Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Appl Opt ; 59(22): 6484-6489, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32749347

ABSTRACT

A highly sensitive surface plasmon resonance (SPR) sensor comprising an eccentric core photonic quasi-crystal fiber (PQF) coated with indium tin oxide is designed and numerically analyzed. The novel, to the best of our knowledge, structure with an eccentric core layout and local coating not only strengthens coupling between the core mode and surface plasmon polariton mode but also provides higher refractive index sensitivity in the near-infrared region. Analysis based on the finite element method to assess the performance of the sensor and optimize the structural parameters reveals that the maximum wavelength sensitivity and resolution are 96667 nm/RIU and 1.034×10-6RIU in the sensing range between 1.380 and 1.413, respectively. Meanwhile, the average sensitivity is enhanced to 25458 nm/RIU. The sensor is expected to have broad applications in environmental monitoring, biochemical sensing, food safety testing, and related applications due to the ultrahigh sensitivity and resolution.

2.
J Cell Sci ; 129(1): 108-20, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26729029

ABSTRACT

TNF is a primitive protein that has emerged from more than 550 million years of evolution. Our bioinformatics study of TNF from nine different taxa in vertebrates revealed several conserved regions in the TNF sequence. By screening overlapping peptides derived from human TNF to determine their role in three different TNF-induced processes--apoptosis, necrosis and NF-κB stimulation--we found that TNF conserved regions are mostly related to cell death rather than NF-κB stimulation. Among the most conserved regions, peptides (P)12, P13 and P1213 (comprising P12 and P13) induced apoptosis, whereas P14, P15, P16 and P1516 (comprising P15 and P16) induced necrosis. Cell death induced by these peptides was not through binding to the TNF receptor. P16-induced necrosis was mainly through disruption of the cell membrane, whereas P1213-induced apoptosis involved activation of TRADD followed by formation of complex II. Finally, using a monoclonal antibody and a mutant TNF protein, we show that TNF-induced apoptosis is determined by a conserved linear sequence that corresponds to that within P1213. Our results reveal the determinant sequence that is key to the TNF primitive function of inducing apoptosis.


Subject(s)
Conserved Sequence , Evolution, Molecular , Tumor Necrosis Factor-alpha/chemistry , Tumor Necrosis Factor-alpha/metabolism , Amino Acid Sequence , Animals , Caspase 8/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Fas-Associated Death Domain Protein/metabolism , Humans , Jurkat Cells , Mice , Molecular Sequence Data , Nuclear Pore Complex Proteins/metabolism , Peptides/chemistry , Peptides/pharmacology , RNA-Binding Proteins/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , TNF Receptor-Associated Death Domain Protein/metabolism , Vertebrates
3.
Cell Mol Life Sci ; 69(20): 3493-509, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22653047

ABSTRACT

Nesprins-1/-2/-3/-4 are nuclear envelope proteins, which connect nuclei to the cytoskeleton. The largest nesprin-1/-2 isoforms (termed giant) tether F-actin through their N-terminal actin binding domain (ABD). Nesprin-3, however, lacks an ABD and associates instead to plectin, which binds intermediate filaments. Nesprins are integrated into the outer nuclear membrane via their C-terminal KASH-domain. Here, we show that nesprin-1/-2 ABDs physically and functionally interact with nesprin-3. Thus, both ends of nesprin-1/-2 giant are integrated at the nuclear surface: via the C-terminal KASH-domain and the N-terminal ABD-nesprin-3 association. Interestingly, nesprin-2 ABD or KASH-domain overexpression leads to increased nuclear areas. Conversely, nesprin-2 mini (contains the ABD and KASH-domain but lacks the massive nesprin-2 giant rod segment) expression yields smaller nuclei. Nuclear shrinkage is further enhanced upon nesprin-3 co-expression or microfilament depolymerization. Our findings suggest that multivariate intermolecular nesprin interactions with the cytoskeleton form a lattice-like filamentous network covering the outer nuclear membrane, which determines nuclear size.


Subject(s)
Actins/metabolism , Cell Nucleus/metabolism , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Envelope/metabolism , Nuclear Proteins/metabolism , Blotting, Western , Cell Nucleus/ultrastructure , Cells, Cultured , Cytoskeletal Proteins , Fibroblasts/cytology , Fibroblasts/metabolism , Fluorescent Antibody Technique , Genes, Dominant , Humans , Immunoprecipitation , Keratinocytes/cytology , Keratinocytes/metabolism , Microfilament Proteins/antagonists & inhibitors , Microfilament Proteins/genetics , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Plasmids , Protein Structure, Tertiary , RNA, Small Interfering/genetics
4.
Front Immunol ; 14: 1096759, 2023.
Article in English | MEDLINE | ID: mdl-36911666

ABSTRACT

The human immunodeficiency virus (HIV) is still a global pandemic and despite the successful use of anti-retroviral therapy, a well-established cure remains to be identified. Viral modulation of cell death has a significant role in HIV pathogenesis. Here we sought to understand the major mechanisms of HIV-induced death of lymphocytes and the effects on viral transmission. Flow cytometry analysis of lymphocytes from five latent HIV-infected patients, and HIV IIIB-infected MT2 cells demonstrated both necrosis and apoptosis to be the major mechanisms of cell death in CD4+ and CD4-/CD8- lymphocytes. Significantly, pro-apoptotic tumor necrosis factor (TNF) peptide (P13) was found to inhibit HIV-related cell death and reduced viral transmission. Whereas pro-necrotic TNF peptide (P16) had little effect on HIV-related cell death and viral transmission. Understanding mechanisms by which cell death can be manipulated may provide additional drug targets to reduce the loss of CD4+ cells and the formation of a viral reservoir in HIV infection.


Subject(s)
HIV Infections , HIV-1 , Humans , Virus Latency , Apoptosis , Cell Death , Peptides/pharmacology
5.
Cell Mol Life Sci ; 68(9): 1593-610, 2011 May.
Article in English | MEDLINE | ID: mdl-20922455

ABSTRACT

Cell polarization is a fundamental process underpinning organismal development, and tissue homeostasis, which requires an orchestrated interplay of nuclear, cytoskeletal, and centrosomal structures. The underlying molecular mechanisms, however, still remain elusive. Here we report that kinesin-1/nesprin-2/SUN-domain macromolecular assemblies, spanning the entire nuclear envelope (NE), function in cell polarization by anchoring cytoskeletal structures to the nuclear lamina. Nesprin-2 forms complexes with the kinesin-1 motor protein apparatus by associating with and recruiting kinesin light chain 1 (KLC1) to the outer nuclear membrane. Similar to nesprin-2, KLC1 requires lamin A/C for proper NE localization. The depletion of nesprin-2 or KLC1, or the uncoupling of nesprin-2/SUN-domain protein associations impairs cell polarization during wounding and dislodges the centrosome from the NE. In addition nesprin-2 loss has profound effects on KLC1 levels, the cytoskeleton, and Golgi apparatus organization. Collectively these data show that NE-associated proteins are pivotal determinants of cell architecture and polarization.


Subject(s)
Centrosome/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeleton/metabolism , Nuclear Envelope/metabolism , Animals , Cell Line , Cell Polarity , Chlorocebus aethiops/metabolism , Dyneins/metabolism , Humans , Kinesins/metabolism , Matrix Attachment Regions , Mice , Nerve Tissue Proteins/metabolism
6.
Front Immunol ; 13: 872676, 2022.
Article in English | MEDLINE | ID: mdl-35784315

ABSTRACT

Cellular immunity in Mycobacteria tuberculosis (Mtb) infection is important for the pathogenesis and final clearance of intracellular Mtb infection. In addition, it is valuable for the diagnosis of tuberculosis. In this pioneering work, we tested in vitro and in vivo antigen presentation and diagnostic application of a recombinant overlapping peptide-protein derived from two Mtb RD1 antigens ESAT-6 and CFP-10 (ROP-TB). The overlapping peptide sequence of ROP-TB is cleaved by the cathepsin S enzyme and covers the entire length of the two proteins. ROP-TB can be expressed and purified from E. coli. Once taken in by antigen-presenting cells, ROP-TB can be cleaved into a peptide pool by cathepsin S within the cells. We found that in dendritic cells, ROP-TB can be processed in 6 hours of co-culture, while the ESAT-6/CFP-10 fusion protein remained in the endosomal compartment. In Mtb-infected mice, ROP-TB stimulated stronger specific T cell responses than pooled synthetic peptides derived from ESAT-6 and CFP-10. With regard to the presentation of in vivo antigens, in a guinea pig model infected with Mtb, ROP-TB induced delayed type hypersensitivity (DTH) responses comparable to those of the tuberculin purified protein derivative (PPD) and ESAT-6/CFP-10 fusion protein. In Mycobacterium bovis (Bovine TB)-infected cattle, ROP-TB elicited DTH responses. Finally, in Mtb infected patients, ROP-TB stimulated cellular immune responses in majority of patients (16/18) of different HLA phenotypes while a single peptide derived from the same proteins did not elicit the immune responses in all patients. In summary, in vitro and in vivo data suggest that ROP-TB stimulates a strong cellular immune response irrespective of HLA phenotypes and is therefore suitable for use in vitro and in vivo diagnostics.


Subject(s)
Antigens, Bacterial , Tuberculosis, Lymph Node , Animals , Antigen Presentation , Bacterial Proteins , Cathepsins/metabolism , Cattle , Escherichia coli/genetics , Guinea Pigs , Mice , Recombinant Proteins/metabolism
7.
Expert Opin Biol Ther ; 21(11): 1429-1441, 2021 11.
Article in English | MEDLINE | ID: mdl-33877952

ABSTRACT

Introduction: Survivin (SVN) is a member of the inhibitor of apoptosis (IAP) protein family that promotes cellular proliferation and inhibits apoptosis. Overexpression of SVN is associated with autoimmune disease, hyperplasia, and tumors and can be used as a biomarker in these diseases. SVN is widely recognized as a tumor-associated antigen (TAA) and has become an important target for cancer diagnosis and treatment.Areas covered: We reviewed SVN research progress from the PubMed and clinical trials focused on SVN from https://clinicaltrials.gov since 2000 and anticipate future developments in the field. The trials reviewed cover various modalities including diagnostics for early detection and disease progression, small molecule inhibitors of the SVN pathway and immunotherapy targeting SVN epitopes.Expert opinion: The most promising developments involve anti-SVN immunotherapy, with several therapeutic SVN vaccines under evaluation in phase I/II trials. SVN is an important new immune-oncology target that expands the repertoire of individualized combination treatments for cancer.


Subject(s)
Immunotherapy , Inhibitor of Apoptosis Proteins , Antigens, Neoplasm , Apoptosis , Biomarkers , Humans , Survivin/genetics
8.
Front Immunol ; 12: 768144, 2021.
Article in English | MEDLINE | ID: mdl-35095843

ABSTRACT

High-risk human papillomavirus (HPV) infection is the cause of almost all cervical cancers. HPV16 is one of the main risk subtypes. Although screening programs have greatly reduced the prevalence of cervical cancer in developed countries, current diagnostic tests cannot predict if mild lesions may progress into invasive lesions or not. In the current cross-sectional and longitudinal clinical study, we found that the HPV16 E7-specific T cell response in peripheral blood mononuclear cells of HPV16-infected patients is related to HPV16 clearance. It contributes to protecting the squamous interaepithelial lesion (SIL) from further malignant development. Of the HPV16 infected women enrolled (n = 131), 42 had neither intraepithelial lesion nor malignancy (NILM), 33 had low-grade SIL, 39 had high-grade SIL, and 17 had cervical cancer. Only one of 17 (5.9%) cancer patients had a positive HPV16 E7-specific T cell response, dramatically lower than the groups of precancer patients. After one year of follow-up, most women (28/33, 84.8%) with persistent HPV infection did not exhibit a HPV16 E7-specific T cell response. Furthermore, 3 malignantly progressed women, one progressed to high-grade SIL and two progressed to low-grade SIL, were negative to the HPV16 E7-specific T cell response. None of the patients with a positive HPV16 E7-specific T cell response progressed to further deterioration. Our observation suggests that HPV16 E7-specific T cell immunity is significant in viral clearance and contributes in protection against progression to malignancy.


Subject(s)
Human papillomavirus 16/immunology , Immunity, Cellular/immunology , Papillomavirus E7 Proteins/immunology , Papillomavirus Infections/immunology , Uterine Cervical Dysplasia/immunology , Uterine Cervical Neoplasms/immunology , Adult , Aged , Cells, Cultured , Cross-Sectional Studies , Female , Humans , Leukocytes, Mononuclear/immunology , Longitudinal Studies , Middle Aged , T-Lymphocytes/immunology , Young Adult
9.
Biochim Biophys Acta ; 1783(12): 2415-26, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18845190

ABSTRACT

SUN-domain proteins form a novel and conserved family of inner nuclear membrane (INM) proteins, which establish physical connections between the nucleoplasm and the cytoskeleton. In the current study, we provide evidence that within the nuclear envelope (NE) Sun1 proteins form highly immobile oligomeric complexes in interphase cells. By performing inverse fluorescence recovery after photobleaching analysis, we demonstrate in vivo that both perinuclear and nucleoplasmic Sun1 segments are essential for maintenance of Sun1 immobility at the NE. Our data in particular underline the self-association properties of the C-terminal coiled-coil Sun1 segment, the ability of which to form dimers and tetramers is demonstrated. Furthermore, the Sun1 tertiary structure involves interchain disulfide bonds that might contribute to higher homo-oligomer formation, although the overall dynamics of the Sun1 C-terminus remains unaffected when the cysteins involved are mutated. While a major Sun1 pool colocalizes with nuclear pore complex proteins, a large fraction of the Sun1 protein assemblies colocalize with immunoreactive foci of Sun2, another SUN-domain paralogue at the NE. We demonstrate that the Sun1 coiled-coil domain permits these heterophilic associations with Sun2. Sun1 therefore provides a non-dynamic platform for the formation of different macromolecular assemblies at the INM. Our data support a model in which SUN-protein-containing multi-variate complexes may provide versatile outer nuclear membrane attachment sites for cytoskeletal filaments.


Subject(s)
Cell Nucleus/metabolism , Microtubule-Associated Proteins/metabolism , Nuclear Envelope/metabolism , Nuclear Pore/physiology , Amino Acid Sequence , Blotting, Western , Cell Nucleus/ultrastructure , Cross-Linking Reagents , Disulfides/metabolism , Fluorescence Recovery After Photobleaching , Fluorescent Antibody Technique , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , HeLa Cells , Humans , Immunoenzyme Techniques , Microtubule-Associated Proteins/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Nuclear Envelope/ultrastructure , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid , Two-Hybrid System Techniques
10.
Mol Biol Cell ; 16(7): 3411-24, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15843432

ABSTRACT

The vertebrate proteins Nesprin-1 and Nesprin-2 (also referred to as Enaptin and NUANCE) together with ANC-1 of Caenorhabditis elegans and MSP-300 of Drosophila melanogaster belong to a novel family of alpha-actinin type actin-binding proteins residing at the nuclear membrane. Using biochemical techniques, we demonstrate that Nesprin-2 binds directly to emerin and the C-terminal common region of lamin A/C. Selective disruption of the lamin A/C network in COS7 cells, using a dominant negative lamin B mutant, resulted in the redistribution of Nesprin-2. Furthermore, using lamin A/C knockout fibroblasts we show that lamin A/C is necessary for the nuclear envelope localization of Nesprin-2. In normal skin where lamin A/C is differentially expressed, strong Nesprin-2 expression was found in all epidermal layers, including the basal layer where only lamin C is present. This indicates that lamin C is sufficient for proper Nesprin-2 localization at the nuclear envelope. Expression of dominant negative Nesprin-2 constructs and knockdown studies in COS7 cells revealed that the presence of Nesprin-2 at the nuclear envelope is necessary for the proper localization of emerin. Our data imply a scaffolding function of Nesprin-2 at the nuclear membrane and suggest a potential involvement of this multi-isomeric protein in human disease.


Subject(s)
Lamin Type A/biosynthesis , Microfilament Proteins/biosynthesis , Nerve Tissue Proteins/biosynthesis , Nuclear Envelope/metabolism , Nuclear Proteins/biosynthesis , Animals , Blotting, Western , COS Cells , Caenorhabditis elegans , Cell Line, Tumor , Cell Nucleus/metabolism , Cytoplasm/metabolism , Drosophila melanogaster , Genes, Dominant , Glutathione Transferase/metabolism , Humans , Immunoblotting , Immunohistochemistry , Immunoprecipitation , In Vitro Techniques , Membrane Proteins/metabolism , Microscopy, Fluorescence , Models, Biological , Models, Genetic , Mutation , Plasmids/metabolism , Protein Binding , Protein Structure, Tertiary , RNA, Small Interfering/metabolism , Thymopoietins/metabolism , Transfection , Two-Hybrid System Techniques
11.
Oncotarget ; 8(44): 76516-76524, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-29100330

ABSTRACT

Priming of naive CD8+ and CD4+ T cells by dendritic cells (DCs) requires effective antigen presentation on both MHC class I and II molecules. We have developed a novel technology to use recombinant overlapping peptides (ROP) that stimulate both CD8+ and CD4+ T cell immune responses. The single chain protein of a ROP is made up of overlapping peptides linked by the target sequence (LRMK) for cathepsin S, a protease found in the endosomes of DCs. We designed synthetic genes encoding ROPs derived from ovalbumin (OVA), tuberculosis protein (CFP10-ESAT6), human papilloma virus (HPV) protein (E7) and survivin, a protein commonly over-expressed in tumour cells. An epitope from ROP-OVA was cross-presented and detected by a CD8+ T cell receptor-like antibody (TCR like Ab). Human DCs pulsed with ROP-survivin activated CD8+ T cells. CD4-low PBMCs from HIV and TB co-infected patients recognized ROP-CFP10-ESAT6 compared to a soluble form of the antigen. Immunization of mice with ROP-survivin or ROP-HPV-E7 generated specific cellular immune responses and protected mice from inoculation with melanoma B16 cells expressing survivin or HPV-E7 proteins. Together these data provide evidence to support ROP as a central component of a new platform for therapeutic vaccines and diagnostics.

12.
Int J Cell Biol ; 2012: 736524, 2012.
Article in English | MEDLINE | ID: mdl-22518138

ABSTRACT

Nesprin-1 is a giant tail-anchored nuclear envelope protein composed of an N-terminal F-actin binding domain, a long linker region formed by multiple spectrin repeats and a C-terminal transmembrane domain. Based on this structure, it connects the nucleus to the actin cytoskeleton. Earlier reports had shown that Nesprin-1 binds to nuclear envelope proteins emerin and lamin through C-terminal spectrin repeats. These repeats can also self-associate. We focus on the N-terminal Nesprin-1 sequences and show that they interact with Nesprin-3, a further member of the Nesprin family, which connects the nucleus to the intermediate filament network. We show that upon ectopic expression of Nesprin-3 in COS7 cells, which are nearly devoid of Nesprin-3 in vitro, vimentin filaments are recruited to the nucleus and provide evidence for an F-actin interaction of Nesprin-3 in vitro. We propose that Nesprins through interactions amongst themselves and amongst the various Nesprins form a network around the nucleus and connect the nucleus to several cytoskeletal networks of the cell.

13.
J Cell Sci ; 121(11): 1887-98, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18477613

ABSTRACT

Giant isoforms, encoded by Nesprin-1 (Syne1) and Nesprin-2 (Syne2), are multifunctional actin-binding and nuclear-envelope-associated proteins belonging to the spectrin superfamily. Here, we investigate the function of Nesprin-2 Giant (NUANCE) in skin by generating mice lacking the actin-binding domain of Nesprin-2 (Nesprin-2DeltaABD). This loss results in a slight but significant thickening of the epidermis, which is a consequence of the increased epithelial nuclear size. Nonetheless, epidermal proliferation and differentiation appear normal in the knockout epidermis. Surprisingly, Nesprin-2 C-terminal-isoform expression and nuclear envelope localization were affected in certain tissues. Nuclei of primary dermal knockout fibroblasts and keratinocytes were heavily misshapen, displaying a striking similarity to nuclear deformations characteristic of laminopathies. Furthermore, emerin, the protein involved in the X-linked form of Emery-Dreifuss muscular dystrophy (EDMD), was unevenly distributed along the nuclear envelope in mutant fibroblasts, often forming aggregates in the deformed nuclear envelope areas. Thus, Nesprin-2 is an important scaffold protein implicated in the maintenance of nuclear envelope architecture. Aged knockout fibroblasts readily generated, by alternative splicing and alternative translation initiation, aberrant Nesprin-2 Giant isoforms that lacked an ABD but that were sufficient to restore nuclear shape and emerin localization; this suggests that other regions of Nesprin-2 Giant, potentially including its spectrin repeats, are crucial for these functions.


Subject(s)
Cell Nucleus/metabolism , Epidermis/metabolism , Epithelial Cells/metabolism , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Envelope/metabolism , Nuclear Proteins/metabolism , Alternative Splicing/genetics , Animals , Animals, Newborn , Cell Differentiation/physiology , Cell Nucleus/ultrastructure , Cell Polarity/genetics , Cell Shape/genetics , Cells, Cultured , DNA Repeat Expansion/genetics , Epidermis/abnormalities , Epidermis/ultrastructure , Epithelial Cells/ultrastructure , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Humans , Keratinocytes/metabolism , Keratinocytes/ultrastructure , Membrane Proteins/metabolism , Mice , Mice, Knockout , Microfilament Proteins/chemistry , Microfilament Proteins/genetics , Mutation/genetics , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nuclear Envelope/ultrastructure , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary/genetics
14.
Hum Mol Genet ; 16(23): 2944-59, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-17881656

ABSTRACT

The S143F lamin A/C point mutation causes a phenotype combining features of myopathy and progeria. We demonstrate here that patient dermal fibroblast cells have dysmorphic nuclei containing numerous blebs and lobulations, which progressively accumulate as cells age in culture. The lamin A/C organization is altered, showing intranuclear and nuclear envelope (NE) aggregates and presenting often a honeycomb appearance. Immunofluorescence microscopy showed that nesprin-2 C-terminal isoforms and LAP2alpha were recovered in the cytoplasm, whereas LAP2beta and emerin were unevenly localized along the NE. In addition, the intranuclear organization of acetylated histones, histone H1 and the active form of RNA polymerase II were markedly different in patient cells. A subpopulation of mutant cells, however, expressing the 800 kDa nesprin-2 giant isoform, did not show an overt nuclear phenotype. Ectopic expression of p.S143F lamin A in fibroblasts recapitulates the patient cell phenotype, whereas no effects were observed in p.S143F LMNA keratinocytes, which highly express nesprin-2 giant. Overexpression of the mutant lamin A protein had a more severe impact on the NE of nesprin-2 giant deficient fibroblasts when compared with wild-type. In summary, our results suggest that the p.S143F lamin A mutation affects NE architecture and composition, chromatin organization, gene expression and transcription. Furthermore, our findings implicate a direct involvement of the nesprins in laminopathies and propose nesprin-2 giant as a structural reinforcer at the NE.


Subject(s)
Lamin Type A/genetics , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Envelope/metabolism , Nuclear Proteins/metabolism , Progeria/genetics , Progeria/metabolism , Amino Acid Sequence , Base Sequence , Cells, Cultured , Chromatin/metabolism , DNA Primers/genetics , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Deletion , Humans , Lamin Type A/chemistry , Lamin Type A/metabolism , Membrane Proteins/deficiency , Membrane Proteins/genetics , Metalloendopeptidases/deficiency , Metalloendopeptidases/genetics , Microfilament Proteins/deficiency , Microfilament Proteins/genetics , Molecular Sequence Data , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Nuclear Envelope/pathology , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Phenotype , Point Mutation , Progeria/pathology , Sequence Homology, Amino Acid , Transcription, Genetic
15.
J Cell Sci ; 118(Pt 15): 3419-30, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-16079285

ABSTRACT

Nesprins form a novel class of nuclear envelope-anchored spectrin-repeat proteins. We show that a direct association of their highly conserved C-terminal luminal domain with the inner nuclear membrane protein Sun1 mediates their nuclear envelope localisation. In Nesprin-1 and Nesprin-2 the conserved C-terminal amino acids PPPX are essential for the interaction with a C-terminal region in Sun1. In fact, Sun1 is required for the proper nuclear envelope localisation of Nesprin-2 as shown using dominant-negative mutants and by knockdown of Sun1 expression. Sun1 itself does not require functional A-type lamins for its localisation at the inner nuclear membrane in mammalian cells. Our findings propose a conserved nuclear anchorage mechanism between Caenorhabditis elegans and mammals and suggest a model in which Sun1 serves as a ;structural bridge' connecting the nuclear interior with the actin cytoskeleton.


Subject(s)
Microfilament Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Envelope/metabolism , Nuclear Proteins/metabolism , Animals , COS Cells , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cell Nucleus/metabolism , Chlorocebus aethiops , Cloning, Molecular , Cytoskeletal Proteins , HeLa Cells , Humans , Intracellular Membranes/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C3H , Mice, Knockout , Microfilament Proteins/genetics , Microtubule-Associated Proteins/genetics , Models, Biological , Nerve Tissue Proteins/genetics , Nuclear Envelope/classification , Nuclear Envelope/ultrastructure , Nuclear Proteins/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL