Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 246
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-38031362

ABSTRACT

Fractal patterns have been shown to change in resting- and task-state blood oxygen level-dependent signals in bipolar disorder patients. However, fractal characteristics of brain blood oxygen level-dependent signals when responding to external emotional stimuli in pediatric bipolar disorder remain unclear. Blood oxygen level-dependent signals of 20 PBD-I patients and 17 age- and sex-matched healthy controls were extracted while performing an emotional Go-Nogo task. Neural responses relevant to the task and Hurst exponent of the blood oxygen level-dependent signals were assessed. Correlations between clinical indices and Hurst exponent were estimated. Significantly increased activations were found in regions covering the frontal lobe, parietal lobe, temporal lobe, insula, and subcortical nuclei in PBD-I patients compared to healthy controls in contrast of emotional versus neutral distractors. PBD-I patients exhibited higher Hurst exponent in regions that involved in action control, such as superior frontal gyrus, inferior frontal gyrus, inferior temporal gyrus, and insula, with Hurst exponent of frontal orbital gyrus correlated with onset age. The present study exhibited overactivation, increased self-similarity and decreased complexity in cortical regions during emotional Go-Nogo task in patients relative to healthy controls, which provides evidence of an altered emotional modulation of cognitive control in pediatric bipolar disorder patients. Hurst exponent may be a fractal biomarker of neural activity in pediatric bipolar disorder.


Subject(s)
Bipolar Disorder , Humans , Child , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/psychology , Brain/diagnostic imaging , Emotions/physiology , Frontal Lobe , Prefrontal Cortex , Brain Mapping , Magnetic Resonance Imaging
2.
Eur Radiol ; 34(1): 402-410, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37552255

ABSTRACT

OBJECTIVES: To evaluate the prognostic value of radiomics features based on late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) images in patients with cardiac amyloidosis (CA). METHODS: This retrospective study included 120 CA patients undergoing CMR at three institutions. Radiomics features were extracted from global and three different segments (base, mid-ventricular, and apex) of left ventricular (LV) on short-axis LGE images. Primary endpoint was all-cause mortality. The predictive performance of the radiomics features and semi-quantitative and quantitative LGE parameters were compared by ROC. The AUC was used to observe whether Rad-score had an incremental value for clinical stage. The Kaplan-Meier curve was used to further stratify the risk of CA patients. RESULTS: During a median follow-up of 12.9 months, 30% (40/120) patients died. There was no significant difference in the predictive performance of the radiomics model in different LV sections in the validation set (AUCs of the global, basal, middle, and apical radiomics model were 0.75, 0.77, 0.76, and 0.77, respectively; all p > 0.05). The predictive performance of the Rad-score of the base-LV was better than that of the LGE total enhancement mass (AUC:0.77 vs. 0.54, p < 0.001) and LGE extent (AUC: 0.77 vs. 0.53, p = 0.004). Rad-score combined with Mayo stage had better predictive performance than Mayo stage alone (AUC: 0.86 vs. 0.81, p = 0.03). Rad-score (≥ 0.66) contributed to the risk stratification of all-cause mortality in CA. CONCLUSIONS: Compared to quantitative LGE parameters, radiomics can better predict all-cause mortality in CA, while the combination of radiomics and Mayo stage could provide higher predictive accuracy. CLINICAL RELEVANCE STATEMENT: Radiomics analysis provides incremental value and improved risk stratification for all-cause mortality in patients with cardiac amyloidosis. KEY POINTS: • Radiomics in LV-base was superior to LGE semi-quantitative and quantitative parameters for predicting all-cause mortality in CA. • Rad-score combined with Mayo stage had better predictive performance than Mayo stage alone or radiomics alone. • Rad-score ≥ 0.66 was associated with a significantly increased risk of all-cause mortality in CA patients.


Subject(s)
Amyloidosis , Gadolinium , Humans , Gadolinium/pharmacology , Contrast Media/pharmacology , Retrospective Studies , Radiomics , Amyloidosis/diagnostic imaging , Prognosis , Predictive Value of Tests , Magnetic Resonance Imaging, Cine/methods , Ventricular Function, Left
3.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34301892

ABSTRACT

Cytidine triphosphate synthase (CTPS), which comprises an ammonia ligase domain and a glutamine amidotransferase domain, catalyzes the final step of de novo CTP biosynthesis. The activity of CTPS is regulated by the binding of four nucleotides and glutamine. While glutamine serves as an ammonia donor for the ATP-dependent conversion of UTP to CTP, the fourth nucleotide GTP acts as an allosteric activator. Models have been proposed to explain the mechanisms of action at the active site of the ammonia ligase domain and the conformational changes derived by GTP binding. However, actual GTP/ATP/UTP binding modes and relevant conformational changes have not been revealed fully. Here, we report the discovery of binding modes of four nucleotides and a glutamine analog 6-diazo-5-oxo-L-norleucine in Drosophila CTPS by cryo-electron microscopy with near-atomic resolution. Interactions between GTP and surrounding residues indicate that GTP acts to coordinate reactions at both domains by directly blocking ammonia leakage and stabilizing the ammonia tunnel. Additionally, we observe the ATP-dependent UTP phosphorylation intermediate and determine interacting residues at the ammonia ligase. A noncanonical CTP binding at the ATP binding site suggests another layer of feedback inhibition. Our findings not only delineate the structure of CTPS in the presence of all substrates but also complete our understanding of the underlying mechanisms of the allosteric regulation and CTP synthesis.


Subject(s)
Adenosine Triphosphate/metabolism , Ammonia/metabolism , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/metabolism , Drosophila melanogaster/enzymology , Glutamine/metabolism , Uridine Triphosphate/metabolism , Allosteric Regulation , Animals , Binding Sites , Catalysis , Cryoelectron Microscopy , Hydrolysis , Kinetics , Ligands , Protein Conformation
4.
Eur Radiol ; 33(5): 3029-3040, 2023 May.
Article in English | MEDLINE | ID: mdl-36576550

ABSTRACT

OBJECTIVES: To investigate the predictive value of CT-derived fractional flow reserve (FFRCT) in anastomosis occlusion after coronary artery bypass graft (CABG) surgery. METHODS: Patients undergoing CABG with both pre- and post-operative coronary computed tomographic angiography (CCTA) were retrospectively included. Preoperative CCTA studies were used to evaluate anatomical and FFRCT information of target vessels. A diameter stenosis (DS) ≥ 70% or left main > 50% was considered to be anatomically severe, while FFRCT value ≤ 0.80 be functionally significant. The primary endpoint was anastomosis occlusion evaluated on post-operative CCTA during follow-up. Predictors of anastomosis occlusion were assessed by the multivariate binary logistic regression with generalized estimating equations. RESULTS: A total of 270 anastomoses were identified in 88 enrolled patients. Forty-one anastomoses from 30 patients exhibited occlusion during a follow-up of 15.3 months after CABG. The occluded group had significantly increased prevalence of non-severe DS (58.5% vs. 40.2%; p = 0.023) and non-significant FFRCT (48.8% vs. 10.0%; p < 0.001). Multivariable analysis indicated FFRCT ≤ 0.80 (odds ratio [OR]: 0.10, 95% CI: 0.03-0.33; p < 0.001) and older age (OR: 0.92, 95% CI: 0.87-0.97; p = 0.001) were predictors for bypass patency during follow-up, while myocardial infarction history and anastomosis to a local lesion or bifurcation (all p value < 0.05) were predictors of occlusion. Adding FFRCT into the model based on the clinical and anatomical predictors had an improved AUC of 0.848 (p = 0.005). CONCLUSIONS: FFRCT ≤ 0.80 was associated with a significant risk reduction of anastomosis occlusion after CABG. Preoperative judgment of the hemodynamic significance may improve the CABG surgery strategy and reduce graft failure. KEY POINTS: • FFRCT ≤ 0.80 was associated with a significant risk reduction of anastomosis occlusion after CABG. • The addition of FFRCT into the integrated model including clinical (age and history of myocardial infarction) and anatomical CCTA indicators (local lesion and bifurcation) significantly improved the model performance with an AUC of 0.848 (p = 0.005). • Preoperative judgment of the hemodynamic significance may help improve the decision-making and surgery planning in patients indicated for CABG and significantly reduce graft failure, without an extra radiation exposure and risk of invasive procedure.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Myocardial Infarction , Vascular Diseases , Humans , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/surgery , Retrospective Studies , Coronary Angiography/methods , Prognosis , Predictive Value of Tests , Coronary Vessels/diagnostic imaging , Coronary Vessels/surgery , Tomography, X-Ray Computed , Coronary Artery Bypass , Computed Tomography Angiography/methods
5.
Psychol Med ; 52(8): 1481-1490, 2022 06.
Article in English | MEDLINE | ID: mdl-32938511

ABSTRACT

BACKGROUND: The structural changes recent-onset posttraumatic stress disorder (PTSD) subjects were rarely investigated. This study was to compare temporal and causal relationships of structural changes in recent-onset PTSD with trauma-exposed control (TEC) subjects and non-TEC subjects. METHODS: T1-weighted magnetic resonance images of 27 PTSD, 33 TEC and 30 age- and sex-matched healthy control (HC) subjects were studied. The causal network of structural covariance was used to evaluate the causal relationships of structural changes in PTSD patients. RESULTS: Volumes of bilateral hippocampal and left lingual gyrus were significantly smaller in PTSD patients and TEC subjects than HC subjects. As symptom scores increase, reduction in gray matter volume began in the hippocampus and progressed to the frontal lobe, then to the temporal and occipital cortices (p < 0.05, false discovery rate corrected). The hippocampus might be the primary hub of the directional network and demonstrated positive causal effects on the frontal, temporal and occipital regions (p < 0.05, false discovery rate corrected). The frontal regions, which were identified to be transitional points, projected causal effects to the occipital lobe and temporal regions and received causal effects from the hippocampus (p < 0.05, false discovery rate corrected). CONCLUSIONS: The results offer evidence of localized abnormalities in the bilateral hippocampus and remote abnormalities in multiple temporal and frontal regions in typhoon-exposed PTSD patients.


Subject(s)
Cyclonic Storms , Stress Disorders, Post-Traumatic , Cerebral Cortex/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Magnetic Resonance Imaging/methods , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/pathology
6.
Eur Radiol ; 32(6): 3778-3789, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35020012

ABSTRACT

OBJECTIVES: To examine the diagnostic accuracy of machine learning-based coronary CT angiography-derived fractional flow reserve (FFRCT) in diabetes mellitus (DM) patients. METHODS: In total, 484 patients with suspected or known coronary artery disease from 11 Chinese medical centers were retrospectively analyzed. All patients underwent CCTA, FFRCT, and invasive FFR. The patients were further grouped into mild (25~49 %), moderate (50~69 %), and severe (≥ 70 %) according to CCTA stenosis degree and Agatston score < 400 and Agatston score ≥ 400 groups according to coronary artery calcium severity. Propensity score matching (PSM) was used to match DM (n  = 112) and non-DM (n  = 214) groups. Sensitivity, specificity, accuracy, and area under the curve (AUC) with 95 % confidence interval (CI) were calculated and compared. RESULTS: Sensitivity, specificity, accuracy, and AUC of FFRCT were 0.79, 0.96, 0.87, and 0.91 in DM patients and 0.82, 0.93, 0.89, and 0.89 in non-DM patients without significant difference (all p > 0.05) on a per-patient level. The accuracies of FFRCT had no significant difference among different coronary stenosis subgroups and between two coronary calcium subgroups (all p > 0.05) in the DM and non-DM groups. After PSM grouping, the accuracies of FFRCT were 0.88 in the DM group and 0.87 in the non-DM group without a statistical difference (p > 0.05). CONCLUSIONS: DM has no negative impact on the diagnostic accuracy of machine learning-based FFRCT. KEY POINTS: • ML-based FFRCT has a high discriminative accuracy of hemodynamic ischemia, which is not affected by DM. • FFRCT was superior to the CCTA alone for the detection of ischemia relevance of coronary artery stenosis in both DM and non-DM patients. • Coronary calcification had no significant effect on the diagnostic accuracy of FFRCT to detect ischemia in DM patients.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Diabetes Mellitus , Fractional Flow Reserve, Myocardial , Calcium , Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease/diagnosis , Coronary Stenosis/diagnostic imaging , Coronary Vessels/diagnostic imaging , Humans , Machine Learning , Predictive Value of Tests , Retrospective Studies , Tomography, X-Ray Computed
7.
Eur Radiol ; 32(8): 5179-5188, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35175380

ABSTRACT

OBJECTIVES: To explore downstream management and outcomes of machine learning (ML)-based CT derived fractional flow reserve (FFRCT) strategy compared with an anatomical coronary computed tomography angiography (CCTA) alone assessment in participants with intermediate coronary artery stenosis. METHODS: In this prospective study conducted from April 2018 to March 2019, participants were assigned to either the CCTA or FFRCT group. The primary endpoint was the rate of invasive coronary angiography (ICA) that demonstrated non-obstructive disease at 90 days. Secondary endpoints included coronary revascularization and major adverse cardiovascular events (MACE) at 1-year follow-up. RESULTS: In total, 567 participants were allocated to the CCTA group and 566 to the FFRCT group. At 90 days, the rate of ICA without obstructive disease was higher in the CCTA group (33.3%, 39/117) than that (19.8%, 19/96) in the FFRCT group (risk difference [RD] = 13.5%, 95% confidence interval [CI]: 8.4%, 18.6%; p = 0.03). The ICA referral rate was higher in the CCTA group (27.5%, 156/567) than in the FFRCT group (20.3%, 115/566) (RD = 7.2%, 95% CI: 2.3%, 12.1%; p = 0.003). The revascularization-to-ICA ratio was lower in the CCTA group than that in the FFRCT group (RD = 19.8%, 95% CI: 14.1%, 25.5%, p = 0.002). MACE was more common in the CCTA group than that in the FFRCT group at 1 year (HR: 1.73; 95% CI: 1.01, 2.95; p = 0.04). CONCLUSION: In patients with intermediate stenosis, the FFRCT strategy appears to be associated with a lower rate of referral for ICA, ICA without obstructive disease, and 1-year MACE when compared to the anatomical CCTA alone strategy. KEY POINTS: • In stable patients with intermediate stenosis, ML-based FFRCT strategy was associated with a lower referral ICA rate, a lower normalcy rate of ICA, and higher revascularization-to-ICA ratio than the CCTA strategy. • Compared with the CCTA strategy, ML-based FFRCTshows superior outcome prediction value which appears to be associated with a lower rate of 1-year MACE. • ML-based FFRCT strategy as a non-invasive "one-stop-shop" modality may be the potential to change diagnostic workflows in patients with suspected coronary artery disease.


Subject(s)
Computed Tomography Angiography , Coronary Artery Disease , Fractional Flow Reserve, Myocardial , Computed Tomography Angiography/methods , Constriction, Pathologic , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Stenosis/diagnostic imaging , Humans , Machine Learning , Predictive Value of Tests , Prospective Studies , Tomography, X-Ray Computed
8.
Eur Radiol ; 32(8): 5210-5221, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35258672

ABSTRACT

OBJECTIVES: To propose a novel functional Coronary Artery Disease-Reporting and Data System (CAD-RADS) category system integrated with coronary CT angiography (CCTA)-derived fractional flow reserve (FFRCT) and to validate its effect on therapeutic decision and prognosis in patients with coronary artery disease (CAD). METHODS: Firstly, we proposed a novel functional CAD-RADS and evaluated the performance of functional CAD-RADS for guiding treatment strategies with actual clinical treatment as a reference standard in a retrospective multicenter cohort with CCTA and invasive FFR performed in all patients (n = 466). Net reclassification improvement (NRI) of functional CAD-RADS over anatomical CAD-RADS was calculated. Secondly, the prognostic value of functional CAD-RADS in a prospective two-arm cohort (566 [FFRCT arm] vs. 567 [CCTA arm]) was calculated, after a 1-year follow-up, functional CAD-RADS in FFRCT arm (n = 513) and anatomical CAD-RADS in CCTA arm (n = 511) to determine patients at risk of adverse outcomes were compared with a Cox hazard proportional model. RESULTS: Functional CAD-RADS demonstrated superior value over anatomical CAD-RADS (AUC: 0.828 vs. 0.681, p < 0.001) and comparable performance to FFR (AUC: 0.828 vs. 0.848, p = 0.253) in guiding therapeutic decisions. Functional CAD-RADS resulted in the revision of management plan as determined by anatomical CAD-RADS in 30.0% of patients (n = 140) (NRI = 0.369, p < 0.001). Functional CAD-RADS was an independent predictor for 1-year outcomes with indexes of concordance of 0.795 and the corresponding value was 0.751 in anatomical CAD-RADS. CONCLUSION: The novel functional CAD-RADS gained incremental value in guiding therapeutic decision-making compared with anatomical CAD-RADS and comparable power in 1-year prognosis with anatomical CAD-RADS in a real-world scenario. KEY POINTS: • The novel functional CAD-RADS category system with FFRCT integrated into the anatomical CAD-RADS categories was originally proposed. • The novel functional CAD-RADS category system was validated superior value over anatomical CAD-RADS (AUC: 0.828 vs. 0.681, p < 0.001) in guiding therapeutic decisions and revised management plan in 30.0% of patients as determined by anatomical CAD-RADS (net reclassification improvement index = 0.369, p < 0.001). • Functional CAD-RADS was an independent predictor with an index of concordance of 0.795 and 0.751 in anatomical CAD-RADS for 1-year prognosis of adverse outcomes.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Computed Tomography Angiography/methods , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Humans , Predictive Value of Tests , Prognosis , Prospective Studies , Tomography, X-Ray Computed
9.
Psychol Med ; 51(8): 1310-1319, 2021 06.
Article in English | MEDLINE | ID: mdl-31983347

ABSTRACT

BACKGROUND: Losing one's only child is a major traumatic life event that may lead to post-traumatic stress disorder (PTSD); however, the underlying mechanisms of its psychological consequences remain poorly understood. Here, we investigated subregional hippocampal functional connectivity (FC) networks based on resting-state functional magnetic resonance imaging and the deoxyribonucleic acid methylation of the human glucocorticoid receptor gene (NR3C1) in adults who had lost their only child. METHODS: A total of 144 Han Chinese adults who had lost their only child (51 adults with PTSD and 93 non-PTSD adults [trauma-exposed controls]) and 50 controls without trauma exposure were included in this fMRI study (age: 40-67 years). FCs between hippocampal subdivisions (four regions in each hemisphere: cornu ammonis1 [CA1], CA2, CA3, and dentate gyrus [DG]) and methylation levels of the NR3C1 gene were compared among the three groups. RESULTS: Trauma-exposed adults, regardless of PTSD diagnosis, had weaker positive FC between the left hippocampal CA1, left DG, and the posterior cingulate cortex, and weaker negative FC between the right CA1, right DG, and several frontal gyri, relative to healthy controls. Compared to non-PTSD adults, PTSD adults showed decreased negative FC between the right CA1 region and the right middle/inferior frontal gyri (MFG/IFG), and decreased negative FC between the right DG and the right superior frontal gyrus and left MFG. Both trauma-exposed groups showed lower methylation levels of the NR3C1 gene. CONCLUSIONS: Adults who had lost their only child may experience disrupted hippocampal network connectivity and NR3C1 methylation status, regardless of whether they have developed PTSD.


Subject(s)
Only Child , Stress Disorders, Post-Traumatic , Adult , Aged , Humans , Middle Aged , China , Hippocampus/pathology , Magnetic Resonance Imaging , Methylation , Receptors, Glucocorticoid/genetics , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/genetics , Stress Disorders, Post-Traumatic/pathology
10.
Eur Radiol ; 31(9): 6696-6707, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33738596

ABSTRACT

OBJECTIVE: To compare the value of reduced field-of-view (FOV) intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) and arterial spin labeling (ASL) for assessing renal allograft fibrosis and predicting long-term dysfunction. METHODS: This prospective study included 175 renal transplant recipients undergoing reduced FOV IVIM DWI, ASL, and biopsies. Renal allograft fibrosis was categorized into ci0, ci1, ci2, and ci3 fibrosis according to biopsy results. A total of 83 participants followed for a median of 39 (IQR, 21-42) months were dichotomized into stable and impaired allograft function groups based on follow-up estimated glomerular filtration rate. Total apparent diffusion coefficient (ADCT), pure diffusion ADC, pseudo-perfusion ADC, perfusion fraction f from IVIM DWI, and renal blood flow (RBF) from ASL were calculated and compared. The area under the receiver operating characteristic curve (AUC) was calculated to assess the diagnostic and predictive performances. RESULTS: RBF was different in ci0 vs ci1 (147.9 ± 46.3 vs 126.0 ± 49.4 ml/min/100 g, p = .02) and ci2 vs ci3 (92.9 ± 46.9 vs 70.8 ± 37.8 ml/min/100 g, p = .03). RBF in the stable group was higher than that in the impaired group (144.73 ± 49.33 vs 102.19 ± 47.58 ml/min/100 g, p < .001). AUCs in distinguishing renal allograft fibrosis and predicting long-term allograft dysfunction for RBF were higher than cortical ADCT (ci0 vs ci1-3, 0.76 vs 0.59, p < .001; ci0-1 vs ci2-3, 0.79 vs 0.68, p = .01; ci0-2 vs ci3, 0.79 vs 0.68, p = .01; 0.76 vs 0.60, p = .04, respectively). CONCLUSION: Compared to reduced FOV IVIM DWI, ASL was a more promising technique for noninvasively distinguishing renal allograft fibrosis degree and predicting long-term allograft dysfunction. KEY POINTS: • Compared to total ADC from rFOV IVIM DWI, RBF from ASL can distinguish no fibrosis (ci0) vs mild fibrosis (ci1) (p = .02) and moderate fibrosis (ci2) vs severe fibrosis (ci3) (p = .04). • RBF had superior performance than diffusion parameters in discriminating fibrosis (no fibrosis [ci0] vs fibrosis [ci1-3], mild fibrosis [ci0-1] vs moderate to severe fibrosis [ci2-3], non-severe [ci0-2] vs severe [ci3] fibrosis; AUC = 0.76 vs 0.59, p < .001; 0.79 vs 0.68, p = .01; 0.79 vs 0.68, p = .01). • Compared to reduced FOV IVIM DWI, ASL was a more promising technique for noninvasively predicting long-term allograft dysfunction (AUC = 0.76 vs 0.60, p = .04).


Subject(s)
Kidney Transplantation , Allografts , Diffusion Magnetic Resonance Imaging , Fibrosis , Humans , Magnetic Resonance Imaging , Motion , Prospective Studies , Spin Labels
11.
Eur Radiol ; 31(9): 6592-6604, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33864504

ABSTRACT

OBJECTIVES: To investigate the feasibility and prognostic implications of coronary CT angiography (CCTA) derived fractional flow reserve (FFRCT) in patients who have undergone stents implantation. METHODS: Firstly, the feasibility of FFRCT in stented vessels was validated. The diagnostic performance of FFRCT in identifying hemodynamically in-stent restenosis (ISR) in 33 patients with invasive FFR ≤ 0.88 as reference standard, intra-group correlation coefficient (ICC) between FFRCT and FFR was calculated. Secondly, prognostic value was assessed with 115 patients with serial CCTA scans after PCI. Stent characteristics (location, diameter, length, etc.), CCTA measurements (minimum lumen diameter [MLD], minimum lumen area [MLA], ISR), and FFRCT measurements (FFRCT, ΔFFRCT, ΔFFRCT/stent length) both at baseline and follow-up were recorded. Longitudinal analysis included changes of MLD, MLA, ISR, and FFRCT. The primary endpoint was major adverse cardiovascular events (MACE). RESULTS: Per-patient accuracy of FFRCT was 0.85 in identifying hemodynamically ISR. FFRCT had a good correlation with FFR (ICC = 0.84). 15.7% (18/115) developed MACE during 25 months since follow-up CCTA. Lasso regression identified age and follow-up ΔFFRCT/length as candidate variables. In the Cox proportional hazards model, age (hazard ratio [HR], 1.102 [95% CI, 1.032-1.177]; p = 0.004) and follow-up ΔFFRCT/length (HR, 1.014 [95% CI, 1.006-1.023]; p = 0.001) were independently associated with MACE (c-index = 0.856). Time-dependent ROC analysis showed AUC was 0.787 (95% CI, 0.594-0.980) at 25 months to predict adverse outcome. After bootstrap validation with 1000 resamplings, the bias-corrected c-index was 0.846. CONCLUSIONS: Noninvasive ML-based FFRCT is feasible in patients following stents implantation and shows prognostic value in predicting adverse events after stents implantation in low-moderate risk patients. KEY POINTS: • Machine-learning-based FFRCT is feasible to evaluate the functional significance of in-stent restenosis in patients with stent implantation. • Follow-up △FFRCT along with the stent length might have prognostic implication in patients with stent implantation and low-to-moderate risk after 2 years follow-up. The prognostic role of FFRCT in patients with moderate-to-high or high risk needs to be further studied. • FFRCT might refine the clinical pathway of patients with stent implantation to invasive catheterization.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Percutaneous Coronary Intervention , Computed Tomography Angiography , Coronary Angiography , Coronary Vessels , Feasibility Studies , Humans , Machine Learning , Predictive Value of Tests , Prognosis , Stents , Tomography, X-Ray Computed
12.
Eur Radiol ; 31(9): 7110-7120, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33630163

ABSTRACT

OBJECTIVE: To investigate the utility of coronary CT angiography-derived fractional flow reserve (FFRCT) and plaque progression in patients undergoing serial coronary CT angiography for predicting major adverse cardiovascular events (MACE). METHODS: This retrospective study evaluated patients suspected or known coronary artery disease who underwent serial coronary CT angiography examinations between January 2006 and December 2017 and followed up until June 2019. The primary endpoint was MACE, defined as acute coronary syndrome, rehospitalization due to progressive angina, percutaneous coronary intervention, or cardiac death. FFRCT and plaque parameters were analyzed on a per-vessel and per-patient basis. Univariable and multivariable COX regression analysis determined predictors of MACE. The prognostic value of FFRCT and plaque progression were assessed in nested models. RESULTS: Two hundred eighty-four patients (median age, 61 years (interquartile range, 54-70); 202 males) were evaluated. MACE was observed in 45 patients (15.8%, 45/284). By Cox multivariable regression modeling, vessel-specific FFRCT ≤ 0.80 was associated with a 2.4-fold increased risk of MACE (HR (95% CI): 2.4 (1.3-4.4); p = 0.005) and plaque progression was associated with a 9-fold increased risk of MACE (HR (95% CI): 9 (3.5-23); p < 0.001) after adjusting for clinical and imaging risk factors. FFRCT and plaque progression improved the prediction of events over coronary artery calcium (CAC) score and high-risk plaques (HRP) in the receiver operating characteristics analysis (area under the curve: 0.70 to 0.86; p = 0.002). CONCLUSIONS: Fractional flow reserve and plaque progression assessed by serial coronary CT angiography predicted the risk of future MACE. KEY POINTS: • Vessel-specific CT angiography-derived fractional flow reserve (FFRCT) ≤ 0.80 and plaque progression improved the prediction of events over current risk factors. • Major adverse cardiovascular events (MACE) significantly increased with the presence of plaque progression at follow-up stratified by the FFRCT change group.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Coronary Vessels/diagnostic imaging , Humans , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies , Severity of Illness Index , Tomography, X-Ray Computed
13.
Eur Radiol ; 31(3): 1482-1493, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32929641

ABSTRACT

OBJECTIVE: To investigate the effect of coronary calcification morphology and severity on the diagnostic performance of machine learning (ML)-based coronary CT angiography (CCTA)-derived fractional flow reserve (CT-FFR) with FFR as a reference standard. METHODS: A total of 442 patients (61.2 ± 9.1 years, 70% men) with 544 vessels who underwent CCTA, ML-based CT-FFR, and invasive FFR from China multicenter CT-FFR study were enrolled. The effect of calcification arc, calcification remodeling index (CRI), and Agatston score (AS) on the diagnostic performance of CT-FFR was investigated. CT-FFR ≤ 0.80 and lumen reduction ≥ 50% determined by CCTA were identified as vessel-specific ischemia with invasive FFR as a reference standard. RESULTS: Compared with invasive FFR, ML-based CT-FFR yielded an overall sensitivity of 0.84, specificity of 0.94, and accuracy of 0.90 in a total of 344 calcification lesions. There was no statistical difference in diagnostic accuracy, sensitivity, or specificity of CT-FFR across different calcification arc, CRI, or AS levels. CT-FFR exhibited improved discrimination of ischemia compared with CCTA alone in lesions with mild-to-moderate calcification (AUC, 0.89 vs. 0.69, p < 0.001) and lesions with CRI ≥ 1 (AUC, 0.89 vs. 0.71, p < 0.001). The diagnostic accuracy and specificity of CT-FFR were higher than CCTA alone in patients and vessels with mid (100 to 299) or high (≥ 300) AS. CONCLUSION: Coronary calcification morphology and severity did not influence diagnostic performance of CT-FFR in ischemia detection, and CT-FFR showed marked improved discrimination of ischemia compared with CCTA alone in the setting of calcification. KEY POINTS: • CT-FFR provides superior diagnostic performance than CCTA alone regardless of coronary calcification. • No significant differences in the diagnostic performance of CT-FFR were observed in coronary arteries with different coronary calcification arcs and calcified remodeling indexes. • No significant differences in the diagnostic accuracy of CT-FFR were observed in coronary arteries with different coronary calcification score levels.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , China , Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Female , Humans , Machine Learning , Male , Predictive Value of Tests , Severity of Illness Index , Tomography, X-Ray Computed
14.
Radiology ; 296(2): E15-E25, 2020 08.
Article in English | MEDLINE | ID: mdl-32083985

ABSTRACT

In December 2019, an outbreak of severe acute respiratory syndrome coronavirus 2 infection occurred in Wuhan, Hubei Province, China, and spread across China and beyond. On February 12, 2020, the World Health Organization officially named the disease caused by the novel coronavirus as coronavirus disease 2019 (COVID-19). Because most patients infected with COVID-19 had pneumonia and characteristic CT imaging patterns, radiologic examinations have become vital in early diagnosis and the assessment of disease course. To date, CT findings have been recommended as major evidence for clinical diagnosis of COVID-19 in Hubei, China. This review focuses on the etiology, epidemiology, and clinical symptoms of COVID-19 while highlighting the role of chest CT in prevention and disease control.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , COVID-19 , COVID-19 Testing , China/epidemiology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Diagnosis, Differential , Early Diagnosis , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , SARS-CoV-2 , Severity of Illness Index , Tomography, X-Ray Computed
15.
Eur Radiol ; 30(9): 5170-5182, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32350658

ABSTRACT

OBJECTIVES: To build models based on conventional logistic regression (LR) and machine learning (ML) algorithms combining clinical, morphological, and hemodynamic information to predict individual rupture status of unruptured intracranial aneurysms (UIAs), afterwards tested in internal and external validation datasets. METHODS: Patients with intracranial aneurysms diagnosed by computed tomography angiography and confirmed by invasive cerebral angiograph or clipping surgery were included. The prediction models were developed based on clinical, aneurysm morphological, and hemodynamic parameters by conventional LR and ML methods. RESULTS: The training, internal validation, and external validation cohorts were composed of 807 patients, 200 patients, and 108 patients, respectively. The area under curves (AUCs) of conventional LR models 1 (clinical), 2 (clinical and aneurysm morphological), and 3 (clinical, aneurysm morphological and hemodynamic characteristics) were 0.608, 0.765, and 0.886, respectively (all p < 0.05). The AUCs of ML models using random forest (RF), multilayer perceptron (MLP), and support vector machine (SVM) were 0.871, 0.851, and 0.863, respectively. There were no difference among AUCs of conventional LR, RF, and SVM (all p > 0.05/6), while the AUC of MLP was lower than that of conventional LR (p = 0.0055). CONCLUSION: Hemodynamic parameters play an important role in the prediction performance of the models. ML methods cannot outperform conventional LR in prediction models for rupture status of UIAs integrating clinical, aneurysm morphological, and hemodynamic parameters. KEY POINTS: • The addition of hemodynamic parameters can improve prediction performance for rupture status of unruptured intracranial aneurysms. • Machine learning algorithms cannot outperform conventional logistic regression in prediction models for rupture status integrating clinical, aneurysm morphological, and hemodynamic parameters. • Models integrating clinical, aneurysm morphological, and hemodynamic parameters may help choose the optimal management.


Subject(s)
Aneurysm, Ruptured/diagnostic imaging , Cerebral Angiography/methods , Computed Tomography Angiography/methods , Hemodynamics , Intracranial Aneurysm/diagnostic imaging , Neural Networks, Computer , Support Vector Machine , Adolescent , Adult , Aged , Aged, 80 and over , Aneurysm, Ruptured/epidemiology , Area Under Curve , China , Clinical Decision Rules , Computer Simulation , Female , Humans , Logistic Models , Machine Learning , Male , Middle Aged , Retrospective Studies , Tomography, X-Ray Computed , Young Adult
16.
Eur Radiol ; 30(12): 6517-6527, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32617690

ABSTRACT

OBJECTIVES: To utilize a deep learning model for automatic detection of abnormalities in chest CT images from COVID-19 patients and compare its quantitative determination performance with radiological residents. METHODS: A deep learning algorithm consisted of lesion detection, segmentation, and location was trained and validated in 14,435 participants with chest CT images and definite pathogen diagnosis. The algorithm was tested in a non-overlapping dataset of 96 confirmed COVID-19 patients in three hospitals across China during the outbreak. Quantitative detection performance of the model was compared with three radiological residents with two experienced radiologists' reading reports as reference standard by assessing the accuracy, sensitivity, specificity, and F1 score. RESULTS: Of 96 patients, 88 had pneumonia lesions on CT images and 8 had no abnormities on CT images. For per-patient basis, the algorithm showed superior sensitivity of 1.00 (95% confidence interval (CI) 0.95, 1.00) and F1 score of 0.97 in detecting lesions from CT images of COVID-19 pneumonia patients. While for per-lung lobe basis, the algorithm achieved a sensitivity of 0.96 (95% CI 0.94, 0.98) and a slightly inferior F1 score of 0.86. The median volume of lesions calculated by algorithm was 40.10 cm3. An average running speed of 20.3 s ± 5.8 per case demonstrated the algorithm was much faster than the residents in assessing CT images (all p < 0.017). The deep learning algorithm can also assist radiologists make quicker diagnosis (all p < 0.0001) with superior diagnostic performance. CONCLUSIONS: The algorithm showed excellent performance in detecting COVID-19 pneumonia on chest CT images compared with resident radiologists. KEY POINTS: • The higher sensitivity of deep learning model in detecting COVID-19 pneumonia were found compared with radiological residents on a per-lobe and per-patient basis. • The deep learning model improves diagnosis efficiency by shortening processing time. • The deep learning model can automatically calculate the volume of the lesions and whole lung.


Subject(s)
Algorithms , Betacoronavirus , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Deep Learning , Lung/diagnostic imaging , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Tomography, X-Ray Computed/methods , COVID-19 , China/epidemiology , Female , Humans , Male , Middle Aged , SARS-CoV-2
17.
Eur Radiol ; 30(11): 5841-5851, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32462444

ABSTRACT

OBJECTIVES: This study investigated the impact of machine learning (ML)-based fractional flow reserve derived from computed tomography (FFRCT) compared to invasive coronary angiography (ICA) for therapeutic decision-making and patient outcome in patients with suspected coronary artery disease (CAD). METHODS: One thousand one hundred twenty-one consecutive patients with stable chest pain who underwent coronary computed tomography angiography (CCTA) followed ICA within 90 days between January 2007 and December 2016 were included in this retrospective study. Medical records were reviewed for the endpoint of major adverse cardiac events (MACEs). FFRCT values were calculated using an artificial intelligence (AI) ML platform. Disagreements between hemodynamic significant stenosis via FFRCT and severe stenosis on qualitative CCTA and ICA were also evaluated. RESULTS: After FFRCT results were revealed, a change in the proposed treatment regimen chosen based on ICA results was seen in 167 patients (14.9%). Over a median follow-up time of 26 months (4-48 months), FFRCT ≤ 0.80 was associated with MACE (HR, 6.84 (95% CI, 3.57 to 13.11); p < 0.001), with superior prognostic value compared to severe stenosis on ICA (HR, 1.84 (95% CI, 1.24 to 2.73), p = 0.002) and CCTA (HR, 1.47 (95% CI, 1.01 to 2.14, p = 0.045). Reserving ICA and revascularization for vessels with positive FFRCT could have reduced the rate of ICA by 54.5% and lead to 4.4% fewer percutaneous interventions. CONCLUSIONS: This study indicated ML-based FFRCT had superior prognostic value when compared to severe anatomic stenosis on CCTA and adding FFRCT may direct therapeutic decision-making with the potential to improve efficiency of ICA. KEY POINTS: • ML-based FFRCT shows superior outcome prediction value when compared to severe anatomic stenosis on CCTA. • FFRCT noninvasively informs therapeutic decision-making with potential to change diagnostic workflows and enhance efficiencies in patients with suspected CAD. • Reserving ICA and revascularization for vessels with positive FFRCT may reduce the normalcy rate of ICA and improve its efficiency.


Subject(s)
Computed Tomography Angiography/methods , Coronary Angiography/methods , Coronary Artery Disease/diagnosis , Decision Making , Disease Management , Fractional Flow Reserve, Myocardial/physiology , Machine Learning , Artificial Intelligence , Coronary Artery Disease/physiopathology , Coronary Artery Disease/therapy , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies , Severity of Illness Index
18.
Eur Radiol ; 30(5): 2525-2534, 2020 May.
Article in English | MEDLINE | ID: mdl-32006167

ABSTRACT

OBJECTIVE: To investigate the effect of image quality of coronary CT angiography (CCTA) on the diagnostic performance of a machine learning-based CT-derived fractional flow reserve (FFRCT). METHODS: This nationwide retrospective study enrolled participants from 10 individual centers across China. FFRCT analysis was performed in 570 vessels in 437 patients. Invasive FFR and FFRCT values ≤ 0.80 were considered ischemia-specific. Four-score subjective assessment based on image quality and objective measurement of vessel enhancement was performed on a per-vessel basis. The effects of body mass index (BMI), sex, heart rate, and coronary calcium score on the diagnostic performance of FFRCT were studied. RESULTS: Among 570 vessels, 216 were considered ischemia-specific by invasive FFR and 198 by FFRCT. Sensitivity and specificity of FFRCT for detecting lesion-specific ischemia were 0.82 and 0.93, respectively. Area under the curve (AUC) of high-quality images (0.93, n = 159) was found to be superior to low-quality images (0.80, n = 92, p = 0.02). Objective image quality and heart rate were also associated with diagnostic performance of FFRCT, whereas there was no statistical difference in diagnostic performance among different BMI, sex, and calcium score groups (all p > 0.05, Bonferroni correction). CONCLUSIONS: This retrospective multicenter study supported the FFRCT as a noninvasive test in evaluating lesion-specific ischemia. Subjective image quality, vessel enhancement, and heart rate affect the diagnostic performance of FFRCT. KEY POINTS: • FFRCTcan be used to evaluate lesion-specific ischemia. • Poor image quality negatively affects the diagnostic performance of FFRCT. • CCTA with ≥ score 3, intracoronary enhancement degree of 300-400 HU, and heart rate below 70 bpm at scanning could be of great benefit to more accurate FFRCTanalysis.


Subject(s)
Computed Tomography Angiography/methods , Coronary Angiography/methods , Coronary Stenosis/diagnosis , Fractional Flow Reserve, Myocardial/physiology , Machine Learning , Aged , Coronary Stenosis/physiopathology , Female , Humans , Male , Middle Aged , Reproducibility of Results , Retrospective Studies
19.
Acta Radiol ; 61(7): 927-935, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31684749

ABSTRACT

BACKGROUND: Functional dyspepsia (FD) subtypes may differ in terms of pathophysiology, but the underlying mechanisms remain poorly understood. PURPOSE: To explore spontaneous brain activity in two main FD subtypes, namely epigastric pain syndrome (EPS) and postprandial distress syndrome (PDS), using the amplitude of low-frequency fluctuation (ALFF). MATERIAL AND METHODS: Thirty-one FD patients (18 EPS and 13 PDS) and 22 matched healthy controls (HC) underwent resting-state functional MRI scanning. Spontaneous brain activity was evaluated by measuring the ALFF and then compared among the EPS, PDS, and HC groups with ANOVA test. Pearson correlation analysis was performed between the ALFF values and clinical indices. RESULTS: Compared to healthy controls, both EPS and PDS patients had increased ALFF in the bilateral precentral/postcentral gyri, insula, and thalami. Furthermore, only the EPS patients displayed increased ALFF in the right middle and inferior frontal gyri, and only the PDS patients showed increased ALFF in the left posterior cingulate cortex (PCC). The ALFF values in the left thalamus were positively correlated with the sleep disturbance in EPS patients, and the ALFF values in the right precentral/postcentral gyri showed a positive correlation with the symptom score in PDS patients. CONCLUSION: EPS and PDS had similarities of higher spontaneous brain activity in the primary motor/sensory areas and homeostatic-afferent network regions, and differences in the prefrontal region and PCC, providing evidence to suggest the similarity and diversity of pathophysiology in FD subtypes.


Subject(s)
Abdominal Pain/physiopathology , Brain/diagnostic imaging , Brain/physiopathology , Dyspepsia/physiopathology , Magnetic Resonance Imaging/methods , Adult , Case-Control Studies , Female , Humans , Image Interpretation, Computer-Assisted , Imaging, Three-Dimensional , Male , Neuropsychological Tests , Postprandial Period , Syndrome
20.
Eur Radiol ; 29(10): 5577-5589, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30937591

ABSTRACT

PURPOSE: This study was conducted in order to investigate the topological organization of functional and structural brain networks in diabetic kidney disease (DKD) and its potential clinical relevance. METHODS: Two hundred two subjects (62 DKD patients, 60 diabetes mellitus [DM] patients, and 80 healthy controls) underwent laboratory examination, neuropsychological test, and magnetic resonance imaging (MRI). Large-scale functional and structural brain networks were constructed and graph theoretical network analyses were performed. The effect of renal function on brain functional and structural networks in DKD patients was further evaluated. Correlations were performed between network properties and neuropsychological scores and clinical variables. RESULTS: Progressing deteriorated global and local network topology organizations (especially for functional network) were observed for DKD patients compared with control subjects (all p < 0.05, Bonferroni-corrected), with intermediate values for the patients with DM. DKD patients showed normally appearing functional-structural coupling compared with controls, while DM patients manifested functional-structural decoupling (p < 0.05, Bonferroni-corrected). Impaired kidney function markedly affected functional and structural network organization in DKD patients (all p < 0.05). Urea nitrogen correlated with global and local efficiency in the structural networks (r = - 0.551, p < 0.001; r = - 0.476, p < 0.001, respectively). Global and local efficiency in the structural networks and normalized characteristic path length in the functional networks were associated with information processing speed and/or psychomotor speed. CONCLUSION: DKD patients showed enhanced functional and structural brain network disruption and normally appearing functional-structural coupling compared with DM patients, which correlated with kidney function, renal toxins, and cognitive performance. KEY POINTS: • DKD patients showed markedly disrupted functional and structural brain network efficiency measures compared with DM patients and healthy controls. • Reduced kidney function clearly deteriorated functional and structural brain networks in DKD patients. • DKD patients displayed normally appearing functional-structural coupling compared with DM patients.


Subject(s)
Diabetic Nephropathies/physiopathology , Neural Pathways/physiopathology , Adult , Aged , Brain/diagnostic imaging , Brain/physiopathology , Brain Mapping/methods , Case-Control Studies , Diabetic Nephropathies/diagnostic imaging , Diabetic Nephropathies/psychology , Female , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neural Pathways/diagnostic imaging , Neuropsychological Tests
SELECTION OF CITATIONS
SEARCH DETAIL