficient cells, however, vRNP bundles were smaller in the cytoplasm with less co-localization between different vRNP segments. Furthermore, Rab11a deficiency increased the production of non-infectious particles with higher RNA copy number to PFU ratios, indicative of defects in specific genome assembly. These results indicate that Rab11a+ vesicles serve as hubs for the congregation of vRNP complexes and enable specific genome assembly through vRNP:vRNP interactions, revealing the importance of Rab11a as a critical host factor for influenza A virus genome assembly.


Subject(s)
Genome, Viral , Influenza A virus/genetics , Influenza, Human/virology , Ribonucleoproteins/metabolism , Viral Proteins/metabolism , Virus Assembly , rab GTP-Binding Proteins/metabolism , A549 Cells , HEK293 Cells , Humans , Influenza A virus/isolation & purification , Influenza, Human/genetics , Ribonucleoproteins/genetics , Viral Proteins/genetics , Virus Replication , rab GTP-Binding Proteins/genetics
20.
J Gen Virol ; 103(7)2022 07.
Article in English | MEDLINE | ID: mdl-35830333

ABSTRACT

Current influenza vaccines, while being the best method of managing viral outbreaks, have several major drawbacks that prevent them from being wholly-effective. They need to be updated regularly and require extensive resources to develop. When considering alternatives, the recent deployment of mRNA vaccines for SARS-CoV-2 has created a unique opportunity to evaluate a new platform for seasonal and pandemic influenza vaccines. The mRNA format has previously been examined for application to influenza and promising data suggest it may be a viable format for next-generation influenza vaccines. Here, we discuss the prospect of shifting global influenza vaccination efforts to an mRNA-based system that might allow better control over the product and immune responses and could aid in the development of a universal vaccine.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Humans , Influenza Vaccines/genetics , RNA, Messenger/genetics , SARS-CoV-2/genetics , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL