Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nephrol Dial Transplant ; 39(2): 264-276, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37468453

ABSTRACT

BACKGROUND: 25-hydroxyvitamin D can undergo C-3 epimerization to produce 3-epi-25(OH)D3. 3-epi-25(OH)D3 levels decline in chronic kidney disease (CKD), but its role in regulating the cardiovascular system is unknown. Herein, we examined the relationship between 3-epi-25(OH)D3, and cardiovascular functional and structural endpoints in patients with CKD. METHODS: We examined n = 165 patients with advanced CKD from the Cardiopulmonary Exercise Testing in Renal Failure and After Kidney Transplantation (CAPER) study cohort, including those who underwent kidney transplant (KTR, n = 76) and waitlisted patients who did not (NTWC, n = 89). All patients underwent cardiopulmonary exercise testing and echocardiography at baseline, 2 months and 12 months. Serum 3-epi-25(OH)D3 was analyzed by liquid chromatography-tandem mass spectrometry. RESULTS: Patients were stratified into quartiles of baseline 3-epi-25(OH)D3 (Q1: <0.4 ng/mL, n = 51; Q2: 0.4 ng/mL, n = 26; Q3: 0.5-0.7 ng/mL, n = 47; Q4: ≥0.8 ng/mL, n = 41). Patients in Q1 exhibited lower peak oxygen uptake [VO2Peak = 18.4 (16.2-20.8) mL/min/kg] compared with Q4 [20.8 (18.6-23.2) mL/min/kg; P = .009]. Linear mixed regression model showed that 3-epi-25(OH)D3 levels increased in KTR [from 0.47 (0.30) ng/mL to 0.90 (0.45) ng/mL] and declined in NTWC [from 0.61 (0.32) ng/mL to 0.45 (0.29) ng/mL; P < .001]. Serum 3-epi-25(OH)D3 was associated with VO2Peak longitudinally in both groups [KTR: ß (standard error) = 2.53 (0.56), P < .001; NTWC: 2.73 (0.70), P < .001], but was not with left ventricular mass or arterial stiffness. Non-epimeric 25(OH)D3, 24,25(OH)2D3 and the 25(OH)D3:24,25(OH)2D3 ratio were not associated with any cardiovascular outcome (all P > .05). CONCLUSIONS: Changes in 3-epi-25(OH)D3 levels may regulate cardiovascular functional capacity in patients with advanced CKD.


Subject(s)
Cardiovascular System , Kidney Transplantation , Renal Insufficiency, Chronic , Humans , Vitamin D , Vitamins , Renal Insufficiency, Chronic/surgery
2.
BMC Nephrol ; 24(1): 333, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37946153

ABSTRACT

BACKGROUND: Autosomal-dominant polycystic kidney disease (ADPKD) is the most prevalent hereditary kidney disease and the fourth leading cause of end-stage renal disease (ESRD) requiring renal replacement therapy (RRT). Nevertheless, there is a paucity of epidemiological research examining the risk factors and survival on RRT for ADPKD. Thus, we aimed to investigate the cumulative effects of cardiometabolic comorbidities, including hypertension (HTN), type 2 diabetes mellitus (DM), and dyslipidemia (DLP) to clinical outcomes in ADPKD. METHODS: We identified 6,142 patients with ADPKD aged ≥ 20 years from 2000 to 2015 using a nationwide population-based database. HTN, DM, and DLP diagnoses before or at the time of ADPKD diagnosis and different combinations of the three diagnoses were used as the predictors for the outcomes. Survival analyses were used to estimate the adjusted mortality risk from cardiometabolic comorbidities and the risk for renal survival. RESULTS: Patients with ADPKD who developed ESRD had the higher all-cause mortality (HR, 5.14; [95% CI: 3.88-6.80]). Patients with all three of the diseases had a significantly higher risk of entering ESRD (HR:4.15, [95% CI:3.27-5.27]), followed by those with HTN and DM (HR:3.62, [95% CI:2.82-4.65]), HTN and DLP (HR:3.54, [95% CI:2.91-4.31]), and HTN alone (HR:3.10, [95% CI:2.62-3.66]) compared with those without any three cardiometabolic comorbidities. CONCLUSIONS: Our study discovered the cumulative effect of HTN, DM, and DLP on the risk of developing ESRD, which reinforces the urgency of proactive prevention of cardiometabolic comorbidities to improve renal outcomes and overall survival in ADPKD patients.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension , Kidney Failure, Chronic , Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/epidemiology , Polycystic Kidney, Autosomal Dominant/therapy , Polycystic Kidney, Autosomal Dominant/diagnosis , Retrospective Studies , Diabetes Mellitus, Type 2/complications , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/drug therapy , Hypertension/epidemiology , Hypertension/complications
3.
J Am Soc Nephrol ; 33(3): 565-582, 2022 03.
Article in English | MEDLINE | ID: mdl-35091451

ABSTRACT

BACKGROUND: Endothelial cell injury is a common nidus of renal injury in patients and consistent with the high prevalence of AKI reported during the coronavirus disease 2019 pandemic. This cell type expresses integrin α5 (ITGA5), which is essential to the Tie2 signaling pathway. The microRNA miR-218-5p is upregulated in endothelial progenitor cells (EPCs) after hypoxia, but microRNA regulation of Tie2 in the EPC lineage is unclear. METHODS: We isolated human kidney-derived EPCs (hkEPCs) and surveyed microRNA target transcripts. A preclinical model of ischemic kidney injury was used to evaluate the effect of hkEPCs on capillary repair. We used a genetic knockout model to evaluate the effect of deleting endogenous expression of miR-218 specifically in angioblasts. RESULTS: After ischemic in vitro preconditioning, miR-218-5p was elevated in hkEPCs. We found miR-218-5p bound to ITGA5 mRNA transcript and decreased ITGA5 protein expression. Phosphorylation of 42/44 MAPK decreased by 73.6% in hkEPCs treated with miR-218-5p. Cells supplemented with miR-218-5p downregulated ITGA5 synthesis and decreased 42/44 MAPK phosphorylation. In a CD309-Cre/miR-218-2-LoxP mammalian model (a conditional knockout mouse model designed to delete pre-miR-218-2 exclusively in CD309+ cells), homozygotes at e18.5 contained avascular glomeruli, whereas heterozygote adults showed susceptibility to kidney injury. Isolated EPCs from the mouse kidney contained high amounts of ITGA5 and showed decreased migratory capacity in three-dimensional cell culture. CONCLUSIONS: These results demonstrate the critical regulatory role of miR-218-5p in kidney EPC migration, a finding that may inform efforts to treat microvascular kidney injury via therapeutic cell delivery.


Subject(s)
Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/pathology , Integrin alpha5/metabolism , MicroRNAs/physiology , Acute Kidney Injury/pathology , Animals , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor, TIE-2/physiology , Signal Transduction/physiology
4.
Am J Pathol ; 190(3): 642-659, 2020 03.
Article in English | MEDLINE | ID: mdl-31972158

ABSTRACT

Ischemia due to hypoperfusion is one of the most common forms of acute kidney injury. We hypothesized that kidney hypoxia initiates the up-regulation of miR-218 expression in endothelial progenitor cells (EPCs) to guide endocapillary repair. Murine renal artery-derived EPCs (CD34+/CD105-) showed down-regulation of mmu-Mir218-5p/U6 RNA ratio after ischemic injury, while in human renal arteries, MIR218-5p expression was up-regulated after ischemic injury. MIR218 expression was clarified in cell culture experiments in which increases in both SLIT3 and MIR218-2-5p expressions were observed after 5 minutes of hypoxia. ROBO1 transcript, a downstream target of MIR218-2-5p, showed inverse expression to MIR218-2-5p. EPCs transfected with a MIR218-5p inhibitor in three-dimensional normoxic culture showed premature capillary formation. Organized progenitor cell movement was reconstituted when cells were co-transfected with Dicer siRNA and low-dose Mir218-5p mimic. A Mir218-2 knockout was generated to assess the significance of miR-218-2 in a mammalian model. Mir218-2-5p expression was decreased in Mir218-2-/- embryos at E16.5. Mir218-2-/- decreased CD34+ angioblasts in the ureteric bud at E16.5 and were nonviable. Mir218-2+/- decreased peritubular capillary density at postnatal day 14 and increased serum creatinine after ischemia in adult mice. Systemic injection of miR-218-5p decreased serum creatinine after injury. These experiments demonstrate that miR-218 expression can be triggered by hypoxia and modulates EPC migration in the kidney.


Subject(s)
Acute Kidney Injury/pathology , Ischemia/pathology , MicroRNAs/genetics , Nerve Tissue Proteins/metabolism , Receptors, Immunologic/metabolism , Adult , Aged , Animals , DEAD-box RNA Helicases , Disease Models, Animal , Endothelial Progenitor Cells/pathology , Female , Humans , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microvessels/pathology , Middle Aged , Nerve Tissue Proteins/genetics , Receptors, Immunologic/genetics , Ribonuclease III , Roundabout Proteins
5.
Kidney Int ; 98(5): 1225-1241, 2020 11.
Article in English | MEDLINE | ID: mdl-32610050

ABSTRACT

Polycystin-1 (PC1) and -2 (PC2), products of the PKD1 and PKD2 genes, are mutated in autosomal dominant polycystic kidney disease (ADPKD). They localize to the primary cilia; however, their ciliary function is in dispute. Loss of either the primary cilia or PC1 or PC2 causes cyst formation. However, loss of both cilia and PC1 or PC2 inhibits cyst growth via an unknown pathway. To help define a pathway, we studied cilium length in human and mouse kidneys. We found cilia are elongated in kidneys from patients with ADPKD and from both Pkd1 and Pkd2 knockout mice. Cilia elongate following polycystin inactivation. The role of intraflagellar transport proteins in Pkd1-deficient mice is also unknown. We found that inactivation of Ift88 (a gene expressing a core component of intraflagellar transport) in Pkd1 knockout mice, as well as in a new Pkd2 knockout mouse, shortened the elongated cilia, impeded kidney and liver cystogenesis, and reduced cell proliferation. Multi-stage in vivo analysis of signaling pathways revealed ß-catenin activation as a prominent, early, and sustained event in disease onset and progression in Pkd2 single knockout but not in Pkd2.Ift88 double knockout mouse kidneys. Additionally, AMPK, mTOR and ERK pathways were altered in Pkd2 single knockout mice but only AMPK and mTOR pathway alteration were rescued in Pkd2.Ift88 double knockout mice. Thus, our findings advocate an essential role of polycystins in the structure and function of the primary cilia and implicate ß-catenin as a key inducer of cystogenesis downstream of the primary cilia. Our data suggest that modulating cilium length and/or its associated signaling events may offer novel therapeutic approaches for ADPKD.


Subject(s)
Cysts , Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Animals , Cilia , Cysts/genetics , Humans , Kidney , Liver , Mice , Mice, Knockout , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/genetics
6.
Int J Mol Sci ; 20(18)2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31546756

ABSTRACT

Accelerated vascular aging is a condition that occurs as a complication of several highly prevalent inflammatory conditions such as chronic kidney disease, cancer, HIV infection and diabetes. Age-associated vascular alterations underlie a continuum of expression toward clinically overt cardiovascular disease. This has contributed to the striking epidemiologic transition whereby such noncommunicable diseases have taken center stage as modern-day global epidemics and public health problems. The identification of α-Klotho, a remarkable protein that confers powerful anti-aging properties has stimulated significant interest. In fact, emerging data have provided fundamental rationale for Klotho-based therapeutic intervention for vascular diseases and multiple other potential indications. However, the application of such discoveries in Klotho research remains fragmented due to significant gaps in our molecular understanding of Klotho biology, as well as hurdles in clinical research and experimental barriers that must first be overcome. These advances will be critical to establish the scientific platform from which future Klotho-based interventional trials and therapeutic enterprises can be successfully launched.


Subject(s)
Aging/metabolism , Glucuronidase/metabolism , Vascular Diseases/metabolism , Aging/pathology , Animals , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Diabetes Mellitus/therapy , Humans , Klotho Proteins , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/therapy , Vascular Diseases/pathology , Vascular Diseases/therapy
7.
J Cell Sci ; 129(19): 3675-3684, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27505895

ABSTRACT

Mutation of PKD1, encoding the protein polycystin-1 (PC1), is the main cause of autosomal dominant polycystic kidney disease (ADPKD). The signaling pathways downstream of PC1 in ADPKD are still not fully understood. Here, we provide genetic evidence for the necessity of Gα12 (encoded by Gna12, hereafter Gα12) for renal cystogenesis induced by Pkd1 knockout. There was no phenotype in mice with deletion of Gα12 (Gα12-/-). Polyinosine-polycytosine (pI:pC)-induced deletion of Pkd1 (Mx1Cre+Pkd1f/fGα12+/+) in 1-week-old mice resulted in multiple kidney cysts by 9 weeks, but the mice with double knockout of Pkd1 and Gα12 (Mx1Cre+Pkd1f/fGα12-/-) had no structural and functional abnormalities in the kidneys. These mice could survive more than one year without kidney abnormalities except multiple hepatic cysts in some mice, which indicates that the effect of Gα12 on cystogenesis is kidney specific. Furthermore, Pkd1 knockout promoted Gα12 activation, which subsequently decreased cell-matrix and cell-cell adhesion by affecting the function of focal adhesion and E-cadherin, respectively. Our results demonstrate that Gα12 is required for the development of kidney cysts induced by Pkd1 mutation in mouse ADPKD.


Subject(s)
GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Kidney/metabolism , Kidney/pathology , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/pathology , TRPP Cation Channels/metabolism , Animals , Cadherins/metabolism , Cell-Matrix Junctions , Epithelial Cells/metabolism , Gene Deletion , Gene Knockout Techniques , Liver/metabolism , Liver/pathology , Mice , Models, Biological , Stress Fibers/metabolism
8.
Nephrol Dial Transplant ; 33(6): 923-934, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29244159

ABSTRACT

Background: Chronic kidney disease (CKD) patients have deficient levels of glutathione peroxidase-3 (GPx3). We hypothesized that GPx3 deficiency may lead to cardiovascular disease in the presence of chronic kidney disease due to an accumulation of reactive oxygen species and decreased microvascular perfusion of the myocardium. Methods. To isolate the exclusive effect of GPx3 deficiency in kidney disease-induced cardiac disease, we studied the GPx3 knockout mouse strain (GPx3-/-) in the setting of surgery-induced CKD. Results. Ribonucleic acid (RNA) microarray screening of non-stimulated GPx3-/- heart tissue show increased expression of genes associated with cardiomyopathy including myh7, plac9, serpine1 and cd74 compared with wild-type (WT) controls. GPx3-/- mice underwent surgically induced renal mass reduction to generate a model of CKD. GPx3-/- + CKD mice underwent echocardiography 4 weeks after injury. Fractional shortening (FS) was decreased to 32.9 ± 5.8% in GPx3-/- + CKD compared to 62.0% ± 10.3 in WT + CKD (P < 0.001). Platelet aggregates were increased in the myocardium of GPx3-/- + CKD. Asymmetric dimethylarginine (ADMA) levels were increased in both GPx3-/- + CKD and WT+ CKD. ADMA stimulated spontaneous platelet aggregation more quickly in washed platelets from GPx3-/-. In vitro platelet aggregation was enhanced in samples from GPx3-/- + CKD. Platelet aggregation in GPx3-/- + CKD samples was mitigated after in vivo administration of ebselen, a glutathione peroxidase mimetic. FS improved in GPx3-/- + CKD mice after ebselen treatment. Conclusion: These results suggest GPx3 deficiency is a substantive contributing factor to the development of kidney disease-induced cardiac disease.


Subject(s)
Disease Models, Animal , Glutathione Peroxidase/physiology , Heart Diseases/etiology , Platelet Aggregation , Renal Insufficiency, Chronic/complications , Thrombosis/etiology , Ventricular Dysfunction, Left/etiology , Animals , Arginine/analogs & derivatives , Arginine/metabolism , Heart Diseases/metabolism , Heart Diseases/pathology , Mice , Mice, Knockout , Reactive Oxygen Species/metabolism , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Thrombosis/metabolism , Thrombosis/pathology , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology
9.
Kidney Int ; 91(1): 129-143, 2017 01.
Article in English | MEDLINE | ID: mdl-27692806

ABSTRACT

Vascular progenitor cells show promise for the treatment of microvasculature endothelial injury. We investigated the function of renal artery progenitor cells derived from radical nephrectomy patients, in animal models of acute ischemic and hyperperfusion injuries. Present in human adventitia, CD34positive/CD105negative cells were clonal and expressed transcription factors Sox2/Oct4 as well as surface markers CXCR4 (CD184)/KDR(CD309) consistent with endothelial progenitor cells. Termed renal artery-derived vascular progenitor cells (RAPC), injected cells were associated with decreased serum creatinine after ischemia/reperfusion, reduced albuminuria after hyperperfusion, and improved blood flow in both models. A small population of RAPC integrated with the renal microvasculature following either experimental injury. At a cellular level, RAPC promoted local endothelial migration in co-culture. Profiling of RAPC microRNA identified high levels of miRNA 218; also found at high levels in exosomes isolated from RAPC conditioned media after cell contact for 24 hours. After hydrogen peroxide-induced endothelial injury, RAPC exosomes harbored Robo-1 transcript; a gene known to be regulated by mir218. Such exosomes enhanced endothelial cell migration in culture in the absence of RAPC. Thus, our work shows the feasibility of pre-emptive pro-angiogenic progenitor cell procurement from a targeted patient population and potential therapeutic use in the form of autologous cell transplantation.


Subject(s)
Acute Kidney Injury/therapy , Capillaries/physiology , Kidney/pathology , Stem Cell Transplantation/methods , Stem Cells/metabolism , Wound Healing , Acute Kidney Injury/chemically induced , Animals , Antigens, CD34/metabolism , Capillaries/pathology , Cell Movement , Coculture Techniques , Creatinine/blood , Disease Models, Animal , Endoglin/metabolism , Endothelium/cytology , Exosomes/metabolism , Feasibility Studies , Humans , Hydrogen Peroxide/toxicity , Kidney/blood supply , Mice , MicroRNAs/metabolism , Nerve Tissue Proteins/metabolism , Receptors, CXCR4/metabolism , Receptors, Immunologic/metabolism , Renal Artery/cytology , Transplantation, Autologous/methods , Vascular Endothelial Growth Factor Receptor-2/metabolism , Roundabout Proteins
10.
Physiol Genomics ; 47(2): 24-32, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25492927

ABSTRACT

Interaction of polycystin-1 (PC1) and Gα12 is important for development of kidney cysts in autosomal dominant polycystic kidney disease (ADPKD). The integrity of cell polarity and cell-cell adhesions (mainly E-cadherin-mediated adherens junction) is altered in the renal epithelial cells of ADPKD. However, the key signaling pathway for this alteration is not fully understood. Madin-Darby canine kidney (MDCK) cells maintain the normal integrity of epithelial cell polarity and adherens junctions. Here, we found that deletion of Pkd1 increased activation of Gα12, which then promoted the cystogenesis of MDCK cells. The morphology of these cells was altered after the activation of Gα12. By using liquid chromatography-mass spectrometry, we found several proteins that could be related this change in the extracellular milieu. E-cadherin was one of the most abundant peptides after active Gα12 was induced. Gα12 activation or Pkd1 deletion increased the shedding of E-cadherin, which was mediated via increased ADAM10 activity. The increased shedding of E-cadherin was blocked by knockdown of ADAM10 or specific ADAM10 inhibitor GI254023X. Pkd1 deletion or Gα12 activation also changed the distribution of E-cadherin in kidney epithelial cells and caused ß-catenin to shift from cell membrane to nucleus. Finally, ADAM10 inhibitor, GI254023X, blocked the cystogenesis induced by PC1 knockdown or Gα12 activation in renal epithelial cells. Our results demonstrate that the E-cadherin/ß-catenin signaling pathway is regulated by PC1 and Gα12 via ADAM10. Specific inhibition of this pathway, especially ADAM10 activity, could be a novel therapeutic regimen for ADPKD.


Subject(s)
Cadherins/metabolism , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , TRPP Cation Channels/metabolism , ADAM Proteins/antagonists & inhibitors , Animals , Dipeptides/pharmacology , Dogs , Epithelial Cells/metabolism , GTP-Binding Protein alpha Subunits, G12-G13/genetics , Gene Deletion , Humans , Hydroxamic Acids/pharmacology , Kidney/cytology , Kidney/metabolism , Madin Darby Canine Kidney Cells/drug effects , Madin Darby Canine Kidney Cells/metabolism , Madin Darby Canine Kidney Cells/pathology , Mice, Knockout , Mice, Transgenic , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/pathology , TRPP Cation Channels/genetics , beta Catenin/metabolism
11.
J Am Soc Nephrol ; 25(9): 1909-15, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24876120

ABSTRACT

Despite the increasing prevalence of CKD in the United States, there is a declining interest among United States medical graduates in nephrology as a career choice. Effective programs are needed to generate interest at early educational stages when career choices can be influenced. The Kidney Disease Screening and Awareness Program (KDSAP) is a novel program initiated at Harvard College that increases student knowledge of and interest in kidney health and disease, interest in nephrology career paths, and participation in kidney disease research. This model, built on physician mentoring, kidney screening of underserved populations, direct interactions with kidney patients, and opportunities to participate in kidney research, can be reproduced and translated to other workforce-challenged subspecialties.


Subject(s)
Kidney Diseases/epidemiology , Models, Educational , Nephrology/education , Career Choice , Community-Institutional Relations , Education, Medical, Graduate , Humans , Mass Screening/methods , Mentors , Training Support , United States/epidemiology
12.
Circulation ; 125(18): 2243-55, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22492635

ABSTRACT

BACKGROUND: Klotho is known to function as a cofactor for the phosphatonin, fibroblast growth factor (FGF)-23 at the kidney. FGF-23 levels rise in chronic kidney disease (CKD) despite progression of accelerated vascular calcification. There are currently conflicting data on whether FGF-23 may exhibit direct vasculoprotective effects in CKD. METHODS AND RESULTS: In this study, we describe for the first time endogenous Klotho expression in human arteries and human aortic smooth muscle cells. We show that CKD is a state of vascular Klotho deficiency promoted by chronic circulating stress factors, including proinflammatory, uremic, and disordered metabolic conditions. Mechanistic studies demonstrated that Klotho knockdown potentiated the development of accelerated calcification through a Runx2 and myocardin-serum response factor-dependent pathway. Klotho knockdown studies further revealed that vascular cells are a Klotho-dependent target tissue for FGF-23. FGF-23 mediated cellular activation of p-ERK, p-AKT, and cellular proliferative effects, which were abrogated following Klotho knockdown. We next showed that vascular Klotho deficiency driven by procalcific stressors could be restored by vitamin D receptor activators, in vitro and further confirmed using human arterial organ cultures from CKD patients, in vivo. Furthermore, restoration of suppressed Klotho expression by vitamin D receptor activators conferred human aortic smooth muscle cells responsive to FGF-23 signaling and unmasked potential anticalcific effects. CONCLUSIONS: Chronic metabolic stress factors found in CKD promote vascular Klotho deficiency. Mechanistic studies revealed a bifunctional role for local vascular Klotho, first, as an endogenous inhibitor of vascular calcification and, second, as a cofactor required for vascular FGF-23 signaling. Furthermore, vitamin D receptor activators can restore Klotho expression and unmask FGF-23 anticalcific effects.


Subject(s)
Fibroblast Growth Factors/metabolism , Glucuronidase/deficiency , Vascular Calcification/metabolism , Aorta/metabolism , Cell Line , Cell Proliferation , Core Binding Factor Alpha 1 Subunit/metabolism , Fibroblast Growth Factor-23 , Glucuronidase/biosynthesis , Humans , Klotho Proteins , MAP Kinase Signaling System , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Calcitriol/agonists , Renal Insufficiency, Chronic/metabolism , Serum Response Factor/metabolism , Trans-Activators/metabolism
13.
Sci Adv ; 9(47): eadj4846, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38000021

ABSTRACT

Patients with advanced chronic kidney disease (CKD) mostly die from sudden cardiac death and recurrent heart failure. The mechanisms of cardiac remodeling are largely unclear. To dissect molecular and cellular mechanisms of cardiac remodeling in CKD in an unbiased fashion, we performed left ventricular single-nuclear RNA sequencing in two mouse models of CKD. Our data showed a hypertrophic response trajectory of cardiomyocytes with stress signaling and metabolic changes driven by soluble uremia-related factors. We mapped fibroblast to myofibroblast differentiation in this process and identified notable changes in the cardiac vasculature, suggesting inflammation and dysfunction. An integrated analysis of cardiac cellular responses to uremic toxins pointed toward endothelin-1 and methylglyoxal being involved in capillary dysfunction and TNFα driving cardiomyocyte hypertrophy in CKD, which was validated in vitro and in vivo. TNFα inhibition in vivo ameliorated the cardiac phenotype in CKD. Thus, interventional approaches directed against uremic toxins, such as TNFα, hold promise to ameliorate cardiac remodeling in CKD.


Subject(s)
Heart Failure , Renal Insufficiency, Chronic , Mice , Animals , Humans , Tumor Necrosis Factor-alpha/genetics , Uremic Toxins , Ventricular Remodeling , Heart Failure/etiology
14.
Kidney360 ; 3(9): 1529-1541, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36245643

ABSTRACT

Background: Fibroblast growth factor 23 (FGF23) is a bone-derived phosphatonin that is elevated in chronic kidney disease (CKD) and has been implicated in the development of cardiovascular disease. It is unknown whether elevated FGF23 in CKD is associated with impaired cardiovascular functional capacity, as assessed by maximum exercise oxygen consumption (VO2Max). We sought to determine whether FGF23 is associated with cardiovascular functional capacity in patients with advanced CKD and after improvement of VO2Max by kidney transplantation. Methods: We performed secondary analysis of 235 patients from the Cardiopulmonary Exercise Testing in Renal Failure and After Kidney Transplantation (CAPER) cohort, which recruited patients with stage 5 CKD who underwent kidney transplantation or were waitlisted and hypertensive controls. All patients underwent cardiopulmonary exercise testing (CPET) and echocardiography and were followed longitudinally for 1 year after study enrollment. Results: Patients across FGF23 quartiles differed in BMI (P=0.004) and mean arterial pressure (P<0.001) but did not significantly differ in sex (P=0.5) or age (P=0.08) compared with patients with lower levels of FGF23. Patients with higher FGF23 levels had impaired VO2Max (Q1: 24.2±4.8 ml/min per kilogram; Q4: 18.6±5.2 ml/min per kilogram; P<0.001), greater left ventricular mass index (LVMI; P<0.001), reduced HR at peak exercise (P<0.001), and maximal workload (P<0.001). Kidney transplantation conferred a significant decline in FGF23 at 2 months (P<0.001) before improvement in VO2Max at 1 year (P=0.008). Multivariable regression modeling revealed that changes in FGF23 was significantly associated with VO2Max in advanced CKD (P<0.001) and after improvement after kidney transplantation (P=0.006). FGF23 was associated with LVMI before kidney transplantation (P=0.003), however this association was lost after adjustment for dialysis status (P=0.4). FGF23 was not associated with LVMI after kidney transplantation in all models. Conclusions: FGF23 levels are associated with alterations in cardiovascular functional capacity in advanced CKD and after kidney transplantation. FGF23 is only associated with structural cardiac adaptations in advanced CKD but this was modified by dialysis status, and was not associated after kidney transplantation.


Subject(s)
Kidney Failure, Chronic , Kidney Transplantation , Renal Insufficiency, Chronic , Humans , Echocardiography , Fibroblast Growth Factors/metabolism , Kidney Failure, Chronic/surgery , Renal Insufficiency, Chronic/complications
15.
J Am Heart Assoc ; 11(14): e025656, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35861826

ABSTRACT

Background The transition to dialysis period carries a substantial increased cardiovascular risk in patients with chronic kidney disease. Despite this, alterations in cardiovascular functional capacity during this transition are largely unknown. The present study therefore sought to assess ventilatory exercise response measures in patients within 1 year of initiating dialysis. Methods and Results We conducted a cross-sectional study of 241 patients with chronic kidney disease stage 5 from the CAPER (Cardiopulmonary Exercise Testing in Renal Failure) study and from the intradialytic low-frequency electrical muscle stimulation pilot randomized controlled trial cohorts. Patients underwent cardiopulmonary exercise testing and echocardiography. Of the 241 patients (age, 48.9 [15.0] years; 154 [63.9%] men), 42 were predialytic (mean estimated glomerular filtration rate, 14 mL·min-1·1.73 m-2), 54 had a dialysis vintage ≤12 months, and 145 had a dialysis vintage >12 months. Dialysis vintage ≤12 months exhibited a significantly impaired cardiovascular functional capacity, as assessed by oxygen uptake at peak exercise (18.7 [5.8] mL·min-1·kg-1) compared with predialysis (22.7 [5.2] mL·min-1·kg-1; P<0.001). Dialysis vintage ≤12 months also exhibited reduced peak workload, impaired peak heart rate, reduced circulatory power, and increased left ventricular mass index (P<0.05 for all) compared with predialysis. After excluding those with prior kidney transplant, dialysis vintage >12 months exhibited a lower oxygen uptake at peak exercise (17.0 [4.9] mL·min-1·kg-1) compared with dialysis vintage ≤12 months (18.9 [5.9] mL·min-1·kg-1; P=0.033). Conclusions Initiating dialysis is associated with a significant impairment in oxygen uptake at peak exercise and overall decrements in ventilatory and hemodynamic exercise responses that predispose patients to functional dependence. The magnitude of these changes is comparable to the differences between low-risk New York Heart Association class I and higher-risk New York Heart Association class II to IV heart failure.


Subject(s)
Heart Failure , Kidney Failure, Chronic , Renal Insufficiency, Chronic , Cross-Sectional Studies , Exercise Test , Exercise Tolerance , Female , Heart Failure/diagnosis , Heart Failure/therapy , Humans , Kidney Failure, Chronic/diagnosis , Kidney Failure, Chronic/therapy , Male , Middle Aged , Oxygen , Oxygen Consumption , Renal Dialysis/adverse effects , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/therapy
16.
J Am Heart Assoc ; 11(5): e022991, 2022 03.
Article in English | MEDLINE | ID: mdl-35179046

ABSTRACT

Background The myocardial cytoskeleton functions as the fundamental framework critical for organelle function, bioenergetics and myocardial remodeling. To date, impairment of the myocardial cytoskeleton occurring in the failing heart in patients with advanced chronic kidney disease has been largely undescribed. Methods and Results We conducted a 3-arm cross-sectional cohort study of explanted human heart tissues from patients who are dependent on hemodialysis (n=19), hypertension (n=10) with preserved renal function, and healthy controls (n=21). Left ventricular tissues were subjected to pathologic examination and next-generation RNA sequencing. Mechanistic and interference RNA studies utilizing in vitro human cardiac fibroblast models were performed. Left ventricular tissues from patients undergoing hemodialysis exhibited increased myocardial wall thickness and significantly greater fibrosis compared with hypertension patients (P<0.05) and control (P<0.01). Transcriptomic analysis revealed that the focal adhesion pathway was significantly enriched in hearts from patients undergoing hemodialysis. Hearts from patients undergoing hemodialysis exhibited dysregulated components of the focal adhesion pathway including reduced ß-actin (P<0.01), ß-tubulin (P<0.01), vimentin (P<0.05), and increased expression of vinculin (P<0.05) compared with controls. Cytoskeletal adaptations in hearts from the hemodialysis group were associated with impaired mitochondrial bioenergetics, including dysregulated mitochondrial dynamics and fusion, and loss of cell survival pathways. Mechanistic studies revealed that cytoskeletal changes can be driven by uremic and metabolic abnormalities of chronic kidney disease, in vitro. Furthermore, focal adhesion kinase silencing via interference RNA suppressed major cytoskeletal proteins synergistically with mineral stressors found in chronic kidney disease in vitro. Conclusions Myocardial failure in advanced chronic kidney disease is characterized by impairment of the cytoskeleton involving disruption of the focal adhesion pathway, mitochondrial failure, and loss of cell survival pathways.


Subject(s)
Hypertension , Renal Insufficiency, Chronic , Cross-Sectional Studies , Cytoskeleton , Humans , Kidney/physiology , RNA , Renal Insufficiency, Chronic/therapy
17.
J Immunol ; 181(9): 6406-16, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18941231

ABSTRACT

HIV-1 infection has significant effect on the immune system as well as on the nervous system. Breakdown of the blood-brain barrier (BBB) is frequently observed in patients with HIV-associated dementia (HAD) despite lack of productive infection of human brain microvascular endothelial cells (HBMEC). Cellular products and viral proteins secreted by HIV-1 infected cells, such as the HIV-1 Gp120 envelope glycoprotein, play important roles in BBB impairment and HIV-associated dementia development. HBMEC are a major component of the BBB. Using cocultures of HBMEC and human astrocytes as a model system for human BBB as well as in vivo model, we show for the first time that cannabinoid agonists inhibited HIV-1 Gp120-induced calcium influx mediated by substance P and significantly decreased the permeability of HBMEC as well as prevented tight junction protein down-regulation of ZO-1, claudin-5, and JAM-1 in HBMEC. Furthermore, cannabinoid agonists inhibited the transmigration of human monocytes across the BBB and blocked the BBB permeability in vivo. These results demonstrate that cannabinoid agonists are able to restore the integrity of HBMEC and the BBB following insults by HIV-1 Gp120. These studies may lead to better strategies for treatment modalities targeted to the BBB following HIV-1 infection of the brain based on cannabinoid pharmacotherapies.


Subject(s)
Anti-HIV Agents/pharmacology , Arachidonic Acids/pharmacology , Brain/blood supply , Brain/virology , Cannabinoid Receptor Modulators/pharmacology , Endothelium, Vascular/virology , Glycerides/pharmacology , HIV Envelope Protein gp120/antagonists & inhibitors , HIV-1/drug effects , AIDS Dementia Complex/enzymology , AIDS Dementia Complex/pathology , AIDS Dementia Complex/prevention & control , AIDS Dementia Complex/virology , Amidohydrolases/antagonists & inhibitors , Anti-HIV Agents/therapeutic use , Arachidonic Acids/physiology , Benzamides/pharmacology , Benzamides/therapeutic use , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/physiology , Brain/drug effects , Brain/pathology , Cannabinoid Receptor Modulators/agonists , Cannabinoid Receptor Modulators/physiology , Carbamates/pharmacology , Carbamates/therapeutic use , Cell Line , Coculture Techniques , Endocannabinoids , Endothelium, Vascular/drug effects , Endothelium, Vascular/enzymology , Endothelium, Vascular/physiology , Glycerides/physiology , HIV Envelope Protein gp120/physiology , HIV-1/physiology , Humans , Microcirculation/drug effects , Microcirculation/physiology , Receptor, Cannabinoid, CB1/physiology
18.
Kaohsiung J Med Sci ; 36(6): 389-392, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32492292

ABSTRACT

The spike glycoprotein on the virion surface docking onto the angiotensin-converting enzyme (ACE) 2 dimer is an essential step in the process of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in human cells-involves downregulation of ACE2 expression with systemic renin-angiotensin system (RAS) imbalance and promotion of multi-organ damage. In general, the RAS induces vasoconstriction, hypertension, inflammation, fibrosis, and proliferation via the ACE/Ang II/Ang II type 1 receptor (AT1R) axis and induces the opposite effects via the ACE2/Ang (1-7)/Mas axis. The RAS may be activated by chronic inflammation in hypertension, diabetes, obesity, and cancer. SARS-CoV-2 induces the ACE2 internalization and shedding, leading to the inactivation of the ACE2/Ang (1-7)/Mas axis. Therefore, we hypothesize that two hits to the RAS drives COVID-19 progression. In brief, the first hit originates from chronic inflammation activating the ACE/Ang II/AT1R axis, and the second originates from the COVID-19 infection inactivating the ACE2/Ang (1-7)/Mas axis. Moreover, the two hits to the RAS may be the primary reason for increased mortality in patients with COVID-19 who have comorbidities and may serve as a therapeutic target for COVID-19 treatment.


Subject(s)
Betacoronavirus , Coronavirus Infections/physiopathology , Pneumonia, Viral/physiopathology , Renin-Angiotensin System/physiology , Angiotensin II/physiology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Comorbidity , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Humans , Models, Biological , Pandemics , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Receptor, Angiotensin, Type 1/physiology , Renin-Angiotensin System/drug effects , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/physiology
19.
Int J Biol Sci ; 15(7): 1533-1545, 2019.
Article in English | MEDLINE | ID: mdl-31337982

ABSTRACT

Aims: Berberine (BBR) improves beta-cell function in Type 2 diabetes (T2D) because of its anti-apoptotic activity, and our laboratory developed a new preparation named Huang-Gui Solid Dispersion (HGSD) to improve the oral bioavailability of BBR. However, the mechanism by which BBR inhibits beta-cell apoptosis is unclear. We hypothesized that the Group VIA Ca2+-Independent Phospholipase A2 (iPLA2ß)/Cardiolipin(CL)/Opa1 signaling pathway could exert a protective role in T2D by regulating beta-cell apoptosis and that HGSD could inhibit ß-cell apoptosis through iPLA2ß/CL/Opa1 upregulation. Methods: We examined how iPLA2ß and BBR regulated apoptosis and insulin secretion through CL/Opa1 in vivo and in vitro. In in vitro studies, we developed Palmitate(PA)-induced apoptotic cell death model in mouse insulinoma cells (MIN6). iPLA2ß overexpression and silencing technology were used to examine how the iPLA2ß/CL/Opa1 interaction may play an important role in BBR treatment. In in vivo studies, db/db mice were used as a diabetic animal model. The pancreatic islet function and morphology, beta-cell apoptosis and mitochondrial injury were examined to explore the effects of HGSD. The expression of iPLA2ß/CL/Opa1 was measured to explore whether the signaling pathway was damaged in T2D and was involved in HGSD treatment. Results: The overexpression of iPLA2ß and BBR treatment significantly attenuated Palmitate- induced mitochondrial injury and apoptotic death compared with Palmitate-treated MIN6 cell. In addition, iPLA2ß silencing could simultaneously partly abolish the anti-apoptotic effect of BBR and decrease CL/Opa1 signaling in MIN6 cells. Moreover, HGSD treatment significantly decreased beta-cell apoptosis and resulted in the upregulation of iPLA2ß/CL/Opa1 compared to those of the db/db mice. Conclusion: The results indicated that the regulation of iPLA2ß/CL/Opa1 by HGSD may prevent beta-cell apoptosis and may improve islet beta-cell function in Type 2 diabetic mice and in palmitate-treated MIN6 cells.


Subject(s)
Apoptosis , Berberine/pharmacology , Cardiolipins/metabolism , Diabetes Mellitus, Type 2/metabolism , GTP Phosphohydrolases/metabolism , Group VI Phospholipases A2/metabolism , Animals , Cell Line , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/drug therapy , Gene Silencing , Glucose Tolerance Test , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Male , Medicine, Chinese Traditional , Membrane Potential, Mitochondrial , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Palmitates , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL