Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Transl Med ; 21(1): 714, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37821919

ABSTRACT

PURPOSE: Currently, there are no accurate markers for predicting potentially lethal prostate cancer (PC) before biopsy. This study aimed to develop urine tests to predict clinically significant PC (sPC) in men at risk. METHODS: Urine samples from 928 men, namely, 660 PC patients and 268 benign subjects, were analyzed by gas chromatography/quadrupole time-of-flight mass spectrophotometry (GC/Q-TOF MS) metabolomic profiling to construct four predictive models. Model I discriminated between PC and benign cases. Models II, III, and GS, respectively, predicted sPC in those classified as having favorable intermediate risk or higher, unfavorable intermediate risk or higher (according to the National Comprehensive Cancer Network risk groupings), and a Gleason sum (GS) of ≥ 7. Multivariable logistic regression was used to evaluate the area under the receiver operating characteristic curves (AUC). RESULTS: In Models I, II, III, and GS, the best AUCs (0.94, 0.85, 0.82, and 0.80, respectively; training cohort, N = 603) involved 26, 24, 26, and 22 metabolites, respectively. The addition of five clinical risk factors (serum prostate-specific antigen, patient age, previous negative biopsy, digital rectal examination, and family history) significantly improved the AUCs of the models (0.95, 0.92, 0.92, and 0.87, respectively). At 90% sensitivity, 48%, 47%, 50%, and 36% of unnecessary biopsies could be avoided. These models were successfully validated against an independent validation cohort (N = 325). Decision curve analysis showed a significant clinical net benefit with each combined model at low threshold probabilities. Models II and III were more robust and clinically relevant than Model GS. CONCLUSION: This urine test, which combines urine metabolic markers and clinical factors, may be used to predict sPC and thereby inform the necessity of biopsy in men with an elevated PC risk.


Subject(s)
Metabolome , Prostatic Neoplasms , Humans , Male , Biopsy , Neoplasm Grading , Prostate-Specific Antigen , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/urine , Risk Factors , Early Detection of Cancer/methods , Urinalysis/methods , Urine/chemistry
2.
Am J Cancer Res ; 12(7): 3390-3404, 2022.
Article in English | MEDLINE | ID: mdl-35968338

ABSTRACT

Although prostate cancer (PC) is the most common cancer among men in the Western world, there are no good biomarkers that can reliably differentiate between potentially aggressive and indolent PC. This leads to overtreatment, even for patients who can be managed conservatively. Previous studies have suggested that nuclear lamin proteins-especially lamin B1 (LMNB1)-play important roles in PC progression. However, the results of these studies are inconsistent. Here, we transfected the LMNB1 gene into the telomerase reverse transcriptase-immortalized benign prostatic epithelial cell line, EP156T to generate a LMNB1-overexpressing EP156T (LMN-EP156T) cell line with increased cellular proliferation. However, LMN-EP156T cells could neither form colonies in soft agar, nor establish subcutaneous growth or metastasis in the xenograft NOD/SCID mouse model. In addition, immunohistochemical staining of LMNB1 in PC specimens from 143 patients showed a statistically significant trend of stronger LMNB1 staining with higher Gleason scores. A univariate analysis of the clinicopathological parameters of 85 patients with PC who underwent radical prostatectomy revealed that pathological stage, resection margin, and extracapsular extension were significant predictors for biochemical recurrence (BCR). However, LMNB1 staining showed only a non-significant trend of association with BCR (high vs. low staining: hazard ratio (HR), 1.83; 95% confidence interval (CI), 0.98-3.41; P = 0.059). In multivariate analysis, only pathological stage was a significant independent predictor of BCR (pT3 vs. pT2: HR, 2.29; 95% CI, 1.18-4.43; P = 0.014). In summary, LMNB1 may play a role in the early steps of PC progression, and additional molecular alterations may be needed to confer full malignancy potential to initiated cells.

3.
Theranostics ; 10(6): 2817-2831, 2020.
Article in English | MEDLINE | ID: mdl-32194837

ABSTRACT

Rationale: The formation of adipose-derived stem cells (ASCs) into spheres on a chitosan-coated microenvironment promoted ASCs differentiation into a mixed population of neural lineage-like cells (NLCs), but the underline mechanism is still unknown. Since the fibroblast growth factor 9 (FGF9) and fibroblast growth factor receptors (FGFRs) play as key regulators of neural cell fate during embryo development and stem cell differentiation, the current study aims to reveal the interplay of FGF9 and FGFRs for promoting peripheral nerve regeneration. Methods: Different concentration of FGF9 peptide (10, 25, 50, 100 ng/mL) were added during NLCs induction (FGF9-NLCs). The FGFR expressions and potential signaling were studied by gene and protein expressions as well as knocking down by specific FGFR siRNA or commercial inhibitors. FGF9-NLCs were fluorescent labeled and applied into a nerve conduit upon the injured sciatic nerves of experimental rats. Results: The FGFR2 and FGFR4 were significantly increased during NLCs induction. The FGF9 treated FGF9-NLCs spheres became smaller and changed into Schwann cells (SCs) which expressed S100ß and GFAP. The specific silencing of FGFR2 diminished FGF9-induced Akt phosphorylation and inhibited the differentiation of SCs. Transplanted FGF9-NLCs participated in myelin sheath formation, enhanced axonal regrowth and promoted innervated muscle regeneration. The knockdown of FGFR2 in FGF9-NLCs led to the abolishment of nerve regeneration. Conclusions: Our data therefore demonstrate the importance of FGF9 in the determination of SC fate via the FGF9-FGFR2-Akt pathway and reveal the therapeutic benefit of FGF9-NLCs.


Subject(s)
Cell Differentiation/drug effects , Fibroblast Growth Factor 9/pharmacology , Mesenchymal Stem Cells , Sciatic Nerve , Animals , Cells, Cultured , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Nerve Regeneration/drug effects , Peptides/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, Fibroblast Growth Factor, Type 2 , Sciatic Nerve/drug effects , Sciatic Nerve/injuries
4.
Infect Immun ; 73(6): 3261-70, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15908350

ABSTRACT

The glucosyltransferases (GTFs) of viridans streptococci, common pathogens of infective endocarditis, are extracellular proteins that convert sucrose into exopolysaccharides and glucans. GTFs B, C, and D of Streptococcus mutans are modulins that induce, in vitro and in vivo, the production of cytokines, in particular interleukin-6 (IL-6), from monocytes. The roles of S. mutans GTFs in infectivity and inflammation in situ were tested in a rat experimental model of endocarditis. No significant differences in infectivity, in terms of 95% infective dose and densities of bacteria inside vegetations, were observed between laboratory strain GS-5 and two clinical isolates or isogenic mutant NHS1DD, defective in the expression of GTFs. In aortic valves and surrounding tissues, IL-6 was detected by Western blots and immunostaining 24 h after GS-5 infection, was maintained over 72 h, and was followed by production of tumor necrosis factor alpha but not IL-1beta. Animals infected with NHS1DD showed markedly lower levels of IL-6 (less than 5% of that of parental GS-5-infected rats), while tumor necrosis factor alpha was unaffected. In contrast, animals infected with NHR1DD, another isogenic mutant expressing only GtfB, showed a much smaller reduction (down to 56%). These results suggest that GTFs are specific modulins that act during acute inflammation, inducing IL-6 from endothelial cells surrounding the infected valves without affecting bacterial colonization in vegetations, and that IL-6 might persist in chronic inflammation in endocarditis.


Subject(s)
Endocarditis, Bacterial/immunology , Glucosyltransferases/physiology , Interleukin-6/biosynthesis , Streptococcal Infections/immunology , Viridans Streptococci/enzymology , Animals , Endocarditis, Bacterial/pathology , Female , Interleukin-1/biosynthesis , Male , Phenotype , Rats , Rats, Wistar , Streptococcal Infections/pathology , Tumor Necrosis Factor-alpha/biosynthesis , Viridans Streptococci/pathogenicity , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL