Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Reproduction ; 162(3): 227-236, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34280124

ABSTRACT

A successful pregnancy requires sufficient decidualization of endometrial stromal cells (ESCs). CD82, a metastasis suppressor, is a critical regulator for trophoblast invasion but the effect in decidualization was largely unknown. Here we reported that there was a high level of CD82 in DSC by the immunohistochemistry staining and flow cytometer analysis. Stimulation with prostaglandin E2 (PGE2) elevated the expression of CD82 in ESCs. In contrast, celecoxib, a selective COX-2 inhibitor, significantly downregulated the expression of CD82 in decidual stromal cells (DSCs). Bioinformatics analysis and further research showed that recombinant human interleukin (IL)-1ß protein (rhIL-1ß) upregulated CD82 in ESCs. Of note, blocking IL-1ß signaling with anti-human IL-1ß neutralizing antibody could reverse the stimulatory effect of PGE2 on CD82 in ESCs. Silencing CD82 resulted in the decease of the decidualization markers PRL and IGFBP1 mRNA levels in DSCs. More importantly, we observed rhIL-1ß also upregulated the expression of COX-2, and the upregulation of PRL and IGFBP1 induced by rhIL-1ß could be abolished by celecoxib in ESCs or CD82 deficiency in DSCs. This study suggests that CD82 should be a novel promotor for decidualization under a positive regulation of the COX-2/PGE2/IL-1ß positive feedback loop.


Subject(s)
Decidua , Kangai-1 Protein , Stromal Cells , Cells, Cultured , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Decidua/metabolism , Female , Humans , Interleukin-1beta/metabolism , Kangai-1 Protein/genetics , Kangai-1 Protein/metabolism , Pregnancy , Stromal Cells/metabolism , Trophoblasts/metabolism
2.
Int J Ophthalmol ; 11(5): 874-880, 2018.
Article in English | MEDLINE | ID: mdl-29862190

ABSTRACT

Myopia, a worldwide condition, is a multifactorial disease resulting in many ocular complications. Early onset of myopia has a great tendency to develop high myopia and pathological myopia later in life. The pathophysiology and progression of myopia is still unclear. Owing to its involving in visual function, optic disc and peripapillary change in high myopia can't be neglected, and it may help in better understanding of the pathophysiology or mechanism of myopia progression. Recently, advanced imaging techniques have been developed, such as optical coherence tomography (OCT), allowing for better detecting of optic disc and peripapillary change. OCT is a high-resolution and noninvasive measurement for detection of ocular structure. Herein, we provide an updated review of optic disc and peripapillary change in OCT image, including its characteristics and clinical significance. We also propose some problems needed further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL