ABSTRACT
BACKGROUND AIMS: Hu8F4 is a T-cell receptor-like antibody with high affinity for the leukemia-associated antigen PR1/HLA-A2 epitope. Adapted into a chimeric antigen receptor (CAR) format, Hu8F4-CAR is composed of the Hu8F4 single-chain variable fragment, the human IgG1 CH2CH3 extracellular spacer domain, a human CD28 costimulatory domain and the human CD3ζ signaling domain. We have demonstrated high efficacy of Hu8F4-CAR-T cells against PR1/HLA-A2-expressing cell lines and leukemic blasts from patients with acute myeloid leukemia in vitro. Previous studies have shown that modification of the Fc domains of IgG4 CH2CH3 spacer regions can eliminate activation-induced cell death and off-target killing mediated by mouse Fc gamma receptor-expressing cells. METHODS: We generated Hu8F4-CAR(PQ) with mutated Fc receptor binding sites on the CH2 domain of Hu8F4-CAR to prevent unwanted interactions with Fc gamma receptor-expressing cells in vivo. RESULTS: The primary human T cells transduced with Hu8F4-CAR(PQ) can specifically lyse HLA-A2+ PR1-expressing leukemia cell lines in vitro. Furthermore, both adult donor-derived and cord blood-derived Hu8F4-CAR(PQ)-T cells are active and can eliminate U937 leukemia cells in NSG mice. CONCLUSIONS: Herein, we demonstrate that modification of the IgG1-based spacer can eliminate Fc receptor binding-induced adverse effects and Hu8F4-CAR(PQ)-T cells can kill leukemia in vivo.
Subject(s)
Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Animals , Mice , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Immunotherapy, Adoptive/methods , HLA-A2 Antigen/immunology , HLA-A2 Antigen/metabolism , Xenograft Model Antitumor Assays , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/immunology , Cell Line, Tumor , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Mutation/genetics , Immunoglobulin G/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/genetics , Leukemia/therapy , Leukemia/immunology , Mice, Inbred NODABSTRACT
PURPOSE: Exercise-based cardiac rehabilitation (EBCR) improves functional capacity in heart failure (HF). However, data on the effect of EBCR in patients with advanced HF and left ventricular assist devices (LVADs) are limited. This meta-analysis aimed to evaluate the impact of EBCR on the functional ability of LVAD patients by comparing the corresponding outcome indicators between the EBCR and ST groups. METHODS: PubMed, Embase, Clinical Trials, and Cochrane Library databases were searched for studies assessing and comparing the effects of EBCR and standard therapy (ST) in patients following LVAD implantation. Using pre-defined criteria, appropriate studies were identified and selected. Data from selected studies were extracted in a standardized fashion, and a meta-analysis was performed using a fixed-effects model. The protocol was registered on INPLASY (202340073). RESULTS: In total, 12 trials involving 477 patients were identified. The mean age of the participants was 52.9 years, and 78.6% were male. The initiation of EBCR varied from LVAD implantation during the index hospitalization to 11 months post-LVAD implantation. The median rehabilitation period ranged from 2 weeks to 18 months. EBCR was associated with improved peak oxygen uptake (VO2) in all trials. Quantitative analysis was performed in six randomized studies involving 214 patients (EBCR: n = 130, ST: n = 84). EBCR was associated with a significantly high peak VO2 (weighted mean difference [WMD] = 1.64 mL/kg/min; 95% confidence interval [CI], 0.20-3.08; p = .03). Similarly, 6-min walk distance (6MWD) showed significantly greater improvement in the EBCR group than in the ST group (WMD = 34.54 m; 95% CI, 12.47-56.42; p = .002) in 266 patients (EBCR, n = 140; ST, n = 126). Heterogeneity was low among the included trials. None of the included studies reported serious adverse events related to EBCR, indicating the safety of EBCR after LVAD implantation. CONCLUSION: This study demonstrated that EBCR following LVAD implantation is associated with greater improvement in functional capacity compared with ST as reflected by the improved peak VO2 and 6MWD values. Considering the small number of patients in this analysis, further research on the clinical impact of EBCR in LVAD patients is warranted.
ABSTRACT
BACKGROUND AIMS: Human myeloperoxidase has been shown to be overexpressed in many types of leukemia, such as chronic myeloid leukemia, acute myeloid leukemia and myelodysplastic syndrome. The authors identified two myeloperoxidase-derived HLA-A2-restricted peptides, MY4 and MY8, as novel leukemia-associated antigens. METHODS: Ex vivo-elicited MY4- and MY8-specific cytotoxic T lymphocytes were generated, and tested for leukemia cell lysis in vitro and in NOD/SCID AML xenograft model. RESULTS: These MY4- and MY8-specific cytotoxic T lymphocytes killed leukemic blasts while sparing healthy donor bone marrow cells. In addition, co-injection of MY4- and MY8-specific cytotoxic T lymphocytes into nonobese diabetic/severe combined immunodeficiency mice with acute myeloid leukemia drastically reduced tumor burden in vivo. The authors also found that MY4- and MY8-specific T cells could be detected in the peripheral blood mononuclear cells of allogeneic stem cell transplant recipients. CONCLUSIONS: These antigen-specific T cells were significantly increased in blood samples from patients compared with healthy donors, suggesting that both MY4 and MY8 are immunogenic and that MY4- and MY8-specific cytotoxic T lymphocytes may play a role in reducing leukemia in vivo. Thus, the discovery of MY4 and MY8 as novel leukemia-associated antigens paves the way for targeting these antigens in immunotherapy against myeloid leukemia.
Subject(s)
HLA-A2 Antigen , Leukemia, Myeloid, Acute , Animals , Humans , Leukemia, Myeloid, Acute/therapy , Leukocytes, Mononuclear , Mice , Mice, Inbred NOD , Mice, SCID , Peptides , Peroxidase , T-Lymphocytes, CytotoxicABSTRACT
Neutrophil elastase (NE) can be rapidly taken up by tumor cells that lack endogenous NE expression, including breast cancer, which results in cross-presentation of PR1, an NE-derived HLA-A2-restricted peptide that is an immunotherapy target in hematological and solid tumor malignancies. The mechanism of NE uptake, however, remains unknown. Using the mass spectrometry-based approach, we identify neuropilin-1 (NRP1) as a NE receptor that mediates uptake and PR1 cross-presentation in breast cancer cells. We demonstrated that soluble NE is a specific, high-affinity ligand for NRP1 with a calculated Kd of 38.7 nm Furthermore, we showed that NRP1 binds to the RRXR motif in NE. Notably, NRP1 knockdown with interfering RNA or CRISPR-cas9 system and blocking using anti-NRP1 antibody decreased NE uptake and, subsequently, susceptibility to lysis by PR1-specific cytotoxic T cells. Expression of NRP1 in NRP1-deficient cells was sufficient to induce NE uptake. Altogether, because NRP1 is broadly expressed in tumors, our findings suggest a role for this receptor in immunotherapy strategies that target cross-presented antigens.
Subject(s)
Absorption, Physiological , Breast Neoplasms/metabolism , Cross-Priming , Leukocyte Elastase/metabolism , Neoplasm Proteins/metabolism , Neuropilin-1/metabolism , Amino Acid Motifs , Antibodies, Blocking/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/pathology , CRISPR-Cas Systems , Cell Line, Tumor , Female , Humans , Kinetics , Leukocyte Elastase/chemistry , Leukocyte Elastase/immunology , Ligands , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neuropilin-1/antagonists & inhibitors , Neuropilin-1/chemistry , Neuropilin-1/genetics , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Interaction Domains and Motifs , RNA Interference , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Solubility , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolismABSTRACT
Although T helper 17 (Th17) cells have been found in tumor tissues, their function in cancer immunity is unclear. We found that interleukin-17A (IL-17A)-deficient mice were more susceptible to developing lung melanoma. Conversely, adoptive T cell therapy with tumor-specific Th17 cells prevented tumor development. Importantly, the Th17 cells retained their cytokine signature and exhibited stronger therapeutic efficacy than Th1 cells. Unexpectedly, therapy using Th17 cells elicited a remarkable activation of tumor-specific CD8(+) T cells, which were necessary for the antitumor effect. Th17 cells promoted dendritic cell recruitment into the tumor tissues and in draining lymph nodes increased CD8 alpha(+) dendritic cells containing tumor material. Moreover, Th17 cells promoted CCL20 chemokine production by tumor tissues, and tumor-bearing CCR6-deficient mice did not respond to Th17 cell therapy. Thus, Th17 cells elicited a protective inflammation that promotes the activation of tumor-specific CD8(+) T cells. These findings have important implications in antitumor immunotherapies.
Subject(s)
Interleukin-17/metabolism , Lung Neoplasms/immunology , Lymphocyte Activation , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Cell Line, Tumor , Interleukin-17/genetics , Melanoma/immunology , Mice , Mice, KnockoutABSTRACT
PURPOSE: The aim of this analysis is to compare the pharmacokinetics of drug substrates in healthy Chinese and European subjects of aligned CYP2C9, CYP2C19, or CYP2D6 enzyme activity, providing further insight into drivers of interethnic differences in pharmacokinetics. METHODS: Following identification of appropriate drug substrates, a comprehensive and structured literature search was conducted to identify single-dose pharmacokinetic data in healthy Chinese or European subjects with reported CYP2C9, CYP2C19, or CYP2D6 activity (genotype or phenotype). The ratio of drug AUC in the Chinese and European subjects classified with aligned enzyme activity was calculated (ethnicity ratio (ER)). RESULTS: For 22/25 drugs identified, the ERs calculated indicated no or only limited interethnic differences in exposure (Subject(s)
Cytochrome P-450 CYP2C19/metabolism
, Cytochrome P-450 CYP2C9/metabolism
, Cytochrome P-450 CYP2D6/metabolism
, Pharmacokinetics
, Polymorphism, Genetic
, Algorithms
, Area Under Curve
, Asian People
, China
, Cohort Studies
, Cytochrome P-450 CYP2C19/genetics
, Cytochrome P-450 CYP2C9/genetics
, Cytochrome P-450 CYP2D6/genetics
, Databases, Genetic
, Databases, Pharmaceutical
, Female
, Humans
, Internet
, Male
, Pharmaceutical Preparations/blood
, Pharmacogenetics/methods
, Substrate Specificity
, White People
ABSTRACT
In our preliminary studies, we observed zolmitriptan (ZOL) treatment led to induction of CYP3A2 in male not female rats. To figure out the reason is of great significance for drug-drug interactions and personalized administration. Since growth hormone (GH) is known as the major mechanistic determinant of sexually-dimorphic gene expression like CYP3A2 in rat liver, the impacts of ZOL on both plasma GH levels in non monosodium glutamate (MSG)-treated rats and CYP3A2 expression in GH depleted MSG-treated rats were studied. ZOL was shown to partially suppress GH levels in both genders. Furthermore, CYP3A2 protein and mRNA level declined in male not female MSG-treated rats. In order to study the possible molecular events involved in the depression of GH and gender-selective induction on rat CYP3A2 by ZOL, the mRNA and protein level(whole protein and nuclear protein) of hepatocyte nuclear factor 4α (HNF4α) was investigated. Nuclear accumulation of HNF4α was observed in the normal male not female rat liver tissue following ZOL treatment. However, this kind of nuclear translocation did not occur in rat hepatocytes and MSG-treated rats. These findings demonstrated CYP3A2 inducibility by ZOL was gender-selective. GH and HNF4α may play an important role in CYP3A2 induction.
Subject(s)
Cytochrome P-450 CYP3A Inducers/pharmacology , Cytochrome P-450 CYP3A/metabolism , Growth Hormone/antagonists & inhibitors , Oxazolidinones/pharmacology , Sex Factors , Tryptamines/pharmacology , Animals , Hepatocyte Nuclear Factor 4/metabolism , Male , RNA, Messenger , Rats , Sodium GlutamateABSTRACT
In this issue of Blood, Zhou et al report long-term follow-up and detailed analysis of immune reconstitution associated with a different suicide gene strategy to abrogate graft-versus-host disease (GVHD).
Subject(s)
Caspase 9/genetics , Hematopoietic Stem Cell Transplantation/methods , T-Lymphocytes/transplantation , Transgenes/genetics , Female , Humans , MaleABSTRACT
BACKGROUND AIMS: The PR1 peptide, derived from the leukemia-associated antigens proteinase 3 and neutrophil elastase, is overexpressed on HLA-A2 in acute myeloid leukemia (AML). We developed a T-cell receptor (TCR)-like monoclonal antibody (8F4) that binds the PR1/HLA-A2 complex on the surface of AML cells, efficiently killing them in vitro and eliminating them in preclinical models. Humanized 8F4 (h8F4) with high affinity for the PR1/HLA-A2 epitope was used to construct an h8F4- chimeric antigen receptor (CAR) that was transduced into T cells to mediate anti-leukemia activity. METHODS: Human T cells were transduced to express the PR1/HLA-A2-specific CAR (h8F4-CAR-T cells) containing the scFv of h8F4 fused to the intracellular signaling endo-domain of CD3 zeta chain through the transmembrane and intracellular costimulatory domain of CD28. RESULTS: Adult human normal peripheral blood (PB) T cells were efficiently transduced with the h8F4-CAR construct and predominantly displayed an effector memory phenotype with a minor population (12%) of central memory cells in vitro. Umbilical cord blood (UCB) T cells could also be efficiently transduced with the h8F4-CAR. The PB and UCB-derived h8F4-CAR-T cells specifically recognized the PR1/HLA-A2 complex and were capable of killing leukemia cell lines and primary AML blasts in an HLA-A2-dependent manner. CONCLUSIONS: Human adult PB and UCB-derived T cells expressing a CAR derived from the TCR-like 8F4 antibody rapidly and efficiently kill AML in vitro. Our data could lead to a new treatment paradigm for AML in which targeting leukemia stem cells could transfer long-term immunity to protect against relapse.
Subject(s)
Fetal Blood , HLA-A2 Antigen/immunology , Leukemia, Myeloid, Acute/therapy , Leukocytes, Mononuclear/metabolism , Myeloblastin/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism , Adult , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Cell Line , Epitopes/immunology , Fetal Blood/cytology , Fetal Blood/immunology , Genetic Therapy , Humans , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/metabolism , Immunotherapy, Adoptive/methods , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Leukocytes, Mononuclear/immunology , Myeloblastin/chemistry , Peptide Fragments/chemistry , Peptide Fragments/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , T-Cell Antigen Receptor Specificity , T-Lymphocytes/immunologyABSTRACT
Organic anion-transporting polypeptide (OATP) 1A2 has the potential to be a target for central nervous system drug delivery due to its luminal localization at the human blood-brain barrier and broad substrate specificity. We found OATP1A2 mRNA expression in the human brain to be comparable to breast cancer resistance protein and OATP2B1 and much higher than P-glycoprotein (P-gp), and confirmed greater expression in the brain relative to other tissues. The goal of this study was to establish a model system to explore OATP1A2-mediated transcellular transport of substrate drugs and the interplay with P-gp. In vitro (human embryonic kidney 293 cells stably expressing Oatp1a4, the closest murine isoform) and in vivo (naïve and Oatp1a4 knock-out mice) studies with OATP1A2 substrate triptan drugs demonstrated that these drugs were not Oatp1a4 substrates. This species difference demonstrates that the rodent is not a good model to investigate the active brain uptake of potential OATP1A2 substrates. Thus, we constructed a novel OATP1A2 expressing Madin-Darby canine kidney (MDCK) II wild type and an MDCKII-multidrug resistance protein 1 (MDR1) system using BacMam virus transduction. The spatial expression pattern of OATP1A2 after transduction in MDCKII-MDR1 cells was superimposed to P-gp, confirming apical membrane localization. OATP1A2-mediated uptake of zolmitriptan, rosuvastatin, and fexofenadine across monolayers increased with increasing OATP1A2 protein expression. OATP1A2 counteracted P-gp efflux for cosubstrates zolmitriptan and fexofenadine. A three-compartment model incorporating OATP1A2-mediated influx was used to quantitatively describe the time- and concentration-dependent apical-to-basolateral transcellular transport of rosuvastatin across OATP1A2 expressing the MDCKII monolayer. This novel, simple and versatile experimental system is useful for understanding the contribution of OATP1A2-mediated transcellular transport across barriers, such as the blood-brain barrier.
Subject(s)
Blood-Brain Barrier/metabolism , Organic Anion Transporters/metabolism , Pharmaceutical Preparations/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Biological Transport, Active , Dogs , HEK293 Cells , Humans , Madin Darby Canine Kidney Cells , Mice , Mice, Knockout , Models, Biological , Organic Anion Transporters/biosynthesis , Organic Anion Transporters/genetics , Rosuvastatin Calcium/pharmacokinetics , Species Specificity , Tissue Distribution , Tryptamines/metabolismABSTRACT
A novel series of N-(4-aryl-5-aryloxy-thiazol-2-yl)-amides as RORγt inverse agonists was discovered. Binding mode analysis of a RORγt partial agonist (2c) revealed by co-crystal structure in RORγt LBD suggests that the inverse agonists do not directly interfere with the interaction between H12 and the RORγt LBD. Detailed SAR exploration led to identification of potent RORγt inverse agonists such as 3m with a pIC50 of 8.0. Selected compounds in the series showed reasonable activity in Th17 cell differentiation assay as well as low intrinsic clearance in mouse liver microsomes.
Subject(s)
Amides/chemistry , Amides/pharmacology , Drug Inverse Agonism , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Th17 Cells/drug effects , Thiazoles/chemistry , Thiazoles/pharmacology , Animals , Cell Differentiation/drug effects , Cells, Cultured , Humans , Mice , Molecular Docking Simulation , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Th17 Cells/cytologyABSTRACT
Novel series of N-(5-(arylcarbonyl)thiazol-2-yl)amides and N-(5-(arylcarbonyl)thiophen-2-yl)amides were discovered as potent retinoic acid receptor-related orphan receptor-gamma-t (RORγt) inhibitors. SAR studies of the RORγt HTS hit 6a led to identification of thiazole ketone amide 8h and thiophene ketone amide 9g with high binding affinity and inhibitory activity of Th17 cell differentiation. Compound 8h showed in vivo efficacy in both mouse experimental autoimmune encephalomyelitis (EAE) and collagen induced arthritis (CIA) models via oral administration.
Subject(s)
Amides/pharmacology , Arthritis/drug therapy , Drug Discovery , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Administration, Oral , Amides/administration & dosage , Amides/chemistry , Animals , Arthritis/chemically induced , Cell Differentiation/drug effects , Collagen , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Mice , Molecular Structure , Structure-Activity Relationship , Th17 CellsABSTRACT
PR1 is a HLA-A2-restricted peptide that has been targeted successfully in myeloid leukemia with immunotherapy. PR1 is derived from the neutrophil granule proteases proteinase 3 (P3) and neutrophil elastase (NE), which are both found in the tumor microenvironment. We recently showed that P3 and NE are taken up and cross-presented by normal and leukemia-derived APCs, and that NE is taken up by breast cancer cells. We now extend our findings to show that P3 and NE are taken up and cross-presented by human solid tumors. We further show that PR1 cross-presentation renders human breast cancer and melanoma cells susceptible to killing by PR1-specific CTLs (PR1-CTL) and the anti-PR1/HLA-A2 Ab 8F4. We also show PR1-CTL in peripheral blood from patients with breast cancer and melanoma. Together, our data identify cross-presentation as a novel mechanism through which cells that lack endogenous expression of an Ag become susceptible to therapies that target cross-presented Ags and suggest PR1 as a broadly expressed tumor Ag.
Subject(s)
Antigens, Neoplasm/immunology , Breast Neoplasms/therapy , Immunotherapy , Leukocyte Elastase/immunology , Melanoma/therapy , Myeloblastin/immunology , Skin Neoplasms/therapy , Antibodies/pharmacology , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , Antigens, Neoplasm/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cross-Priming , Female , HLA-A2 Antigen/immunology , Humans , Leukocyte Elastase/chemistry , Melanoma/immunology , Melanoma/pathology , Molecular Targeted Therapy , Myeloblastin/chemistry , Peptide Fragments/chemistry , Peptide Fragments/immunology , Skin Neoplasms/immunology , Skin Neoplasms/pathology , T-Lymphocytes, Cytotoxic/immunology , Tumor Cells, CulturedABSTRACT
1. The more relevant primary co-cultures of brain microvessel endothelial cells and astrocytes (BMEC) are less utilized for screening of potential CNS uptake when compared to intestinal and renal cell lines. 2. In this study, we characterized the temporal mRNA expression of major CNS transporters and receptors, including the transporter regulators Pxr, Ahr and Car in a rat BMEC co-cultured model. Permeability was compared with the Madin-Darby canine kidney (MDCKII)-MDR1 cell line and rat brain in situ perfusion model. 3. Our data demonstrated differential changes in expression of individual transporters and receptors over the culture period. Expression of ATP-binding cassette transporters was better retained than that of solute carrier transporters. The insulin receptor (IR) was best maintained among investigated receptors. AhR demonstrated high mRNA expression in rat brain capillaries and expression was better retained than Pxr or Car in culture. Mdr1b expression was up-regulated during primary culture, albeit Mdr1a mRNA levels were much higher. P-gp and Bcrp-1 were highly expressed and functional in this in vitro system. 4. Permeability measurements with 18 CNS marketed drugs demonstrated weak correlation between rBMEC model and rat in situ permeability and moderate correlation with MDCKII-MDR1 cells. 5. We have provided appropriate methodologies, as well as detailed and quantitative characterization data to facilitate improved understanding and rational use of this in vitro rat BBB model.
Subject(s)
Blood-Brain Barrier/metabolism , Central Nervous System Agents/metabolism , Membrane Transport Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Astrocytes , Coculture Techniques , Dogs , Endothelial Cells , Gene Expression , Madin Darby Canine Kidney Cells , Male , Models, Animal , Rats, Sprague-Dawley , Time FactorsABSTRACT
Hu8F4 is a T cell receptor (TCR)-like antibody with high affinity for leukemia-associated antigen PR1/HLA-A2 epitope. Adapted into a chimeric antigen receptor (CAR) format, Hu8F4-CAR is comprised of the Hu8F4 scFv, the human IgG1 CH2CH3 extracellular spacer domain, a human CD28 costimulatory domain, and the human CD3ζ signaling domain. We have demonstrated high efficacy of Hu8F4-CAR-T cells against PR1/HLA-A2-expressing cell lines and leukemic blasts from AML patients in vitro. Previous studies have shown that modification of the Fc domains of IgG4 CH2CH3 spacer regions can eliminate activation-induced cell death and off-target killing mediated by mouse Fc gamma receptor (FcgR)-expressing cells. We generated Hu8F4-CAR(PQ) with mutated Fc receptor binding sites on the CH2 domain of Hu8F4-CAR to prevent unwanted interactions with FcgR-expressing cells in vivo. The primary human T cells transduced with Hu8F4-CAR(PQ) can specifically lyse HLA-A2+ PR1-expressing leukemia cell lines in vitro. Furthermore, both adult donor-derived and cord blood-derived Hu8F4-CAR(PQ)-T cells are active and can eliminate U937 leukemia cells in NSG mice. Herein, we demonstrate that modification of the IgG1-based spacer can eliminate Fc receptor-binding-induced adverse effects and Hu8F4-CAR(PQ)-T cells can kill leukemia in vivo.
ABSTRACT
PR1 (VLQELNVTV) is a human leukocyte antigen-A2 (HLA-A2)-restricted leukemia-associated peptide from proteinase 3 (P3) and neutrophil elastase (NE) that is recognized by PR1-specific cytotoxic T lymphocytes that contribute to cytogenetic remission of acute myeloid leukemia (AML). We report a novel T-cell receptor (TCR)-like immunoglobulin G2a (IgG2a) antibody (8F4) with high specific binding affinity (dissociation constant [K(D)] = 9.9nM) for a combined epitope of the PR1/HLA-A2 complex. Flow cytometry and confocal microscopy of 8F4-labeled cells showed significantly higher PR1/HLA-A2 expression on AML blasts compared with normal leukocytes (P = .046). 8F4 mediated complement-dependent cytolysis of AML blasts and Lin(-)CD34(+)CD38(-) leukemia stem cells (LSCs) but not normal leukocytes (P < .005). Although PR1 expression was similar on LSCs and hematopoietic stem cells, 8F4 inhibited AML progenitor cell growth, but not normal colony-forming units from healthy donors (P < .05). This study shows that 8F4, a novel TCR-like antibody, binds to a conformational epitope of the PR1/HLA-A2 complex on the cell surface and mediates specific lysis of AML, including LSCs. Therefore, this antibody warrants further study as a novel approach to targeting leukemia-initiating cells in patients with AML.
Subject(s)
Complement System Proteins/immunology , Cytotoxicity, Immunologic/immunology , Epitopes/immunology , HLA-A2 Antigen/immunology , Leukemia, Myeloid, Acute/immunology , Receptors, Antigen, T-Cell/immunology , Animals , Cell Line , Humans , Leukemia, Myeloid, Acute/pathology , Leukocytes/immunology , Leukocytes/pathology , Mice , Mice, Inbred BALB C , Receptors, IgG/immunology , Stem Cells/immunologyABSTRACT
This article investigates the efficacy of a regularized multitask learning (MTL) framework based on SVM (M-SVM) to answer whether MTL always provides reliable results and how MTL outperforms independent learning. We first find that the M-SVM is Bayes risk consistent in the limit of a large sample size. This implies that despite the task dissimilarities, the M-SVM always produces a reliable decision rule for each task in terms of the misclassification error when the data size is large enough. Furthermore, we find that the task-interaction vanishes as the data size goes to infinity, and the convergence rates of the M-SVM and its single-task counterpart have the same upper bound. The former suggests that the M-SVM cannot improve the limit classifier's performance; based on the latter, we conjecture that the optimal convergence rate is not improved when the task number is fixed. As a novel insight into MTL, our theoretical and experimental results achieved an excellent agreement that the benefit of the MTL methods lies in the improvement of the preconvergence-rate (PCR) factor (to be denoted in Section III) rather than the convergence rate. Moreover, this improvement of PCR factors is more significant when the data size is small. In addition, our experimental results of five other MTL methods demonstrate the generality of this new insight.
ABSTRACT
PURPOSE: A new type of visualized steerable sheath (Vizigo sheath; Biosense Webster Inc., Irvine, CA, USA) has been employed in clinical treatment. This study aimed to compare the effectiveness and safety of the Vizigo sheath to a fixed sheath (Swartz sheath; St. Jude Inc., St. Paul, MN, USA) for catheter ablation of paroxysmal atrial fibrillation (PAF). METHODS: We analyzed the procedural time, fluoroscopy time, contact force (CF), and initial pulmonary vein isolation (PVI) rate. After 6 months of follow-up, the success rate of ablation between the two groups was compared. RESULTS: Compared to the Swartz sheath, using the Vizigo sheath can significantly reduce the total procedural time and fluoroscopy time and increase the overall average CF, especially in the anterior left pulmonary vein (LPV), superior LPV, posterior right pulmonary vein (RPV), and superior RPV. The proportion of CF within a reasonable range in the Vizigo group was significantly higher than that in the Swartz group, especially in the anterior LPV, posterior RPV, and superior RPV. Besides, the left, right, and bilateral initial PVI rates in the Vizigo group were significantly higher. CONCLUSIONS: The visualized steerable sheath for PAF catheter ablation not only reduced radiation exposure but also significantly improved CF and initial PVI rate, all of which indicated an increased rate of successful ablation.
Subject(s)
Atrial Fibrillation , Catheter Ablation , Pulmonary Veins , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/surgery , Fluoroscopy , Humans , Pulmonary Veins/surgery , Treatment OutcomeABSTRACT
T cell activation and tolerance are delicately regulated by costimulatory molecules. Although B and T lymphocyte attenuator (BTLA) has been shown as a negative regulator for T cell activation, its role in peripheral T cell tolerance induction in vivo has not been addressed. In this study, we generated a novel strain of BTLA-deficient mice and used three different models to characterize the function of BTLA in controlling T cell tolerance. In an oral tolerance model, BTLA-deficient mice were found resistant to the induction of T cell tolerance to an oral Ag. Moreover, compared with wild-type OT-II cells, BTLA(-/-) OT-II cells were less susceptible to tolerance induction by a high-dose OVA peptide administered i.v. Finally, BTLA(-/-) OT-I cells caused autoimmune diabetes in RIP-mOVA recipient mice. Our results thus demonstrate an important role for BTLA in the induction of peripheral tolerance of both CD4(+) and CD8(+) T cells in vivo.
Subject(s)
Immune Tolerance/immunology , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , T-Lymphocytes/immunology , Animals , Autoimmune Diseases/immunology , Mice , Mice, Knockout , Receptors, Immunologic/deficiency , Receptors, Immunologic/geneticsABSTRACT
INTRODUCTION: Hemodynamically-instable ventricular arrhythmias (VAs) are rare in patients with pulmonary hypertension (PH). To the best of our knowledge, only 1 case has been reported so far. Moreover, the pathogenesis of this kind of arrhythmia remains obscured and its treatment is challenging. Here we report another case and presented the substrate for VAs initiation and therapeutic effect of radiofrequency ablation. PATIENT CONCERNS: This is a 57-year-old man who presented paroxysmal palpitation associated with presyncope at rest. Surface electrocardiogram (ECG) revealed frequent ventricular premature contractions and non-sustained ventricular tachycardia when symptoms occurred. He also had a history of severe PH which was secondary to atrial septal defect and partial anomalous pulmonary venous drainage and suffered from obvious dyspnea when climbing stairs World Health Organization Class III (WHO Class III). DIAGNOSIS: Hemodynamically-instable VAs associated with severe PH. INTERVENTION: Echocardiography revealed enlargement of right ventricle (right ventricle [RV]: 43âmm). Electrophysiological examination showed the origin of VAs is next to a small low-voltage zone of RV. Radiofrequency delivery at the origin successfully terminated VAs without occurrence of complication. OUTCOME: The patient was free from arrhythmias and got an improvement of exercise tolerance, just with mild dyspnea when climbing stairs World Health Organization Class II (WHO class II), during six-month follow up. LESSONS: This case suggests the low-voltage zone of remodeled RV, which may be secondary to increased pulmonary artery pressure, serves as the substrate for VAs initiation in patient with PH. Radiofrequency ablation can successfully terminate VAs and the termination of VAs can significantly improve the patient's impaired exercise tolerance.