Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Environ Res ; 247: 118192, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38224939

ABSTRACT

In this investigation, synthesis of a surface-functionalized chitosan known as amino-rich chitosan (ARCH) was achieved by successful modification of chitosan by polyethyleneimine (PEI). The synthesized ARCH was characterized by a specific surface area of 8.35 m2 g-1 and a microporous structure, with pore sizes predominantly under 25 nm. The Zeta potential of ARCH maintained a strong positive charge across a wide pH range of 3-11. These characteristics contribute to its high adsorption efficiency in aqueous solutions, demonstrated by its application in removing various anionic dyes, including erioglaucine disodium salt (EDS), methyl orange (MO), amaranth (ART), tartrazine (TTZ), and hexavalent chromium ions (Cr(VI)). The adsorption capacities (Qe) for these contaminants were measured at 1301.15 mg g-1 for EDS, 1025.45 mg g-1 for MO, 940.72 mg g-1 for ART, 732.96 mg g-1 for TTZ, and 350.15 mg g-1 for Cr(VI). A significant observation was the rapid attainment of adsorption equilibrium, occurring within 10 min for ARCH. The adsorption behavior was well-described by the Pseudo-second-order and Langmuir models. Thermodynamic studies indicated that the adsorption process is spontaneous and endothermic in nature. Additionally, an increase in temperature was found to enhance the adsorption capacity of ARCH. The material demonstrated robust stability and selective adsorption capabilities in varied conditions, including different organic compounds, pH environments, sodium salt presence, and in the face of interfering ions. After five cycles of adsorption, ARCH maintained about 60% of its initial adsorption capacity. Due to its efficient adsorption performance, simple synthesis process, low biological toxicity, and cost-effectiveness, ARCH is a promising candidate for future water treatment technologies.


Subject(s)
Azo Compounds , Chitosan , Water Pollutants, Chemical , Water Purification , Chitosan/chemistry , Polyethyleneimine/chemistry , Coloring Agents , Anions , Chromium/analysis , Amaranth Dye , Tartrazine , Adsorption , Kinetics , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration
2.
Small ; 18(38): e2203334, 2022 09.
Article in English | MEDLINE | ID: mdl-35986695

ABSTRACT

Early warning sensors rapidly monitor critical temperatures, humidity, and fires, which are crucial to reduce or avoid natural disasters in complex environments, such as fire or water disasters. Here, a highly sensitive, readable, and dual-functional sensor is designed for a fast-response fire alarm and rapid humidity detection based on sustainable biological films (named MSCG films). The MSCG films are composed of grafted sisal nanofibers (MgC), silk nanofibers, graphene, and citric acid (CA). After crosslinking with CA, MSCG films exhibit good wet strength (i.e., 128.8 MPa) after soaking in 100 °C water, thus confirming that the films would be applicable to a broad temperature range in humid environments. After flame ignition, the MSCG films are rapidly carbonized to activate an alarm sound and a light in the circuit with a fire response time as short as 1 s. It exhibits ultrafast temperature response/recovery time (i.e., 0.1 s/0.3 s) and rapid humidity response time (i.e., 0.9 s). The dual-functional sensor is further assembled into a versatile sensor system for real-time monitoring of fire accidents and environmental humidity, which can be integrated into consumer electronics, such as portable laptops and mobile phones.


Subject(s)
Graphite , Citric Acid , Humidity , Silk , Water
3.
Nano Lett ; 21(21): 9030-9037, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34699244

ABSTRACT

Low-cost and flexible biofilm humidity sensors with good wet strength are crucial for humidity detection. However, it remains a great challenge to integrate good reversibility, rapid humidity response, and robust humid mechanical strength in one sensor. In this respect, we report a facile method to prepare a sustainable biofilm (named MC film) from sisal cellulose microcrystals (MSF-g-COOH) and citric acid (CA). After cross-linking with CA, the MC film exhibits excellent wet strength and rapid humidity response. More importantly, MC film can be used over a wide temperature range with excellent durability and reversibility for humidity detection. A highly sensitive humidity sensor fabricated from the MC film exhibits high reversibility and excellent water resistance and can be applied in humidity and personalized breath health monitoring. Our work fills the gap between biomaterial design and high-performance sensing devices.


Subject(s)
Cellulose , Water , Biofilms , Cellulose/chemistry , Humidity , Water/chemistry
4.
Nano Lett ; 21(5): 2104-2110, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33591186

ABSTRACT

At present, environmentally friendly biobased flexible films are of particular interest as next-generation fireproof packaging and sensor materials. To reduce the moisture uptake and fire risks induced by hygroscopic and flammable biobased films, we report a simple and green approach to develop a hydrophobic, flame-retardant composite film with synergetic benefit from soy protein isolate (SPI), sisal cellulose microcrystals (MSF-g-COOH), graphene nanosheets (GN), and citric acid (CA). Compared with SPI/MSF-g-COOH composite films, the as-prepared SPI/MSF-g-COOH/CA/GN composite films have significantly improved water resistance and can maintain excellent physical structure and good electrical conductivity in an ethanol flame. This work opens a pathway for the development of novel fire-retardant fire alarm biosensors.

5.
Pharm Biol ; 57(1): 760-769, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31694427

ABSTRACT

Context: Salvia miltiorrhiza Bunge (Labiatae) is a traditional Chinese herb. Endophytic fungi, which are biotic elicitors, can induce accumulation of secondary metabolites in their host plants.Objective: To analyze the interaction mechanism between S. miltiorrhiza and endophytic fungi.Materials and methods: Endophytic fungi U104 producing tanshinone IIA were isolated from the healthy disease-free tissue of root of S. miltiorrhiza by conventional methods. The endophytic fungus U104 of S. miltiorrhiza was co-cultured with the sterile seedlings of S. miltiorrhiza for 20 d (temp:day/night = 26 °C/18 °C, photoperiod:12/12 h, illuminance:2000 Lx). Transcriptome sequencing of S. miltiorrhiza seedlings after 20 d of co-cultivation was performed using the Illumina platform.Results: A total of 3713 differentially expressed genes (DEGs) were obtained. These different expression genes, such as STPII, LTP2, MYB transcription factors, CNGC, CDPK, Rboh, CaM, MAP2K1/MEK1, WRKY33, SGT1/SGT and Hsp90/htpG, showed that host S. miltiorrhiza had biological defence response in the initial stage of interaction. Under the induction of endophytic fungi, 14 key enzyme genes were up-regulated in the tanshinone biosynthesis pathway: DXS, DXS2, DXR, HMGR3, AACT, MK, PMK, GGPPS2, GPPS, KSL, IDI, IPII, FDPS and CPS.Discussion and conclusions: A total of 14 key genes were obtained from the tanshinone component synthesis and metabolic pathways, providing a reasonable explanation for the accumulation of tanshinone components, an accumulation induced by endophytic fungi, in the host plants. The large amounts of data generated in this study provide a strong and powerful platform for future functional and molecular studies of interactions between host plants and their endophytic fungi.


Subject(s)
Abietanes/biosynthesis , Endophytes/metabolism , Gene Expression Regulation, Plant/physiology , Salvia miltiorrhiza/metabolism , Fungi/metabolism , Plant Roots , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/microbiology , Secondary Metabolism , Transcriptome , Up-Regulation/physiology
6.
Int J Biol Macromol ; 254(Pt 2): 127931, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37944728

ABSTRACT

Conductive hydrogels have limitations such as non-degradability, loss of electrical conductivity at sub-zero temperatures, and single functionality, which limit their applicability as materials for wearable sensors. To overcome these limitations, this study proposes a bio-based hydrogel using aloe polysaccharides as the matrix and degradable polyvinyl alcohol as a reinforcing material. The hydrogel was crosslinked with borax in a glycerol-water binary solvent system, producing good toughness and compressive strength. Furthermore, the hydrogel was developed as a sensor that could detect both small and large deformations with a low detection limit of 1 % and high stretchability of up to 300 %. Moreover, the sensor exhibited excellent frost resistance at temperatures above -50 °C, and the gauge factor of the hydrogel was 2.86 at 20 °C and 2.12 at -20 °C. The Aloe-polysaccharide-based conductive hydrogels also functioned effectively as a wearable sensor; it detected a wide range of humidities (0-98 % relative humidity) and exhibited fast response and recovery times (1.1 and 0.9 s) while detecting normal human breathing. The polysaccharide hydrogel was also temperature sensitive (1.737 % °C-1) and allowed for information sensing during handwriting.


Subject(s)
Aloe , Wearable Electronic Devices , Humans , Hydrogels , Electric Conductivity , Ions , Polysaccharides
7.
Int J Biol Macromol ; 257(Pt 2): 128735, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092111

ABSTRACT

This paper reports the fabrication of flexible films loaded with Ag nanoparticles (Ag NPs) and annotated as POPA films from polyvinyl alcohol, okra polysaccharides, phytic acid, and AgNO3 via an in situ reduction and solution-casting method. The prepared films exhibit strain, temperature, and humidity sensing. As a flexible strain sensor, the POPA sensor has a wide strain sensing range (1-250 %), and fast response/recovery (0.22/0.28 s), while as a temperature sensor, it senses the human body temperature and exhibits excellent temperature sensitivity (TCR = -1.401 % °C-1) and good linearity (R2 = 0.994) in the temperature range of 30-55 °C. Additionally, in the relative humidity (RH) of range 35-95 %, the POPA humidity sensor outputs stable electrical signals during adsorption and desorption. Moreover, it exhibits low hysteresis values (3.19 % RH) and good linearity (R2 = 0.989) for the detection of breathing rates during different human body states. Consequently, the POPA sensor exhibits good stability, repeatability, and reversibility for strain, temperature, and humidity sensing. The designed multifunctional POPA sensor thus holds great potential for its application in flexible wearable devices and electronics.


Subject(s)
Abelmoschus , Metal Nanoparticles , Humans , Silver , Adsorption , Polysaccharides
8.
Int J Biol Macromol ; 267(Pt 2): 131541, 2024 May.
Article in English | MEDLINE | ID: mdl-38614183

ABSTRACT

Developing high-performance hydrogels with anti-freeze, and antimicrobial properties is crucial for the practical application of flexible sensors. In this study, we prepared silver nanoparticles (AgNPs) with aloe polysaccharide (AP) as a reducing agent. Then, the AP/AgNPs were added to a system of polyvinyl alcohol and borax crosslinked in water/glycerol to obtain a multifunctional conductive hydrogel. The incorporated AgNPs improved the conductivity (0.39 S/m) and mechanical properties (elongation at break: 732.9 %, fracture strength: 1267.6 kPa) of the hydrogel. In addition, resultant hydrogel exhibited potential for sensing strain, temperature, and humidity. When used as a strain sensor, the hydrogel system exhibited low detection limit (0.1 %), and fast response (0.08 s). The resistance of the hydrogel decreased with an increase in the absorbed moisture content, enabling humidity detection (25-95 %) to monitor breathing status. As a temperature sensor, the hydrogel supported a wide detection range (-50 to +90 °C) and sensitivity (-30-0 °C, temperature coefficient of resistance (TCR) = -5.64 %/°C) to detect changes in the ambient temperature. This study proposes a simple method for manufacturing multifunctional hydrogel sensors, which broadens their application prospects in wearable sensing and electronic products.


Subject(s)
Aloe , Hydrogels , Metal Nanoparticles , Nanocomposites , Polysaccharides , Silver , Silver/chemistry , Metal Nanoparticles/chemistry , Aloe/chemistry , Polysaccharides/chemistry , Nanocomposites/chemistry , Hydrogels/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Temperature , Humidity , Borates
9.
Int J Biol Macromol ; 266(Pt 1): 131004, 2024 May.
Article in English | MEDLINE | ID: mdl-38521327

ABSTRACT

Biomass-based flexible sensors with excellent mechanical and sensing properties have attracted significant attention. In this study, based on the excellent dispersibility and degradability of nanocellulose crystals, we designed a polyvinyl alcohol/nanocellulose crystals/phytic acid (PCP) composite film with good flexibility and high sensitivity to humidity. A layer of multiwalled carbon nanotubes (MWCNT) and nanocellulose crystals (CNC) was further sandwiched between two PCP layers as a flexible multifunctional sensor (PCPW) to detect human movement and respiration. Phytic acid contains abundant phosphate groups that enhance proton conduction, allowing the PCPW composite film to change its electrical resistance in a sensitive and repeatable manner when the relative humidity was varied between 35 %-93 %. Meanwhile, CNC derived from sisal fibers enhanced the PCPW sensor's conductivity (3.3 S/m) and mechanical properties (elongation at break: 99 %) by improving the dispersion and connectivity of MWCNT. The PCPW sensor displayed a high sensitivity to strain (gauge factor: 49.5) and could monitor both facial expressions (smiling and winking) and the bending of joints. The sensor also generated stable electrical responses during breathing and blowing due to the change in humidity. Therefore, this biodegradable and multifunctional sensor has good application prospects.


Subject(s)
Cellulose , Humidity , Nanotubes, Carbon , Cellulose/chemistry , Humans , Nanotubes, Carbon/chemistry , Respiration , Movement , Polyvinyl Alcohol/chemistry
10.
Int J Biol Macromol ; 248: 125987, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37516220

ABSTRACT

The application of conductive hydrogels in flexible wearable devices has garnered significant attention. In this study, a self-healing, anti-freezing, and fire-resistant hydrogel strain sensor is successfully synthesized by incorporating sustainable natural biological materials, viz. Tremella polysaccharide and silk fiber, into a polyvinyl alcohol matrix with borax cross-linking. The resulting hydrogel exhibits excellent transparency, thermoplasticity, and remarkable mechanical properties, including a notable elongation (1107.3 %) and high self-healing rate (91.11 %) within 5 min, attributed to the dynamic cross-linking effect of hydrogen bonds and borax. A strain sensor based on the prepared hydrogel sensor can be used to accurately monitor diverse human movements, while maintaining exceptional sensing stability and durability under repeated strain cycles. Additionally, a hydrogel touch component is designed that can successfully interact with intelligent electronic devices, encompassing functions like clicking, writing, and drawing. These inherent advantages make the prepared hydrogel a promising candidate for applications in human health monitoring and intelligent electronic device interaction.


Subject(s)
Basidiomycota , Prunella , Humans , Hydrogels , Polysaccharides , Motion , Electric Conductivity
11.
Carbohydr Polym ; 313: 120868, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37182959

ABSTRACT

Soft actuators and sensors have attracted extensive scientific interest attributed to their great potential applications in various fields, but the integration of actuating and sensing functions in one material is still a big challenge. Here, we developed an electrospun cellulose acetate (CA)/carbon nanotube nanofiborous composite with both functional applications as multi-responsive shape memory actuators and triboelectric nanogenerator (TENG) based sensors. Attributed to excellent thermo- and light-induced shape memory performance, the CA nanofiborous composites showed high heavy-lift capability as light driven actuators, able to lift burdens 1050 times heavier than their own weight. The CA nanofiborous membranes based TENG exhibited high output performance with open-circuit voltage, short-circuit density, and instantaneous power density about 103.2 V, 7.93 mA m-2 and 0.74 W m-2, respectively. The fabricated TENG based pressure sensor exhibited a high sensitivity of 3.03 V kPa-1 below 6.8 kPa and 0.11 V kPa-1 in the pressure range from 6.8 to 65 kPa, which can be effectively used to monitor human motion state and measure wind velocity. It is expected that the electrospun composites with actuating and sensing functions will show prosperous applications prospects in soft robotics.

12.
Int J Biol Macromol ; 242(Pt 1): 124740, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37150370

ABSTRACT

Flexible and environmentally friendly bio-based films have attracted significant attention as next-generation fire-responsive sensors. However, the low structural stability, durability, and flame retardancy of pure bio-based films limit their application in outdoor and extreme environments. Here, we report the design of a sustainable bio-based composite film assembled from carboxymethyl-modified sisal fibre microcrystals (C-MSF), carboxymethyl chitosan (CMC), graphene nanosheets (GNs), phytic acid (PA), and trivalent iron ions (Fe3+). Cross-linking between Fe3+ and the C-MSF/CMC matrix and the formation of PA-Fe3+ complexes on the surface of the film imparted excellent mechanical properties, chemical stability, self-cleaning ability, and flame retardancy to the bio-film. Furthermore, the bio-film produced a reversible and sensitive response to temperature at 55.3-214.1 °C, and a fire alarm system made from the bio-film had a fire-response time of 4.6 s. In addition, the char layer of the bio-film retained a stable cyclic response to temperature, enabling it to serve as a fire resurgence sensor with a response time of 2.3 s and recovery time of 11.2 s. This work provides a simple pathway for the fabrication of self-cleaning, flame retardant, and water-resistant bio-films that can be assembled into fire alarm systems for the real-time monitoring of fire accidents and resurgence.


Subject(s)
Agave , Chitosan , Nanofibers , Cellulose , Extreme Environments , Phytic Acid
13.
Int J Biol Macromol ; 231: 123472, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36736982

ABSTRACT

Given their environment friendliness, light weight, and availability, bio-films have attracted wide interest for various applications in sensor materials. However, obtaining sensors with good environmental stability, excellent flame retardancy, and high wet strength remains a challenge. Herein, we prepared sensitive water, temperature and flame-responsive multi-function bio-films (named as PSCG bio-films) by combining peach gum polysaccharide, silk nanofibres, citric acid, and graphene. The PSCG bio-films demonstrated good flexibility, rapid and consistent water absorption, and stable wet strength at different temperatures. The bio-films showed excellent water sensitivity and rapid fire responsiveness within a short time frame (2 s); moreover, the response and recovery times of the bio-films in the temperature range of 50-150 °C were 0.1 and 0.3 s, respectively. In addition, the bio-films can be applied to micro-sized fire early warning devices and personalized breath monitoring. Our work presents a facile and green approach (without toxic solvent) to fabricate multi-function sensors with applications in various industries.


Subject(s)
Nanofibers , Prunus persica , Water , Silk , Temperature , Polysaccharides
14.
Int J Biol Macromol ; 253(Pt 1): 126476, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37625760

ABSTRACT

Polyvinyl alcohol (PVA) and okra polysaccharide (OP) are biodegradable polymers with high hydrophilicity and good biocompatibility with potential for use as flexible humidity-sensitive materials. Herein, biodegradable flexible composite films (named POP films) were prepared from PVA, OP, and phytic acid using a solution-casting method based on. POP films exhibited excellent mechanical strength, flexibility, flame retardancy, water resistance, humidity response, and humidity-sensing characteristics. Notably, the POP humidity sensors exhibited a hysteresis value of 1.88 % relative humidity for the adsorption and desorption processes and good sensitivity over a wide humidity range of 35-95 %. In addition, the humidity sensor distinguished the frequency of nose breathing, and its response and recovery times were 0.9 and 1.98 s, respectively. The excellent performance of POP sensors in monitoring humidity and human respiratory rates demonstrates the sensor's potential for wearable smart devices.


Subject(s)
Abelmoschus , Polyvinyl Alcohol , Humans , Polymers , Adsorption , Polysaccharides
15.
Front Chem ; 10: 828381, 2022.
Article in English | MEDLINE | ID: mdl-35308793

ABSTRACT

Catalytic graphitization opens a route to prepare graphitic carbon under fairly mild conditions. Biomass has been identified as a potentially attractive precursor for graphitic carbon materials. In this work, corn starch was used as carbon source to prepare hollow graphitic carbon microspheres by pyrolysis after mixing impregnation with nitrate salts, and the surface of these carbon microspheres is covered with controllable pores structure. Under optimal synthesis conditions, the prepared carbon microspheres show a uniform pore size distribution and high degree of graphitization. When tested as electrode materials for supercapacitor with organic electrolyte, the electrode exhibited a superior specific capacitance of 144.8 F g-1 at a current density of 0.1 A g-1, as well as large power density and a capacitance retention rate of 93.5% after 1,000 cycles in galvanostatic charge/discharge test at 1.0 A g-1. The synthesis extends use of the renewable nature resources and sheds light on developing new routes to design graphitic carbon microspheres.

16.
Int J Biol Macromol ; 223(Pt A): 1530-1538, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36402382

ABSTRACT

Self-healing biomass-based conductive hydrogels are applied as flexible strain sensors for wearable devices and human movement monitoring. Cellulose is the most abundant biomass-based materials and exhibits excellent toughness, dispersion and degradability. In this paper, nanocellulose crystals (NCCs) prepared from sisal, used as reinforcing fillers were coated with tannic acid (TA) to prepare inexpensive bio-nanocomposite hydrogels that also included polyvinyl alcohol, okra polysaccharide (OP), and borax. These hydrogels exhibit excellent self-healing and mechanical properties with the maximum elongation, toughness, and self-healing efficiency (9 min) of 1426.2 %, 264.4 kJ/m3, and 62.1 %, respectively. A fabricated hydrogel strain sensor was successfully used to detect and monitor various human movements such as wrist bending, elbow bending, and slight changes in facial expression. In addition, this sensor possessed excellent durability and good working stability after repeated circulation. The nanocomposite hydrogel synthesized in this work utilized natural polysaccharide to manufacture flexible functional materials with good application prospects in the field of flexible sensors.


Subject(s)
Hydrogels , Wearable Electronic Devices , Humans , Hydrogels/chemistry , Cellulose , Electric Conductivity , Motion , Ions
17.
Int J Biol Macromol ; 205: 491-499, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35182565

ABSTRACT

Self-healing conductive hydrogels have attracted widespread attention as a new generation of smart wearable devices and human motion monitoring sensors. To improve the biocompatibility and degradability of such strain sensors, we report a sensor with a sandwich structure based on a biomucopolysaccharide hydrogel. The sensor was constructed with a stretchable self-healing hydrogel composed of polyvinyl alcohol (PVA), okra polysaccharide (OP), borax, and a conductive layer of silver nanowires. The obtained OP/PVA/borax hydrogel exhibited excellent stretchability (~1073.7%) and self-healing ability (93.6% within 5 min), and the resultant hydrogel-based strain sensor demonstrated high sensitivity (gauge factor = 6.34), short response time (~20 ms), and good working stability. This study provides innovative ideas for the development of biopolysaccharide hydrogels for applications in the field of sensors.


Subject(s)
Abelmoschus , Wearable Electronic Devices , Electric Conductivity , Humans , Hydrogels/chemistry , Polysaccharides
18.
ACS Omega ; 6(11): 7434-7443, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33778256

ABSTRACT

Developing waterborne epoxy (WEP) coatings with excellent corrosion resistance and tribological properties is a key aspect to solve the damage of Q235 steel. In this work, perylene bisimide (PBI) derivatives dispersion graphene (GR) were prepared by a π-π stacking, the highly orientated PBI0.5%/GR0.5%/WEP coating will be prepared by the rotating coating method. Especially, the impedance value reached about 109 Ω·cm2 when the PBI and GR ratio is 1:1. The impedance value of PBI0.5%/GR0.5%/WEP coating increased by 3 orders of magnitude compared with that of pure WEP coating (106 Ω·cm2). Additionally, the coefficient of friction of the coatings was 0.33; compared with that of WEP, the coefficient of friction decreased by 48%, and the wear resistance increased by 87.6%. The results show that the PBI0.5%/GR0.5%/WEP coatings exhibited excellent corrosion resistance and wear resistance properties due to the good dispersion and high orientation of PBI/GR in WEP. It is anticipated that our current work would guide the ongoing efforts to develop a more efficient method to overcome the poor dispersion of GR in waterborne epoxy resin and provide a green coating with excellent corrosion resistance and wear resistance properties.

19.
Sci Rep ; 9(1): 4549, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30872590

ABSTRACT

As a two-dimensional material, graphene has attracted increasing attention as heat dissipation material owing to its excellent thermal transport property. In this work, we fabricated sisal nanocrystalline cellulose/functionalized graphene papers (NPGs) with high thermal conductivity by vacuum-assisted self-assembly method. The papers exhibit in-plane thermal conductivity as high as 21.05 W m-1 K-1 with a thermal conductivity enhancement of 403% from the pure cellulose paper. The good thermal transport properties of NPGs are attributed to the strong hydrogen-bonding interaction between nanocrystalline cellulose and functionalized graphene and the well alignment structure of NPGs.

20.
Polymers (Basel) ; 10(9)2018 Sep 14.
Article in English | MEDLINE | ID: mdl-30960949

ABSTRACT

Well-defined functionalized sisal cellulose fibers (SCFs) grafted on hyperbranched liquid crystals (HLP) were synthesized to improve the compatibility between SCFs and epoxy resin (EP). The influence of SCFs-HLP on the mechanical and thermal properties of SCFs-HLP/EP composites was studied. The results show that the mechanical properties of SCFs-HLP/EP composites were enhanced distinctly. Particularly, compared with EP, impact strength, tensile strength, and flexural strength of composites with 4.0 wt % SCFs-HLP were 38.3 KJ·m-2, 86.2 MPa, and 150.7 MPa, increasing by 118.7%, 55.6%, and 89.6%, respectively. As well, the glass transition temperature of the composite material increased by 25 °C. It is hope that this work will inform ongoing efforts to exploit more efficient methods to overcome the poor natural fiber/polymer adhesion in the interface region.

SELECTION OF CITATIONS
SEARCH DETAIL