Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Clin Exp Rheumatol ; 42(5): 1035-1042, 2024 May.
Article in English | MEDLINE | ID: mdl-38372719

ABSTRACT

OBJECTIVES: Rheumatic and musculoskeletal diseases (RMD) may exhibit different immune responses to novel coronavirus (COVID-19) infection compared to healthy individuals. While previous studies have primarily investigated changes in COVID-19-related antibodies post-vaccination for RMD patients, this study sought to explore the dynamics of SARS-CoV-2 IgG antibodies and neutralising antibodies (NAb) in RMD patients after COVID-19 infection. METHODS: In this longitudinal study, we monitored the SARS-CoV-2 IgG antibodies and NAb levels in RMD patients and healthy controls (HC) at 60 and 90 days post-COVID-19 infection. Chemiluminescent immunoassay was used to detect the levels of novel coronavirus-specific IgG (anti-S1/S2 IgG) antibodies and NAb. RESULTS: A total of 292 RMD patients and 104 HC were enrolled in the study. At both the 60-day and 90-day post-COVID-19 infection, RMD patients exhibited significantly lower levels of anti-S1/S2 IgG and NAb than those in the HC group (p<0.001). The anti-S1/S2 IgG antibody levels remained relatively stable, while the NAb levels in RMD patients could vary greatly between the 60th and 90th days. A logistic regression analysis revealed that the prior administration of glucocorticoids (GC), immunosuppressants, and b/tsDMARDs stood out as independent risk factors associated with reduced anti-S1/S2 IgG and NAb levels, irrespective of the specific RMD subtypes. CONCLUSIONS: GC and anti-rheumatic medications can potentially alter the production of specific antibodies, especially NAb, in RMD patients post-COVID-19 infection. These findings emphasise the importance of continuous monitoring for NAb fluctuations in RMD patients following a COVID-19 infection.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Immunoglobulin G , Musculoskeletal Diseases , Rheumatic Diseases , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/blood , Rheumatic Diseases/immunology , Rheumatic Diseases/drug therapy , Rheumatic Diseases/blood , Male , Female , Middle Aged , Immunoglobulin G/blood , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Antibodies, Viral/blood , Longitudinal Studies , Adult , Musculoskeletal Diseases/immunology , Musculoskeletal Diseases/blood , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Aged , Case-Control Studies
2.
Mikrochim Acta ; 191(5): 264, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38622377

ABSTRACT

Silver nanoparticles supported on metal-organic framework (ZIF-67)-derived Co3O4 nanostructures (Ag NPs/Co3O4) were synthesized via a facile in situ reduction strategy. The resulting materials exhibited pH-switchable peroxidase/catalase-like catalytic activity. Ag NP doping greatly enhanced the catalytic activity of Ag NPs/Co3O4 towards 3,3',5,5'-tetramethylbenzidine (TMB) oxidation and H2O2 decomposition which were 59 times (A652 of oxTMB) and 3 times (A240 of H2O2) higher than that of ZIF-67, respectively. Excitingly, thiophanate-methyl (TM) further enhanced the peroxidase-like activity of Ag NPs/Co3O4 nanozyme due to the formation of Ag(I) species in TM-Ag NPs/Co3O4 and generation of more radicals resulting from strong interaction between Ag NPs and TM. The TM-Ag NPs/Co3O4 nanozyme exhibited lower Km and higher Vmax values towards H2O2 when compared with Ag NPs/Co3O4 nanozyme. A simple, bioelement-free colorimetric TM detection method based on Ag NPs/Co3O4 nanozyme via analyte-enhanced sensing strategy was successfully established with high sensitivity and selectivity. Our study demonstrated that hybrid noble metal NPs/MOF-based nanozyme can be a class of promising artificial nanozyme in environmental and food safety applications.


Subject(s)
Cobalt , Metal Nanoparticles , Oxides , Thiophanate , Metal Nanoparticles/chemistry , Colorimetry/methods , Hydrogen Peroxide/chemistry , Silver/chemistry , Peroxidases
3.
Analyst ; 146(14): 4576-4584, 2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34152332

ABSTRACT

On-site, instrument free quantitative analysis of pesticides is of significant importance for food safety control. However, it is still a great challenge for pesticide detection in food via the current visual detection methods due to the presence of interferents in a complex matrix. In this study, a complex tea matrix had a strong effect on a gold nanoparticles (Au NPs) based colorimetric sensor for the detection of pesticides. Here, a porous chitosan/partially reduced graphene oxide/diatomite (CS/prGO/DM) composite was successfully synthesized via a facile hydrothermal treatment. It could act as an efficient adsorbent for removing different types of tea interferents. A colorimetric sensing platform for the quantitative detection of pesticides in a complex matrix was successfully established. The color changes of the aggregation of Au NPs induced by pesticides were captured using the camera of a smartphone and the images were processed with average RGB (red, green, and blue) values obtained using self-developed software. The G/R values and A700/525 values obtained from UV-vis spectra could be used for quantitative analysis of pesticides. The limits of detection of phosalone and thiram in tea were 90 nM and 13.8 nM, respectively. It is expected that graphene-based materials are attractive for wide application of on-site colorimetric quantitative detection in a variety of fields like environmental protection, food safety and bioanalysis.


Subject(s)
Chitosan , Graphite , Metal Nanoparticles , Pesticides , Colorimetry , Diatomaceous Earth , Gold , Pesticides/analysis , Porosity
4.
Rapid Commun Mass Spectrom ; 34(21): e8893, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32666557

ABSTRACT

RATIONALE: Loss of carbon dioxide is an important characteristic fragmentation reaction of deprotonated benzoic acid and its derivatives in electrospray ionization mass spectrometry. However, researchers have rarely noticed or believed that the loss of carbon dioxide in multistage mass spectrometry is a "reversible reaction," that is, the fragment anion generated by carbon dioxide loss can capture another carbon dioxide to regenerate its precursor ion. METHODS: The fragmentation of the [M - H]- ions of dicamba (3,6-dichloro-2-methoxybenzoic acid) and benzoic acid was performed with an electrospray ionization hybrid quadrupole-orbitrap mass spectrometer. The structural confirmation of the precursor ions and their product ions was supported by accurate mass (elemental composition) analysis. Pseudo-MS3 experiments (in-source collision-induced dissociation as MS2 ) and isotope labelling experiments were used to confirm the addition of carbon dioxide to the product ions in MS2 . RESULTS: In the fragmentation of deprotonated dicamba (m/z 219), the relative abundance of the precursor ion does not decrease significantly or even increases as the collision energy increases. When the m/z 145 and 175 product ions were isolated in the mass analyzer, the ions 44 m/z units larger (m/z 189 and 219) were generated spontaneously, indicating the formation of carbon dioxide adduct ions. In the fragmentation of deprotonated [carboxyl-13 C]-benzoic acid (m/z 122), a deprotonated [carboxyl-12 C]-benzoic acid ion (m/z 121) was generated which was derived from 13 CO2 loss and 12 CO2 addition. The isotope labelling experiment further supports the formation of CO2 -attached ions in the fragmentation of deprotonated benzoic acids. CONCLUSIONS: Under collisional activation, deprotonated dicamba and benzoic acids easily undergo carbon dioxide loss, but the decarboxylated product anions have an appropriate nucleophilicity to carbon dioxide and they can capture a background carbon dioxide molecule remaining in the vacuum system to regenerate the precursor ions. This study provides a new and deeper understanding of the gas-phase chemistry of deprotonated benzoic acid derivatives in mass spectrometry.

5.
Rapid Commun Mass Spectrom ; 33(10): 969-977, 2019 May 30.
Article in English | MEDLINE | ID: mdl-30861230

ABSTRACT

RATIONALE: The incredible sensitivity of the modern mass spectrometry instrument enables scientists to detect a large number of molecules ranging from small organic compounds to biological macromolecules. However, the same sensitivity often throws up challenges with respect to background interferences and contaminants. The identification and source of these contaminants is very important for reducing background contamination and ensuring the accuracy of the analysis results. METHODS: The interfering compounds were analyzed by high-performance liquid chromatography coupled with a hybrid quadrupole-orbitrap mass spectrometer. The structural analysis was conducted by obtaining the accurate masses of precursors and their fragment ions. The retention time and MS/MS spectrum of one of the interfering compounds (N-lauryldiethanolamine) were compared with an authentic standard to reach an unequivocal structural assignment. RESULTS: The interferences (m/z 274 and 318 in positive mode) were observed during the analysis of herbicides in tea samples by electrospray ionization mass spectrometry (ESI-MS). Their structures were identified to be N-lauryldiethanolamine and N-(2-hydroxyethyl)-N-(2-(2-hydroxyethoxy)ethyl)dodecylamine by fragmentation interpretation and further confirmed by a standard compound. These interferences were found to be leached from the plastic microcentrifuge tubes used during sample pretreatment. The plastic tubes from two of the five suppliers tested were found to contain these two interferences. CONCLUSIONS: In this work, we presented an example about the observation, identification and source of interferences in ESI-MS. The N-lauryldiethanolamine and other ethoxylated aliphatic alkylamines are common plastic antistatic agents. They possess high proton affinity so that they show a strong response in ESI positive mode. In order to avoid their interference during mass spectrometric analysis we need to choose plastic tubes (or other plastic materials) that do not contain such antistatic agents.

6.
J Sep Sci ; 42(7): 1304-1311, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30741486

ABSTRACT

Phthalimide can be formed from either the degradation of folpet and phosmet, or reaction of phthalic anhydride with primary amino groups. Consequently, the sum of phthalimide and folpet, expressed as folpet-residue definition, is highly prone to false-positive levels of folpet in tea. An analytical method is thus urgently needed to investigate the residue level and source of phthalimide in tea. In this work, we developed an accurate method of determining phthalimide and phthalic acid (the indicator of phthalic anhydride) by acetonitrile extraction and 3-bromopropyltrimethylammonium bromide derivatization coupled with ultra high performance liquid chromatography and high-resolution mass spectrometry. The method was validated, and linearity (correlation coefficients > 0.99) was obtained. Satisfactory recoveries at 10, 20, 50, and 100 µg/kg ranged from 76 to 117%, and the intra- and interday accuracies were <23%. The limit of quantification for phthalimide and phthalic acid was 10 µg/kg. The developed method was further successfully used to determine phthalimide and phthalic acid in some tea samples. The positive rate of phthalimide and phthalic acid detected in the tea samples ranged from 30-75 and 50-90%, respectively.


Subject(s)
Food Contamination/analysis , Phthalic Acids/analysis , Phthalimides/analysis , Tea/chemistry , Chromatography, High Pressure Liquid , Mass Spectrometry , Molecular Structure
7.
Rapid Commun Mass Spectrom ; 31(3): 245-252, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28110498

ABSTRACT

RATIONALE: Electrospray ionization (ESI) tandem mass spectrometry can be applied to determine structural information about organic compounds. The [M + Na]+ ion is one of the major precursor ions in ESI mass spectrometry, but its fragmentation mechanism study is still insufficient. This study reveals the interesting fragmentation reactions of the [M + Na]+ ions of methoxyfenozide and tebufenozide. METHODS: The fragmentations of the [M + Na]+ , [M + Li]+ , and [M + H]+ ions of methoxyfenozide and tebufenozide were studied using a hybrid quadrupole-orbitrap mass spectrometer and an ion trap mass spectrometer. A hydrogen/deuterium (H/D)-exchange experiment in the amide group of methoxyfenozide allowed for the confirmation of the fragmentation mechanism. Density functional theory (DFT) calculations were performed for a further understanding of the fragmentation mechanism of the [M + Na]+ ion of methoxyfenozide. RESULTS: Neutral losses of sodium benzoate and benzoic acid in the fragmentation of the [M + Na]+ ions of methoxyfenozide and tebufenozide were observed as the major fragmentation pathways. In contrast, similar fragmentations were not observed or minor pathways in the fragmentation of the [M + Li]+ and [M + H]+ ions of methoxyfenozide and tebufenozide. In addition, a minor product ion resulting from loss of NaOH was identified, which was the first reported example in the fragmentation of sodiated compounds in mass spectrometry. CONCLUSIONS: Losses of sodium benzoate and benzoic acid in the fragmentation of the [M + Na]+ ions of methoxyfenozide and tebufenozide are proposed to be formed through an intramolecular rearrangement reaction, which is supported by DFT calculations. An H/D-exchange experiment confirms that the carboxyl hydrogen of benzoic acid and the hydrogen of NaOH exclusively derive from the amide hydrogen of the precursor ion. This study enriches our knowledge on the Na+ -induced fragmentation reactions. Copyright © 2016 John Wiley & Sons, Ltd.

8.
Int J Clin Oncol ; 22(4): 660-666, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28243945

ABSTRACT

BACKGROUND: The redox regulatory protein, thioredoxin-interacting protein (TXNIP), has been confirmed as an important tumor suppressor gene in various types of human cancers. In previous studies, we found that overexpression of tumor suppressor gene RIZ1 in meningiomas can significantly improve the expression of TXNIP by microarray data analysis. Therefore, we hypothesized that TXNIP was associated with the initiation and progression of meningiomas. METHODS: First, we evaluated the expression of TXNIP and Ki-67 in meningioma tissues from 65 patients using immunohistochemistry. We also analyzed the correlation between TXNIP immunoreactivity and clinicopathological features, as well as patient prognostic factors. RESULTS: According to immunohistochemistry results, high-grade meningioma tissues had significantly lower expression of TXNIP than benign meningioma tissues (29.31 ± 18.70 vs 74.61 ± 7.51, P < 0.0001). TXNIP and Ki67 were negatively correlated (P < 0.0001). Moreover, the expression of TXNIP was higher in nonrecurrent high-grade meningiomas (P < 0.05). In addition, Kaplan-Meier analysis indicated that expression of TXNIP and Ki-67 was related to recurrence-free time. Multivariate Cox analysis showed that TXNIP expression level was the only independent predictor for meningioma prognosis. CONCLUSION: Our results demonstrated that high expression of TXNIP indicates a lower pathological grade of meningnioma, and is also associated with longer recurrence-free time. Therefore, TXNIP could be regarded as a potential molecular marker to predict recurrence in patients with meningiomas.


Subject(s)
Biomarkers, Tumor/metabolism , Carrier Proteins/metabolism , Meningeal Neoplasms/pathology , Meningioma/pathology , Adult , Aged , Biomarkers, Tumor/analysis , Carrier Proteins/analysis , Female , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Ki-67 Antigen/analysis , Ki-67 Antigen/metabolism , Male , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/mortality , Meningioma/metabolism , Meningioma/mortality , Middle Aged , Multivariate Analysis , Neoplasm Recurrence, Local/pathology , Prognosis
9.
Biochem Biophys Res Commun ; 476(3): 146-52, 2016 07 29.
Article in English | MEDLINE | ID: mdl-27181362

ABSTRACT

PFKFB4 is reported to regulate glycolysis by synthesizing fructose-2, 6-bisphosphate (F2,6BP) and has proved to be associated with most malignancies. However, the underlying mechanism for increased PFKFB4 expression in bladder cancer remains unclear. The present study demonstrated that PFKFB4 was overexpressed in bladder cancer tissues. In addition, the expression of PFKFB4 elevated in bladder cancer cells in the hypoxic condition, while in nomoxic condition, the expression of PFKFB4 still very low. Furthermore, we identified the hypoxia-responsive elements (HRE)-D from five putative HREs in the promoter region of PFKFB4 and demonstrated that the HRE-D was transactivated by the HIF-1α in bladder cancer cells. By using the Double-immunofluorescence co-localization assay, we revealed that the HIF-1α expression was associated with PFKFB4 expression in human bladder cancer specimens. Altogether, our study for the first time identified the pivotal role of HIF-1α in the connection between PFKFB4 and hypoxia in bladder cancer, which may prove to be a potential target for the treatment of bladder cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Phosphofructokinase-2/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder/pathology , Aged , Cell Line, Tumor , Female , Humans , Hypoxia/complications , Hypoxia/genetics , Hypoxia/pathology , Male , Middle Aged , Promoter Regions, Genetic , Up-Regulation , Urinary Bladder/metabolism , Urinary Bladder Neoplasms/complications
10.
Tumour Biol ; 37(3): 2901-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26409450

ABSTRACT

Phenoxybenzamine hydrochloride (PHEN) is a selective antagonist of both α-adrenoceptor and calmodulin that exhibits anticancer properties. The aim of this study was to explore the anti-tumor function of PHEN in glioma. Cell proliferation assay was used to assess glioma cell growth. Migration and invasion capacity of glioma cells was monitored by wound-healing and transwell assay, respectively. Neurosphere formation test was adopted for the tumorigenesis of glioma cells, which was also confirmed by soft agar cloning formation test in vitro and a nude mouse model in vivo. Finally, we explored the potential pathway utilized by PHEN using Western blot and immunofluoresce staining. PHEN exhibited a significant inhibitory effect on the proliferation of both U251 and U87MG glioma cell lines in a positive dose-dependent manner. PHEN apparently attenuated the malignancy of glioma in terms of migration and invasion and also suppressed the tumorigenic capacity both in vitro and in vivo. Mechanism study showed that PHEN promoted tumor suppression by inhibiting the TrkB-Akt pathway. The results of the present study demonstrated that PHEN suppressed the proliferation, migration, invasion, and tumorigenesis of glioma cells, induced LINGO-1 expression, and inhibited the TrkB-Akt pathway, which may prove to be the mechanisms underlying the anti-tumor effect of PHEN on glioma cells.


Subject(s)
Antineoplastic Agents/pharmacology , Glioma/drug therapy , Phenoxybenzamine/pharmacology , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Glioma/pathology , Humans , Membrane Proteins/analysis , Mice , Neoplasm Invasiveness , Nerve Tissue Proteins/analysis , Phenoxybenzamine/therapeutic use
12.
Front Pharmacol ; 15: 1353615, 2024.
Article in English | MEDLINE | ID: mdl-38464719

ABSTRACT

Gouty arthritis (GA) is an inflammatory disease characterized by pain. The primary goal of current treatment strategies during GA flares remains the reduction of inflammation and pain. Research suggests that the gut microbiota and microbial metabolites contribute to the modulation of the inflammatory mechanism associated with GA, particularly through their effect on macrophage polarization. The increasing understanding of the gut-joint axis emphasizes the importance of this interaction. The primary objective of this review is to summarize existing research on the gut-immune-joint axis in GA, aiming to enhance understanding of the intricate processes and pathogenic pathways associated with pain and inflammation in GA, as documented in the published literature. The refined comprehension of the gut-joint axis may potentially contribute to the future development of analgesic drugs targeting gut microbes for GA.

13.
Medicine (Baltimore) ; 103(14): e37684, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579032

ABSTRACT

BACKGROUND: Wrist arthroscopy technology is a surgical technology invented in recent years and widely used in clinical treatment of various wrist diseases. This study uses the methods of bibliometrics and visual analysis to understand the global research status, research hotspots, and future development trends of wrist arthroscopy. METHODS: The relevant literature of global publications on wrist arthroscopy from 2013 to 2023 was extracted from the Web of Science Core Collection database, and the annual output, cooperation, hot spots, research status, and development trend of this field were analyzed by using the bibliometric software (VOSviewers, CiteSpace, and the R package "Bibliometrix"). RESULTS: A total of 635 articles were included, from 2013 to 2023, the number of publications related to wrist arthroscopy showed an overall upward trend, the USA, France, and China are the top 3 countries in terms of the number of publications, whereas Mayo Clinic is the institution with the highest number of publications, Ho PC holds a core position in this field, keyword analysis indicates that the research hotspots are the applications of wrist arthroscopy in triangular fibrocartilage complex injuries, scaphoid nonunion, and avascular necrosis of the lunate. CONCLUSION SUBSECTIONS: Wrist arthroscopy has shown tremendous potential in treating various wrist diseases. However, there are still some challenges in its research domain. With continuous deep research, strengthened international collaboration, and ongoing technological advancements, wrist arthroscopy has the potential to become the standard treatment in hand surgery, offering more efficient and safer treatment options for patients worldwide.


Subject(s)
Arthroscopy , Wrist , Humans , Ambulatory Care Facilities , Bibliometrics , China
14.
Foods ; 13(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38472748

ABSTRACT

Ningnanmycin is a widely used antibiotic in agricultural production that effectively controls fungal and viral diseases in tea trees and chrysanthemums. The polarity characteristic of ningnanmycin has posed limitations on the development of robust detection methods, thereby hindering effective monitoring and control measures. By combining cation exchange solid phase extraction (SPE) with hydrophilic interaction chromatography tandem mass spectrometry (HILIC-MS/MS), we have effectively tackled the issue pertaining to the separation and retention of ningnanmycin. The average recoveries of ningnanmycin in green tea, black tea, and chrysanthemum were 77.3-82.0%, 80.1-81.5%, and 74.0-80.0%, respectively. The intraday and interday relative standard deviations (RSDs) were below and equal to 7.7%. Good linearity was observed in the concentration range of 1-1000 µg/L (R2 > 0.998). The limits of detection (LODs) ranged from 1.1 µg/kg to 7.1 µg/kg, and the limits of quantification (LOQs) ranged from 3.6 µg/kg to 23.7 µg/kg for ningnanmycin. These results indicate the good accuracy, repeatability, reproducibility, and sensitivity of the method. It is suitable for detecting ningnanmycin in tea and chrysanthemum.

15.
Adv Mater ; 36(6): e2307680, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37997498

ABSTRACT

Antibiotic-resistant bacteria pose a global health threat by causing persistent and recurrent microbial infections. To address this issue, antimicrobial nanoparticles (NPs) with low drug resistance but potent bactericidal effects have been developed. However, many of the developed NPs display poor biosafety and their synthesis often involves complex procedures and the antimicrobial modes of action are unclear. Herein, a simple strategy is reported for designing antimicrobial metal-phenolic network (am-MPN) NPs through the one-step assembly of a seeding agent (diethyldithiocarbamate), natural polyphenols, and metal ions (e.g., Cu2+ ) in aqueous solution. The Cu2+ -based am-MPN NPs display lower Cu2+ antimicrobial concentrations (by 10-1000 times) lower than most reported nanomaterials and negligible toxicity across various models, including, cells, blood, zebrafish, and mice. Multiple antimicrobial modes of the NPs have been identified, including bacterial wall disruption, reactive oxygen species production, and quinoprotein formation, with the latter being a distinct pathway identified for the antimicrobial activity of the polyphenol-based am-MPN NPs. The NPs exhibit excellent performance against multidrug-resistant bacteria (e.g., methicillin-resistant Staphylococcus aureus (MRSA)), efficiently inhibit and destroy bacterial biofilms, and promote the healing of MRSA-infected skin wounds. This study provides insights on the antimicrobial properties of metal-phenolic materials and the rational design of antimicrobial metal-organic materials.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Mice , Animals , Zebrafish , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Metal Nanoparticles/therapeutic use , Wound Healing , Bacteria , Microbial Sensitivity Tests
16.
Food Chem ; 424: 136402, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37216782

ABSTRACT

Phenolamides (PAs) are important secondary metabolites present in plants with multiple bioactivities. This study aims to comprehensively identify and characterize PAs in tea (Camellia sinensis) flowers using ultra-high-performance liquid chromatography/Q-Exactive orbitrap mass spectrometry based on a lab-developed in-silico accurate-mass database. The PAs found in tea flowers were conjugates of Z/E-hydroxycinnamic acids (p-coumaric, caffeic and ferulic acids) with polyamines (putrescine, spermidine and agmatine). The positional and Z/E isomers were distinguished through characteristic MS2 fragmentation rules and chromatographic retention behavior summarized from some synthetic PAs. 21 types of PAs consisting of over 80 isomers were identified, and the majority of them were found in tea flowers for the first time. Among 12 tea flower varieties studied, they all possessed tris-(p-coumaroyl)-spermidine with the highest relative content, and C. sinensis 'Huangjinya' had the highest total relative contents of PAs. This study shows the richness and structural diversity of PAs in tea flowers.


Subject(s)
Camellia sinensis , Camellia sinensis/chemistry , Spermidine/analysis , Chromatography, High Pressure Liquid/methods , Mass Spectrometry , Flowers/chemistry , Tea/chemistry
17.
Biosens Bioelectron ; 233: 115341, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37099980

ABSTRACT

The development of a common and anti-interference acetylcholinesterase (AChE) inhibition assay for plant-originated food samples has been of great challenge because of the prevalent and strong signal interferences from natural pigments. Plant pigments normally exhibit non-negligible absorbance in the UV-visible region. As a result, the signals of a typical near-infrared (NIR) fluorescent probe could be disturbed through primary inner filter effect if it is excited by UV-visible light during plant sample analysis. In this work, an NIR-excitable AChE-activated fluorescent probe was biomimetically designed and synthesized. And the NIR-excitation strategy was utilized for the anti-interference detection of organophosphate and carbamate pesticides in colored samples with this probe. Sensitive and rapid response to AChE and pesticides was achieved due to the high affinity of the biomimetic recognition unit in the probe. The limits of detection for four representative pesticides including dichlorvos, carbofuran, chlorpyrifos and methamidophos reached 0.0186 µg/L, 2.20 µg/L, 12.3 µg/L and 13.6 µg/L, respectively. Most importantly, fluorescent response to pesticide contents could be accurately measured in the coexistence of different plant pigments by this probe, and the measured results showed completely irrelevance to the plant pigments and their colors. Taking advantage of such probe, the new developed AChE inhibition assay showed good sensitivity and anti-interference ability in the detection of organophosphate and carbamate pesticides in real samples.


Subject(s)
Biosensing Techniques , Carbofuran , Chlorpyrifos , Pesticides , Pesticides/toxicity , Pesticides/analysis , Acetylcholinesterase , Fluorescent Dyes , Biosensing Techniques/methods
18.
Environ Sci Pollut Res Int ; 30(56): 118133-118148, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37936031

ABSTRACT

Camellia sinensis (L.) is a perennial evergreen woody plant with the potential for environmental pollution due to its unique growth environment and extended growth cycle. Pollution sources and pathways for tea plants encompass various factors, including atmospheric deposition, agricultural inputs of chemical fertilizers and pesticide, uptake from soil, and sewage irrigation. During the cultivation phase, Camellia sinensis (L.) can absorb organic pollutants through its roots and leaves. This review provides an overview of the uptake and translocation mechanisms involving the absorption of polycyclic aromatic hydrocarbons (PAHs), pesticides, anthraquinone (AQ), perchlorate, and other organic pollutants by tea plant roots. Additionally, we summarize how fresh tea leaves can be impacted by spraying pesticide and atmospheric sedimentation. In conclusion, this review highlights current research progress in understanding the pollution risks associated with Camellia sinensis (L.) and its products, emphasizing the need for further investigation and providing insights into potential future directions for research in this field.


Subject(s)
Camellia sinensis , Environmental Pollutants , Pesticides , Environmental Pollutants/metabolism , Pesticides/metabolism , Biological Transport , Plant Leaves/metabolism , Tea
19.
Orthop Surg ; 14(11): 2947-2954, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36178102

ABSTRACT

OBJECTIVE: To explore the clinical effects of wrist arthroscopy combined with oblique ulnar shortening osteotomy in the treatment of ulnar impaction syndrome. METHODS: This was a retrospective study of 60 patients with ulnar impaction syndrome who were admitted to our department from January 2016 to December 2019. According to different surgical methods, they were divided into an observation group and a control group, with 30 cases in each group. The control group was treated with oblique ulnar shortening osteotomy, and the observation group used wrist arthroscopy based on the control group. The two groups of patients were compared in terms of wrist function before and 12 months after surgery. We compared the Disabilities of the Arm, Shoulder, and Hand Score (DASH Score), Patient-Rated Wrist Evaluation Score (PRWE Score), Visual Analog Score (VAS), and ulnar variation between the two groups at 12 months after surgery. The excellent and good rates by Mayo wrist score were compared between the two groups at the last follow-up. RESULTS: All patients were followed up for 12-36 months, with an average of 14.5 months. Bone union was achieved at the oblique osteotomy of the ulna, with an average healing time of 13.6 weeks. The observation group was examined by wrist arthroscopy, and the triangular fibrocartilage complex (TFCC) Palmer classification was confirmed in three cases of type IIA, seven cases of type IIB, 14 cases of type IIC, and six cases of type IID. Compared with before surgery, the grip strength, flexion-extension, ulnar radial deflection, and forearm rotation of the two groups of patients were significantly improved at 12 months after surgery. The DASH score, PRWE score, and VAS score of the observation group were better than those of the control group, and the difference in ulnar shortening length was not statistically significant between the two groups. The excellent and good rates of the observation group (93.3%) were better than those of the control group (87.5%) at the last follow-up, and the difference was statistically significant. CONCLUSION: Compared with oblique ulnar shortening osteotomy alone, combined wrist arthroscopy can better reduce the pain of patients with ulnar impaction syndrome, restore wrist function, and improve the excellent and good rates. Therefore, it is clinically worthy of promotion.


Subject(s)
Arthroscopy , Joint Diseases , Humans , Arthroscopy/methods , Retrospective Studies , Wrist , Range of Motion, Articular , Treatment Outcome , Osteotomy/methods , Joint Diseases/surgery
20.
Food Chem ; 390: 133183, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35597088

ABSTRACT

Pyrrolizidine alkaloids (PAs) and pyrrolizidine alkaloid N-oxides (PANOs) are toxic secondary metabolites in plants, and one kind of main exogenous pollutants of tea. Herein, the dissipation pattern and conversion behavior of PAs/PANOs were investigated during tea manufacturing and brewing using ultra high-performance liquid chromatography tandem mass spectrometry. Compared with PAs (processing factor (PF) = 0.73-1.15), PANOs had higher degradation rates (PF = 0.21-0.56) during tea manufacturing, and drying played the most important role in PANOs degradation. Moreover, PANOs were firstly discovered to be converted to corresponding PAs especially in the time-consuming (spreading of green tea manufacturing and withering of black tea manufacturing) and high-temperature tea processing (drying). Moreover, higher transfer rates of PANOs (≥75.84%) than that of PAs (≤56.53%) were observed during tea brewing. Due to higher toxicity of PAs than PANOs, these results are conducive to risk assessment and pollution control of PAs/PANOs in tea.


Subject(s)
Pyrrolizidine Alkaloids , Benzodiazepines , Chromatography, High Pressure Liquid , Oxides/analysis , Pyrrolizidine Alkaloids/analysis , Tea
SELECTION OF CITATIONS
SEARCH DETAIL