ABSTRACT
SIGNIFICANCE STATEMENT: Kidney-derived thrombopoietin (TPO) increases myeloid cell and platelet production during antibody-mediated chronic kidney disease (AMCKD) in a mouse model, exacerbating chronic thromobinflammation in microvessels. The effect is mirrored in patients with extracapillary glomerulonephritis associated with thromboinflammation, TGF ß -dependent glomerulosclerosis, and increased bioavailability of TPO. Neutralization of TPO in mice normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. The findings suggest that TPO is a relevant biomarker and a promising therapeutic target for patients with CKD and other chronic thromboinflammatory diseases.Neutralization of TPO in mice normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. The findings suggest that TPO is a relevant biomarker and a promising therapeutic target for patients with CKD and other chronic thromboinflammatory diseases. BACKGROUND: Chronic thromboinflammation provokes microvascular alterations and rarefaction, promoting organ dysfunction in individuals with various life-threatening diseases. Hematopoietic growth factors (HGFs) released by the affected organ may sustain emergency hematopoiesis and fuel the thromboinflammatory process. METHODS: Using a murine model of antibody-mediated chronic kidney disease (AMCKD) and pharmacological interventions, we comprehensively monitored the response to injury in the circulating blood, urine, bone marrow, and kidney. RESULTS: Experimental AMCKD was associated with chronic thromboinflammation and the production of HGFs, especially thrombopoietin (TPO), by the injured kidney, which stimulated and skewed hematopoiesis toward myelo-megakaryopoiesis. AMCKD was characterized by vascular and kidney dysfunction, TGF ß -dependent glomerulosclerosis, and microvascular rarefaction. In humans, extracapillary glomerulonephritis is associated with thromboinflammation, TGF ß -dependent glomerulosclerosis, and increased bioavailability of TPO. Analysis of albumin, HGF, and inflammatory cytokine levels in sera from patients with extracapillary glomerulonephritis allowed us to identify treatment responders. Strikingly, TPO neutralization in the experimental AMCKD model normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. CONCLUSION: TPO-skewed hematopoiesis exacerbates chronic thromboinflammation in microvessels and worsens AMCKD. TPO is both a relevant biomarker and a promising therapeutic target in humans with CKD and other chronic thromboinflammatory diseases.
Subject(s)
Glomerulonephritis , Renal Insufficiency, Chronic , Thrombosis , Humans , Mice , Animals , Thrombopoietin/metabolism , Thrombopoietin/pharmacology , Receptors, Thrombopoietin , Inflammation , Thromboinflammation , Hematopoiesis/physiology , Antibodies/pharmacology , Kidney/metabolism , Renal Insufficiency, Chronic/etiology , Transforming Growth Factor beta/pharmacologyABSTRACT
The association between endometriosis and autoimmune diseases is well known, however no acquired platelet function defect has been described so far. We describe the case of two patients with endometriosis associated with an antiplatelet glycoprotein VI (anti-GPVI) antibody. The two women with deep pelvic endometriosis associated with secondary infertility presented a mild bleeding tendency, a deficient platelet aggregation response to collagen, convulxin or CRP and a severe GPVI deficiency. Immunoblot revealed a combined FcRγ deficiency but no indication of GPVI cleavage. In the first case, platelet count was normal and an anti-GPVI IgG was detected in plasma. A first corticosteroids administration normalized in vitro platelet functions but further administrations were unsuccessful. Three IVF attempts failed. Conservative laparoscopic surgery was carried out after antifibrinolytic treatment without bleeding. The second case presented with a history of moderate thrombocytopenia and a weak anti-GPVI in the context of infertility and autoimmune disease, the Sjögren syndrome resolved after corticosteroids and hydroxychloroquine treatment. Acquired GPVI deficiencies are rare. It would be useful to determine whether the association with endometriosis is coincidental or not by more systematic investigations. It does not seem that in these patients, GPVI deficiency is associated with an increased risk of bleeding.
What is the context? ⢠Evidence for an immune system dysfunction is reported in endometriosis and the association between endometriosis and autoimmune diseases is well known.⢠No autoimmune platelet function defect has been described so far.What is new?⢠We report two unrelated patients with endometriosis-associated infertility presenting a platelet glycoprotein VI deficiency due to an autoantibody.⢠In both cases, a deficient platelet aggregation response to collagen, convulxin or CRP and a severe GPVI deficiency were observed.⢠Immunoblot revealed no indication of GPVI cleavage.What is the impact? ⢠Our observation raises the question whether GPVI could be a preferential target for the development of anti-GPVI autoantibodies associated with endometriosis.⢠It does not seem that in these patients, GPVI deficiency is associated with an increased risk of severe bleeding disorder.
Subject(s)
Endometriosis , Infertility , Humans , Female , Platelet Membrane Glycoproteins , Endometriosis/complications , Endometriosis/drug therapy , Antibodies , Platelet Count , Blood PlateletsABSTRACT
Immediate reocclusion after mechanical thrombectomy (MT) for acute ischemic stroke (AIS) is a rare but devastating condition associated with poor functional outcome. The aim of this study was to gain insights into the mechanisms underlying immediate reocclusion, and to evaluate the efficacy and safety of the glycoprotein IIb/IIIa antagonist abciximab, for its treatment. Clinical data were collected from April 2015 to April 2019 in a monocentric prospective registry of AIS patients treated by MT. All patients with immediate reocclusion were retrospectively selected and subdivided into 2 groups according to abciximab treatment status. In vitro, the separate and combined effects of abciximab and alteplase on clot formation in whole blood under flow conditions were further investigated in microfluidic chambers. From 929 MT-treated patients, 21 had post-MT immediate reocclusion. Abciximab treatment in reocclusion patients (n = 10) led to higher rate of final recanalization (p < .001) while it did not increase bleeding complications. Flow chamber experiments revealed that, in contrast to alteplase, abciximab efficiently limits thrombus accretion from flowing blood by blocking platelet aggregation. Our results underscore a key role for platelet aggregation and the potential of Glycoprotein IIb/IIIa antagonists as a rescue therapy in post-MT immediate reocclusion.
Subject(s)
Abciximab/therapeutic use , Administration, Intravenous/methods , Ischemic Stroke/drug therapy , Ischemic Stroke/surgery , Platelet Aggregation Inhibitors/therapeutic use , Thrombectomy/methods , Abciximab/pharmacology , Acute Disease , Aged , Female , Humans , Male , Middle Aged , Platelet Aggregation Inhibitors/pharmacologyABSTRACT
Heparin-induced thrombocytopenia (HIT) is due to immunoglobulin G (IgG) antibodies, which bind platelet factor 4 (PF4) modified by polyanions, such as heparin (H). IgG/PF4/polyanion complexes directly activate platelets via Fc gamma type 2 receptor A (FcγRIIA) receptors. A bacterial protease, IgG-degrading enzyme of Streptococcus pyogenes (IdeS), cleaves the hinge region of heavy-chain IgG, abolishing its ability to bind FcγR, including FcγRIIA. We evaluated whether cleavage of anti-PF4/H IgG by IdeS could suppress the pathogenicity of HIT antibodies. IdeS quickly cleaved purified 5B9, a monoclonal chimeric anti-PF4/H IgG1, which led to the formation of single cleaved 5B9 (sc5B9), without any reduction in binding ability to the PF4/H complex. However, as compared with uncleaved 5B9, the affinity of sc5B9 for platelet FcγRIIA was greatly reduced, and sc5B9 was also unable to induce heparin-dependent platelet activation. In addition, incubating IdeS in whole blood containing 5B9 or HIT plasma samples led to cleavage of anti-PF4/H antibodies, which fully abolished the ability to induce heparin-dependent platelet aggregation and tissue factor messenger RNA synthesis by monocytes. Also, when whole blood was perfused in von Willebrand factor-coated microfluidic channels, platelet aggregation and fibrin formation induced by 5B9 with heparin was strongly reduced after IdeS treatment. Finally, IdeS prevented thrombocytopenia and hypercoagulability induced by 5B9 with heparin in transgenic mice expressing human PF4 and FcγRIIA receptors. In conclusion, cleavage of anti-PF4/H IgG by IdeS abolishes heparin-dependent cellular activation induced by HIT antibodies. IdeS injection could be a potential treatment of patients with severe HIT.
Subject(s)
Bacterial Proteins/pharmacology , Heparin/adverse effects , Immunoglobulin G/metabolism , Platelet Factor 4/metabolism , Streptococcus pyogenes/enzymology , Thrombocytopenia/chemically induced , Thrombocytopenia/metabolism , Animals , Fibrin/genetics , Fibrin/metabolism , Heparin/administration & dosage , Humans , Mice, Transgenic , Microfluidic Analytical Techniques , Platelet Aggregation/drug effects , Platelet Aggregation/genetics , Receptors, IgG/metabolism , Thrombocytopenia/genetics , Thrombocytopenia/pathologyABSTRACT
Not available.
Subject(s)
Antibodies, Monoclonal, Humanized , Blood Platelets , Hemostasis , Inflammation , Glycoproteins , HumansABSTRACT
OBJECTIVE: Atherothrombosis occurs upon rupture of an atherosclerotic plaque and leads to the formation of a mural thrombus. Computational fluid dynamics and numerical models indicated that the mechanical stress applied to a thrombus increases dramatically as a thrombus grows, and that strong inter-platelet interactions are essential to maintain its stability. We investigated whether GPVI (glycoprotein VI)-mediated platelet activation helps to maintain thrombus stability by using real-time video-microscopy. Approach and Results: We showed that GPVI blockade with 2 distinct Fab fragments promoted efficient disaggregation of human thrombi preformed on collagen or on human atherosclerotic plaque material in the absence of thrombin. ACT017-induced disaggregation was achieved under arterial blood flow conditions, and its effect increased with wall shear rate. GPVI regulated platelet activation within a growing thrombus as evidenced by the loss in thrombus contraction when GPVI was blocked, and the absence of the disaggregating effect of an anti-GPVI agent when the thrombi were fully activated with soluble agonists. The GPVI-dependent thrombus stabilizing effect was further supported by the fact that inhibition of any of the 4 key immunoreceptor tyrosine-based motif signalling molecules, src-kinases, Syk, PI3Kß, or phospholipase C, resulted in kinetics of thrombus disaggregation similar to ACT017. The absence of ACT017-induced disaggregation of thrombi from 2 afibrinogenemic patients suggests that the role of GPVI requires interaction with fibrinogen. Finally, platelet disaggregation of fibrin-rich thrombi was also promoted by ACT017 in combination with r-tPA (recombinant tissue plasminogen activator). CONCLUSIONS: This work identifies an unrecognized role for GPVI in maintaining thrombus stability and suggests that targeting GPVI could dissolve platelet aggregates with a poor fibrin content.
Subject(s)
Afibrinogenemia/blood , Blood Platelets/drug effects , Fibrinogen/metabolism , Immunoglobulin Fab Fragments/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Platelet Membrane Glycoproteins/antagonists & inhibitors , Thrombosis/drug therapy , Afibrinogenemia/diagnosis , Afibrinogenemia/genetics , Blood Platelets/metabolism , Computer Simulation , Fibrinogen/genetics , Fibrinolytic Agents/pharmacology , Humans , Kinetics , Microscopy, Video , Models, Biological , Platelet Membrane Glycoproteins/metabolism , Signal Transduction , Stress, Mechanical , Thrombin/metabolism , Thrombosis/blood , Thrombosis/diagnosis , Thrombosis/geneticsABSTRACT
The ephrin transmembrane receptor family of tyrosine kinases is involved in platelet function. We report the first EPHB2 variant affecting platelets in 2 siblings (P1 and P2) from a consanguineous family with recurrent bleeding and normal platelet counts. Whole-exome sequencing identified a c.2233C>T variant (missense p.R745C) of the EPHB2 gene. P1 and P2 were homozygous for this variant, while their asymptomatic parents were heterozygous. The p.R745C variant within the tyrosine kinase domain was associated with defects in platelet aggregation, αIIbß3 activation, and granule secretion induced by G-protein-coupled receptor (GPCR) agonists and convulxin, as well as in thrombus formation on collagen under flow. In contrast, clot retraction, flow-dependent platelet adhesion, and spreading on fibrinogen were only mildly affected, indicating limited effects on αIIbß3 outside-in signaling. Most importantly, Lyn, Syk, and FcRγ phosphorylation, the initial steps in glycoprotein VI (GPVI) platelet signaling were drastically impaired in the absence of platelet-platelet contact, indicating a positive role for EPHB2 in GPVI activation. Likewise platelet activation by PAR4-AP showed defective Src activation, as opposed to normal protein kinase C activity and Ca2+ mobilization. Overexpression of wild-type and R745C EPHB2 variant in RBL-2H3 (rat basophilic leukemia) cells stably expressing human GPVI confirmed that EPHB2 R745C mutation impaired EPHB2 autophosphorylation but had no effect on ephrin ligand-induced EPHB2 clustering, suggesting it did not interfere with EPHB2-ephrin-mediated cell-to-cell contact. In conclusion, this novel inherited platelet disorder affecting EPHB2 demonstrates this tyrosine kinase receptor plays an important role in platelet function through crosstalk with GPVI and GPCR signaling.
Subject(s)
Blood Platelets/pathology , Mutation, Missense , Platelet Activation , Receptor, EphB2/genetics , Adolescent , Blood Platelets/metabolism , Blood Platelets/ultrastructure , Child , Female , Humans , Male , Pedigree , Platelet Adhesiveness , Platelet Aggregation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Membrane Glycoproteins/metabolism , Receptor, EphB2/metabolism , Signal Transduction , Young AdultABSTRACT
OBJECTIVES: Behçet's disease (BD) is a chronic systemic vasculitis. Thrombosis is a frequent and life-threatening complication. The pathogenesis of BD is poorly understood and evidence supporting a role for primed neutrophils in BD-associated thrombotic risk is scant. To respond to inflammatory insults, neutrophils release web-like structures, known as neutrophil extracellular traps (NETs), which are prothrombotic. We evaluated the role of NETs and markers of NETs in BD. METHODS: Blood samples were collected from patients with BD, according to the International Study Group Criteria for Behçet's disease, and healthy donors (HD). NET components, including cell-free DNA (CfDNA) and neutrophil enzymes myeloperoxidase (MPO), were assessed in serum or in purified neutrophils from patients with BD and HD. RESULTS: Patients with active BD had elevated serum cfDNA levels and MPO-DNA complexes compared with patients with inactive BD and to HD. In addition, levels of cfDNA and MPO-DNA complexes were significantly higher in patients with BD with vascular involvement compared with those without vascular symptoms. Purified neutrophils from patients with BD exhibited spontaneous NETosis compared with HD. Thrombin generation in BD plasma was significantly increased and positively correlated with the levels of MPO-DNA complexes and cfDNA. Importantly, DNAse treatment significantly decreased thrombin generation in BD plasma but not in HD plasma. In addition, biopsy materials obtained from patients with BD showed NETs production in areas of vasculitic inflammation and thrombosis. CONCLUSIONS: Our data show that NETs and markers of NETS levels are elevated in patients with BD and contribute to the procoagulant state. Targeting NETs may represent a potential therapeutic target for the reduction or prevention of BD-associated thrombotic risk.
Subject(s)
Behcet Syndrome/blood , Extracellular Traps/metabolism , Neutrophils/metabolism , Adult , Behcet Syndrome/pathology , Biomarkers/blood , Female , Humans , Male , Neutrophils/pathology , Severity of Illness IndexABSTRACT
Objective- Despite the high clinical relevance of thrombolysis, models for its study in human flowing blood are lacking. Our objective was to develop a microfluidic model for comparative evaluation of thrombolytic therapeutic strategies. Approach and Results- Citrated human blood was supplemented with 3,3'-dihexyloxacarbocyanine iodide and Alexa Fluor 647 fibrinogen conjugate, recalcified, and perfused for 3 to 4 minutes at venous or arterial wall shear rate in microfluidic flow chambers coated with collagen and tissue factor to generate nonocclusive fluorescent thrombi. A second perfusion was performed for 10 minutes with rhodamine-6G-labeled citrated whole blood, supplemented or not with r-tPA (recombinant tissue-type plasminogen activator), fluorescein isothiocyanate-conjugated r-tPA, and Alexa Fluor 568 plasminogen conjugate. Plasminogen and r-tPA bound to preformed thrombi and r-tPA caused a concentration-dependent decrease in thrombus fibrin content (up to 50% reduction at 15 µg/mL r-tPA) as assessed by fluorescence microscopy. Fibrinolysis was confirmed by measurement of D-dimers in the output flow. Remarkably, despite ongoing fibrinolysis, new platelets continued to be recruited to the thrombus under lysis. Under the arterial condition, combining r-tPA with hirudin enhanced fibrinolysis but did not prevent the recruitment of new platelets, which was, however, prevented by antiplatelet agents (ticagrelor or the GPVI [glycoprotein VI]-blocking antigen-binding fragment 9O12). Conclusions- Our microfluidic thrombolysis model is suitable for studying thrombolysis and testing the efficacy of drugs used in combination with r-tPA. Real-time analysis of fibrin and platelets during r-tPA-mediated fibrinolysis at arterial or venous flow conditions showed that platelets continue to accumulate during fibrinolysis. Such platelet accumulation may impair r-tPA-mediated recanalization.
Subject(s)
Blood Platelets/drug effects , Fibrinolysis/drug effects , Fibrinolytic Agents/pharmacology , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Thrombolytic Therapy/methods , Thrombosis/drug therapy , Tissue Plasminogen Activator/pharmacology , Anticoagulants/pharmacology , Blood Platelets/metabolism , Female , Fibrin/metabolism , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Male , Platelet Aggregation Inhibitors/pharmacology , Thrombosis/blood , Time FactorsABSTRACT
BACKGROUND AND PURPOSE: Neutrophil Extracellular Traps (NETs) are DNA extracellular networks decorated with histones and granular proteins produced by activated neutrophils. NETs have been identified as major triggers and structural factors of thrombosis. A recent study designated extracellular DNA threads from NETs as a potential therapeutic target for improving tissue-type plasminogen activator (tPA)-induced thrombolysis in acute coronary syndrome. The aim of this study was to assess the presence of NETs in thrombi retrieved during endovascular therapy in patients with acute ischemic stroke (AIS) and their impact on tPA-induced thrombolysis. METHODS: We analyzed thrombi from 108 AIS patients treated with endovascular therapy. Thrombi were characterized by hematoxylin/eosin staining, immunostaining, and ex vivo enzymatic assay. Additionally, we assessed ex vivo the impact of deoxyribonuclease 1 (DNAse 1) on thrombolysis of AIS thrombi. RESULTS: Histological analysis revealed that NETs contributed to the composition of all AIS thrombi especially in their outer layers. Quantitative measurement of thrombus NETs content was not associated with clinical outcome or AIS pathogenesis but correlated significantly with endovascular therapy procedure length and device number of passes. Ex vivo, recombinant DNAse 1 accelerated tPA-induced thrombolysis, whereas DNAse 1 alone was ineffective. CONCLUSIONS: This study suggests that thrombus NETs content may be responsible for reperfusion resistance, including mechanical or pharmacological approaches with intravenous tPA, irrespectively of their etiology. The efficacy of a strategy involving an administration of DNAse 1 in addition to tPA should be explored in the setting of AIS. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02907736.
Subject(s)
Brain Ischemia , Endovascular Procedures , Extracellular Traps/metabolism , Stroke , Thrombolytic Therapy , Tissue Plasminogen Activator/administration & dosage , Brain Ischemia/blood , Brain Ischemia/therapy , Female , Humans , Male , Stroke/blood , Stroke/therapy , Thrombosis/blood , Thrombosis/therapyABSTRACT
Glycoprotein VI, a major platelet activation receptor for collagen and fibrin, is considered a particularly promising, safe antithrombotic target. In this study, we show that human glycoprotein VI signals upon platelet adhesion to fibrinogen. Full spreading of human platelets on fibrinogen was abolished in platelets from glycoprotein VI- deficient patients suggesting that fibrinogen activates platelets through glycoprotein VI. While mouse platelets failed to spread on fibrinogen, human-glycoprotein VI-transgenic mouse platelets showed full spreading and increased Ca2+ signaling through the tyrosine kinase Syk. Direct binding of fibrinogen to human glycoprotein VI was shown by surface plasmon resonance and by increased adhesion to fibrinogen of human glycoprotein VI-transfected RBL-2H3 cells relative to mock-transfected cells. Blockade of human glycoprotein VI with the Fab of the monoclonal antibody 9O12 impaired platelet aggregation on preformed platelet aggregates in flowing blood independent of collagen and fibrin exposure. These results demonstrate that human glycoprotein VI binds to immobilized fibrinogen and show that this contributes to platelet spreading and platelet aggregation under flow.
Subject(s)
Blood Platelets/physiology , Fibrinogen/metabolism , Leukemia, Basophilic, Acute/pathology , Platelet Activation , Platelet Membrane Glycoproteins/metabolism , Animals , Humans , Leukemia, Basophilic, Acute/genetics , Leukemia, Basophilic, Acute/metabolism , Mice , Platelet Adhesiveness , Platelet Membrane Glycoproteins/genetics , Rats , Syk Kinase/genetics , Syk Kinase/metabolism , Thrombosis , Tumor Cells, CulturedABSTRACT
BACKGROUND AND PURPOSE: Admission hyperglycemia is associated with a poor outcome in acute ischemic stroke. How hyperglycemia impacts the pathophysiology of acute ischemic stroke remains largely unknown. We investigated how preexisting hyperglycemia increases ischemia/reperfusion cerebral injury. METHODS: Normoglycemic and streptozotocin-treated hyperglycemic rats were subjected to transient middle cerebral artery occlusion. Infarct growth and brain perfusion were assessed by magnetic resonance imaging. Markers of platelet, coagulation, and neutrophil activation were measured in brain homogenates and plasma. Downstream microvascular thromboinflammation (DMT) was investigated by intravital microscopy. RESULTS: Hyperglycemic rats had an increased infarct volume with an increased blood-brain barrier disruption and hemorrhagic transformation rate compared with normoglycemic rats. Magnetic resonance imaging scans revealed that hyperglycemia enhanced and accelerated lesion growth and was associated with hemorrhagic transformation originating from territories that were still not completely reperfused at 1 hour after middle cerebral artery recanalization. Intravital microscopy and analysis of brain homogenates showed that DMT began immediately after middle cerebral artery occlusion and was exacerbated by hyperglycemia. Measurement of plasma serotonin and matrix metalloproteinase-9 indicated that platelets and neutrophils were preactivated in hyperglycemic rats. Neutrophils from hyperglycemic diabetic patients showed increased adhesion to endothelial cells as compared with neutrophils from normoglycemic donors in flow chamber experiments. CONCLUSIONS: We show that hyperglycemia primes the thromboinflammatory cascade, thus, amplifying middle cerebral artery occlusion-induced DMT. DMT exacerbation in hyperglycemic rats impaired reperfusion and precipitated neurovascular damage, blood-brain barrier disruption, and hemorrhagic transformation. Our results designate DMT as a possible target for reduction of the deleterious impact of hyperglycemia in acute ischemic stroke.
Subject(s)
Blood-Brain Barrier , Cerebral Hemorrhage , Cerebral Infarction , Hyperglycemia , Infarction, Middle Cerebral Artery , Inflammation , Intracranial Thrombosis , Animals , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/physiopathology , Cerebral Hemorrhage/blood , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/etiology , Cerebral Infarction/blood , Cerebral Infarction/diagnostic imaging , Cerebral Infarction/etiology , Hyperglycemia/blood , Hyperglycemia/complications , Infarction, Middle Cerebral Artery/blood , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/diagnostic imaging , Inflammation/blood , Inflammation/etiology , Intracranial Thrombosis/blood , Intracranial Thrombosis/diagnostic imaging , Intracranial Thrombosis/etiology , Magnetic Resonance Imaging , Male , Microvessels/diagnostic imaging , Microvessels/physiopathology , Rats , Rats, Sprague-DawleyABSTRACT
Fibrin, the coagulation end product, consolidates the platelet plug at sites of vascular injury and supports the recruitment of circulating platelets. In addition to integrin αIIbß3, another as-yet-unidentified receptor is thought to mediate platelet interaction with fibrin. Platelet glycoprotein VI (GPVI) interacts with collagen and several other adhesive macromolecules. We evaluated the hypothesis that GPVI could be a functional platelet receptor for fibrin. Calibrated thrombin assays using platelet-rich plasma (PRP) showed that tissue factor-triggered thrombin generation was impaired in GPVI-deficient patients and reduced by the anti-GPVI Fab 9O12. Assays on reconstituted PRP and PRP from fibrinogen-deficient patients revealed a fibrinogen-dependent enhancement of thrombin generation, which relied on functional GPVI. The effect of GPVI was found to depend on fibrin polymerization. A binding assay showed a specific interaction between GPVI-Fc and fibrin, inhibited by the Fab 9O12. This Fab also reduced platelet adhesion to fibrin at low (300 s(-1)) and high (1500 s(-1)) wall shear rates. Platelets adherent to fibrin displayed shape change, exposure of procoagulant phospholipids, and the formation of small clots. When hirudinated blood was perfused at 1500 s(-1) over preformed fibrin-rich clots, the Fab 9O12 decreased the recruitment of platelets by up to 85%. This study identifies GPVI as a platelet receptor for polymerized fibrin with 2 major functions: (1) amplification of thrombin generation and (2) recruitment of circulating platelets to clots. These so-far-unrecognized properties of GPVI confer on it a key role in thrombus growth and stabilization.
Subject(s)
Fibrin/metabolism , Platelet Membrane Glycoproteins/metabolism , Thrombin/biosynthesis , Animals , Blood Platelets/metabolism , Case-Control Studies , Collagen/metabolism , Fibrin/chemistry , Humans , In Vitro Techniques , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Platelet Adhesiveness , Platelet Membrane Glycoproteins/deficiency , Platelet Membrane Glycoproteins/genetics , Polymerization , Protein Binding , Thrombosis/blood , Thrombosis/etiologyABSTRACT
Platelets protect vascular integrity during inflammation. Recent evidence suggests that this action is independent of thrombus formation and requires the engagement of glycoprotein VI (GPVI), but it remains unclear how platelets prevent inflammatory bleeding. We investigated whether platelets and GPVI act primarily by preventing detrimental effects of neutrophils using models of immune complex (IC)-mediated inflammation in mice immunodepleted in platelets and/or neutrophils or deficient in GPVI. Depletion of neutrophils prevented bleeding in thrombocytopenic and GPVI(-/-) mice during IC-mediated dermatitis. GPVI deficiency did not modify neutrophil recruitment, which was reduced by thrombocytopenia. Neutrophil cytotoxic activities were reduced in thrombocytopenic and GPVI(-/-) mice during IC-mediated inflammation. Intravital microscopy revealed that in this setting, intravascular binding sites for platelets were exposed by neutrophils, and GPVI supported the recruitment of individual platelets to these spots. Furthermore, the platelet secretory response accompanying IC-mediated inflammation was partly mediated by GPVI, and blocking of GPVI signaling impaired the vasculoprotective action of platelets. Together, our results show that GPVI plays a dual role in inflammation by enhancing neutrophil-damaging activities while supporting the activation and hemostatic adhesion of single platelets to neutrophil-induced vascular breaches.
Subject(s)
Blood Platelets/metabolism , Immune Complex Diseases/pathology , Inflammation/pathology , Neutrophils/pathology , Platelet Membrane Glycoproteins/metabolism , Animals , Disease Models, Animal , Immune Complex Diseases/complications , Inflammation Mediators/metabolism , Mice , Mice, Inbred C57BL , Mice, KnockoutABSTRACT
BACKGROUND AND PURPOSE: Downstream microvascular thrombosis (DMT) is known to be a contributing factor to incomplete reperfusion in acute ischemic stroke. The aim of this study was to determine the timing of DMT with intravital imaging and to test the hypothesis that intravenous alteplase infusion could reduce DMT in a transient middle cerebral artery occlusion (MCAO) rat stroke model. METHODS: Rats were subjected to 60-minute transient MCAO. Alteplase (10 mg/kg) was administered 30 minutes after the beginning of MCAO. Real-time intravital fluorescence microscopy through a dura-sparing craniotomy was used to visualize circulating blood cells and fibrinogen. Cerebral microvessel patency was quantitatively evaluated by fluorescein isothiocyanate-dextran perfusion. RESULTS: Immediately after MCAO, platelet and leukocyte accumulation were observed mostly in the venous compartment. Within 30 minutes after MCAO, microthrombi and parietal fibrin deposits were detected in postcapillary microvessels. Alteplase treatment significantly (P=0.006) reduced infarct volume and increased the percentage of perfused vessels during MCAO (P=0.02) compared with saline. Plasma levels of fibrinogen from alteplase-treated rats showed a rapid and profound hypofibrinogenemia. In vitro platelet aggregation demonstrated that alteplase reduced platelet aggregation (P=0.0001) and facilitated platelet disaggregation (P=0.001). These effects were reversible in the presence of exogenous fibrinogen. CONCLUSIONS: Our data demonstrate that DMT is an early phenomenon initiated before recanalization. We further show that alteplase-dependent maintenance of downstream perfusion during MCAO improves acute ischemic stroke outcome through a fibrinogen-dependent platelet aggregation reduction. Our results indicate that early targeting of DMT represents a therapeutic strategy to improve the benefit of large artery recanalization in acute ischemic stroke.
Subject(s)
Fibrinolytic Agents/pharmacology , Infarction, Middle Cerebral Artery/therapy , Intracranial Thrombosis/prevention & control , Microvessels/drug effects , Reperfusion , Tissue Plasminogen Activator/pharmacology , Animals , Blood Platelets/drug effects , Disease Models, Animal , Fibrin/drug effects , Fibrin/metabolism , Fibrinogen/drug effects , Fibrinogen/metabolism , Infarction, Middle Cerebral Artery/pathology , Intracranial Thrombosis/pathology , Leukocytes/drug effects , Male , Microscopy, Fluorescence , Platelet Aggregation/drug effects , Rats , Rats, Sprague-DawleyABSTRACT
CD31, a trans-homophilic inhibitory receptor expressed on both T- and B-lymphocytes, drives the mutual detachment of interacting leukocytes. Intriguingly, T cell CD31 molecules relocate to the immunological synapse (IS), where the T and B cells establish a stable interaction. Here, we show that intact CD31 molecules, which are able to drive an inhibitory signal, are concentrated at the periphery of the IS but are excluded from the center of the IS. At this site, were the cells establish the closest contact, the CD31 molecules are cleaved, and most of the extracellular portion of the protein, including the trans-homophilic binding sites, is shed from the cell surface. T cells lacking CD31 trans-homophilic binding sites easily establish stable interactions with B cells; at the opposite, CD31 signaling agonists inhibit T/B IS formation as well as the ensuing helper T cell activation and function. Confocal microscopy and flow cytometry analysis of experimental T/B IS shows that the T cell inhibitory effects of CD31 agonists depend on SHP-2 signaling, which reduces the phosphorylation of ZAP70. The analysis of synovial tissue biopsies from patients affected by rheumatoid arthritis showed that T cell CD31 molecules are excluded from the center of the T/B cell synapses in vivo. Interestingly, the administration of CD31 agonists in vivo significantly attenuated the development of the clinical signs of collagen-induced arthritis in DBA1/J mice. Altogether, our data indicate that the T cell co-inhibitory receptor CD31 prevents the formation of functional T/B immunological synapses and that therapeutic strategies aimed at sustaining CD31 signaling will attenuate the development of autoimmune responses in vivo.
Subject(s)
Arthritis, Experimental/immunology , Autoimmune Diseases/immunology , B-Lymphocytes/immunology , Immunological Synapses/immunology , Immunological Synapses/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Aged , Animals , Arthritis, Experimental/metabolism , Autoimmune Diseases/diagnosis , Autoimmune Diseases/metabolism , Biopsy , Cell Communication/drug effects , Cell Communication/immunology , Cell Line , Female , Humans , Lymphocyte Activation/immunology , Mice , Middle Aged , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Signal Transduction , Synovial Membrane/immunology , Synovial Membrane/pathology , T-Lymphocyte Subsets/drug effects , ZAP-70 Protein-Tyrosine Kinase/metabolismABSTRACT
BACKGROUND: Myeloproliferative neoplasms (MPNs) are characterized by a high rate of thrombotic complications that contribute to morbidity and mortality. MPN-related thrombogenesis is assumed to be multifactorial, involving both procoagulant and proinflammatory processes. Whether impaired fibrinolysis also participates in the prothrombotic phenotype of MPN has been poorly investigated. OBJECTIVES: We determined whether MPN, particularly JAK2V617F-positive MPN, is associated with fibrinolytic changes. METHODS: Tissue-type plasminogen activator (tPA)-mediated fibrinolysis was evaluated both in whole blood and plasma from mice with a hematopoietic-restricted Jak2V617F expression compared with wild-type (WT) mice (Jak2WT) using (1) halo clot lysis, (2) front lysis, and (3) plasmin generation assays. tPA clot lysis assay was performed in the plasma from 65 MPN patients (JAK2V617F mutation, n = 50; CALR mutations, n = 9) compared with 28 healthy controls. RESULTS: In whole blood from Jak2V617F mice, we observed a decreased fibrinolysis characterized by a significantly lower halo clot lysis rate compared with Jak2WT (95 ± 22 vs 147 ± 39 AU/min; P < .05). Similar results were observed in plasma (halo clot lysis rate, 130 ± 27 vs 186 ± 29 AU/min; front lysis rate, 2.8 ± 1.6 vs 6.1 ± 1.2 µm.min-1; P < .05). Plasmin generation was significantly decreased both in plasma clots and standardized fibrin clots from Jak2V617F mice compared with Jak2WT mice. Among MPN patients, impaired tPA-related fibrinolysis with prolonged clot lysis time was observed in JAK2V617F and CALR patients. Plasminogen activator inhibitor-1 and α2-antiplasmin were significantly increased in plasma from JAK2V617F patients compared with controls. CONCLUSION: Our results suggest that impaired tPA-mediated fibrinolysis represents an important prothrombotic mechanism in MPN patients that requires confirmation in larger studies.
Subject(s)
Fibrinolysis , Janus Kinase 2 , Myeloproliferative Disorders , Tissue Plasminogen Activator , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Animals , Myeloproliferative Disorders/blood , Myeloproliferative Disorders/genetics , Humans , Tissue Plasminogen Activator/blood , Thrombosis/blood , Thrombosis/genetics , Mutation , Male , Fibrinolysin/metabolism , Female , Mice , Middle Aged , Mice, Inbred C57BL , Case-Control Studies , Calreticulin/genetics , Aged , Phenotype , Mice, Transgenic , Blood CoagulationABSTRACT
BACKGROUND: The recruitment of activated factor VIII (FVIII) at the surface of activated platelets is a key step toward the burst of thrombin and fibrin generation during thrombus formation at the site of vascular injury. It involves binding to phosphatidylserine and, possibly, to fibrin-bound αIIbß3. Seminal work had shown the binding of FVIII to resting platelets, yet without a clear understanding of a putative physiological relevance. OBJECTIVES: To characterize the effects of FVIII-platelet interaction and its potential modulation of platelet function. METHODS: FVIII was incubated with washed platelets. The effects on platelet activation (spontaneously or triggered by collagen and thrombin) were studied by flow cytometry and light transmission aggregometry. We explored the involvement of downstream pathways by studying phosphorylation profiles (Western blot). The FVIII-glycoprotein (GP) VI interaction was investigated by ELISA, confocal microscopy, and proximity ligation assay. RESULTS: FVIII bound to the surface of resting and activated platelets in a dose-dependent manner. FVIII at supraphysiological concentrations did not induce platelet activation but rather specifically inhibited collagen-induced platelet aggregation and altered glycoprotein VI (GPVI)-dependent phosphorylation. FVIII, freed of its chaperone protein von Willebrand factor (VWF), interacted in close proximity with GPVI at the platelet surface. CONCLUSION: We showed that VWF-free FVIII binding to, or close to, GPVI modulates platelet activation in vitro. This may represent an uncharacterized negative feedback loop to control overt platelet activation. Whether locally activated FVIII concentrations achieved during platelet accumulation and thrombus formation at the site of vascular injury in vivo are compatible with such a function remains to be determined.
Subject(s)
Blood Platelets , Factor VIII , Platelet Activation , Platelet Aggregation , Platelet Membrane Glycoproteins , Humans , Platelet Membrane Glycoproteins/metabolism , Platelet Activation/drug effects , Blood Platelets/metabolism , Phosphorylation , Factor VIII/metabolism , Collagen/metabolism , Protein Binding , Flow Cytometry , Thrombin/metabolism , Dose-Response Relationship, Drug , Microscopy, ConfocalABSTRACT
ABSTRACT: Cerebral venous sinus thrombosis (CVST) is an uncommon venous thromboembolic event accounting for <1% of strokes resulting in brain parenchymal injuries. JAK2V617F mutation, the most frequent driving mutation of myeloproliferative neoplasms, has been reported to be associated with worse clinical outcomes in patients with CVST. We investigated whether hematopoietic JAK2V617F expression predisposes to specific pathophysiological processes and/or worse prognosis after CVST. Using an in vivo mouse model of CVST, we analyzed clinical, biological, and imaging outcomes in mice with hematopoietic-restricted Jak2V617F expression, compared with wild-type Jak2 mice. In parallel, we studied a human cohort of JAK2V617F-positive or -negative CVST. Early after CVST, mice with hematopoietic Jak2V617F expression had increased adhesion of platelets and neutrophils in cerebral veins located in the vicinity of CVST. On day 1, Jak2V617F mice had a worse outcome characterized by significantly more frequent and severe intracranial hemorrhages (ICHs) and higher mortality rates. Peripheral neutrophil activation was enhanced, as indicated by higher circulating platelet-neutrophil aggregates, upregulated CD11b expression, and higher myeloperoxydase plasma level. Concurrently, immunohistological and brain homogenate analysis showed higher neutrophil infiltration and increased blood-brain barrier disruption. Similarly, patients with JAK2V617F-positive CVST tended to present higher thrombotic burden and had significantly higher systemic immune-inflammation index, a systemic thromboinflammatory marker, than patients who were JAK2V617F-negative. In mice with CVST, our study corroborates that Jak2V617F mutation leads to a specific pattern including increased thrombotic burden, ICH, and mortality. The exacerbated thromboinflammatory response, observed both in mice and patients positive for JAK2V617F, could contribute to hemorrhagic complications.
Subject(s)
Inflammation , Janus Kinase 2 , Mutation , Sinus Thrombosis, Intracranial , Animals , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Mice , Sinus Thrombosis, Intracranial/genetics , Humans , Prognosis , Inflammation/genetics , Disease Models, Animal , Male , Female , Neutrophils/metabolismABSTRACT
BACKGROUND AND PURPOSE: We have previously reported that intravenous injection of high-density lipoproteins (HDLs) was neuroprotective in an embolic stroke model. We hypothesized that HDL vasculoprotective actions on the blood-brain barrier (BBB) may decrease hemorrhagic transformation-associated with tissue plasminogen activator (tPA) administration in acute stroke. METHODS: We used tPA alone or in combination with HDLs in vivo in 2 models of focal middle cerebral artery occlusion (MCAO) (embolic and 4-hour monofilament MCAO) and in vitro in a model of BBB. Sprague-Dawley rats were submitted to MCAO, n=12 per group. The rats were then randomly injected with tPA (10 mg/kg) or saline with or without human plasma purified-HDL (10 mg/kg). The therapeutic effects of HDL and BBB integrity were assessed blindly 24 hours later. The integrity of the BBB was also tested using an in vitro model of human cerebral endothelial cells under oxygen-glucose deprivation. RESULTS: tPA-treated groups had significantly higher mortality and rate of hemorrhagic transformation at 24 hours in both MCAO models. Cotreatment with HDL significantly reduced stroke-induced mortality versus tPA alone (by 42% in filament MCAO, P=0.009; by 73% in embolic MCAO, P=0.05) and tPA-induced intracerebral parenchymal hematoma (by 92% in filament MCAO, by 100% in embolic MCAO; P<0.0001). This was consistent with an improved BBB integrity. In vitro, HDLs decreased oxygen-glucose deprivation-induced BBB permeability (P<0.05) and vascular endothelial cadherin disorganization. CONCLUSIONS: HDL injection decreased tPA-induced hemorrhagic transformation in rat models of MCAO. Both in vivo and in vitro results support the vasculoprotective action of HDLs on BBB under ischemic conditions.