Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 82(21): 4099-4115.e9, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36208627

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive hepatic lipid accumulation, which can progress to nonalcoholic steatohepatitis (NASH). Histone deacetylase Sirtuin 6 (SIRT6) regulates NAFLD by regulating metabolism-related gene expression, but an extrachromosomal role for SIRT6 in NAFLD development remains elusive. We investigated whether SIRT6 functions on NAFLD in the cytoplasm. We found that SIRT6 binds saturated fatty acids, especially palmitic acid. This binding leads to its nuclear export, where it deacetylates long-chain acyl-CoA synthase 5 (ACSL5), thereby facilitating fatty acid oxidation. High-fat diet-induced NAFLD is suppressed by ACSL5 hepatic overexpression but is exacerbated by its depletion. As confirmation, overexpression of a deacetylated ACSL5 mimic attenuated NAFLD in Sirt6 liver-specific knockout mice. Moreover, NASH-hepatic tissues from both patients and diet-fed mice exhibited significantly reduced cytoplasmic SIRT6 levels and increased ACSL5 acetylation. The SIRT6/ACSL5 signaling pathway has a critical role in NAFLD progression and might constitute an avenue for therapeutic intervention.


Subject(s)
Non-alcoholic Fatty Liver Disease , Sirtuins , Mice , Animals , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Acyl Coenzyme A/metabolism , Mice, Inbred C57BL , Liver/metabolism , Lipid Metabolism , Mice, Knockout , Fatty Acids/metabolism , Sirtuins/genetics , Sirtuins/metabolism , Cytoplasm/metabolism
2.
Nucleic Acids Res ; 51(17): 9166-9182, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37503842

ABSTRACT

Histone deacetylase 6 (HDAC6) mediates DNA damage signaling by regulating the mismatch repair and nucleotide excision repair pathways. Whether HDAC6 also mediates DNA double-strand break (DSB) repair is unclear. Here, we report that HDAC6 negatively regulates DSB repair in an enzyme activity-independent manner. In unstressed cells, HDAC6 interacts with H2A/H2A.X to prevent its interaction with the E3 ligase RNF168. Upon sensing DSBs, RNF168 rapidly ubiquitinates HDAC6 at lysine 116, leading to HDAC6 proteasomal degradation and a restored interaction between RNF168 and H2A/H2A.X. H2A/H2A.X is ubiquitinated by RNF168, precipitating the recruitment of DSB repair factors (including 53BP1 and BRCA1) to chromatin and subsequent DNA repair. These findings reveal novel regulatory machinery based on an HDAC6-RNF168 axis that regulates the H2A/H2A.X ubiquitination status. Interfering with this axis might be leveraged to disrupt a key mechanism of cancer cell resistance to genotoxic damage and form a potential therapeutic strategy for cancer.


Subject(s)
DNA Repair , Humans , Cell Line, Tumor , DNA Damage , Histone Deacetylase 6/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
3.
BMC Plant Biol ; 24(1): 160, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38429733

ABSTRACT

BACKGROUND: Anthocyanins are the most important compounds for nutritional quality and economic values of blood orange. However, there are few reports on the pre-harvest treatment accelerating the accumulation of anthocyanins in postharvest blood orange fruit. Here, we performed a comparative transcriptome and metabolomics analysis to elucidate the underlying mechanism involved in seasonal drought (SD) treatment during the fruit expansion stage on anthocyanin accumulation in postharvest 'Tarocco' blood orange fruit. RESULTS: Our results showed that SD treatment slowed down the fruit enlargement and increased the sugar accumulation during the fruit development and maturation period. Obviously, under SD treatment, the accumulation of anthocyanin in blood orange fruit during postharvest storage was significantly accelerated and markedly higher than that in CK. Meanwhile, the total flavonoids and phenols content and antioxidant activity in SD treatment fruits were also sensibly increased during postharvest storage. Based on metabolome analysis, we found that substrates required for anthocyanin biosynthesis, such as amino acids and their derivatives, and phenolic acids, had significantly accumulated and were higher in SD treated mature fruits compared with that of CK. Furthermore, according to the results of the transcriptome data and weighted gene coexpression correlation network analysis (WGCNA) analysis, phenylalanine ammonia-lyase (PAL3) was considered a key structural gene. The qRT-PCR analysis verified that the PAL3 was highly expressed in SD treated postharvest stored fruits, and was significantly positively correlated with the anthocyanin content. Moreover, we found that other structural genes in the anthocyanin biosynthesis pathway were also upregulated under SD treatment, as evidenced by transcriptome data and qRT-PCR analysis. CONCLUSIONS: The findings suggest that SD treatment promotes the accumulation of substrates necessary for anthocyanin biosynthesis during the fruit ripening process, and activates the expression of anthocyanin biosynthesis pathway genes during the postharvest storage period. This is especially true for PAL3, which co-contributed to the rapid accumulation of anthocyanin. The present study provides a theoretical basis for the postharvest quality control and water-saving utilization of blood orange fruit.


Subject(s)
Anthocyanins , Fruit , Fruit/metabolism , Droughts , Antioxidants/metabolism , Gene Expression Profiling
4.
New Phytol ; 242(3): 1131-1145, 2024 May.
Article in English | MEDLINE | ID: mdl-38482565

ABSTRACT

Plenty of rainfall but unevenly seasonal distribution happens regularly in southern China. Seasonal drought from summer to early autumn leads to citrus fruit acidification, but how seasonal drought regulates citrate accumulation remains unknown. Herein, we employed a set of physiological, biochemical, and molecular approaches to reveal that CsABF3 responds to seasonal drought stress and modulates citrate accumulation in citrus fruits by directly regulating CsAN1 and CsPH8. Here, we demonstrated that irreversible acidification of citrus fruits is caused by drought lasting for > 30 d during the fruit enlargement stage. We investigated the transcriptome characteristics of fruits affected by drought and corroborated the pivotal roles of a bHLH transcription factor (CsAN1) and a P3A-ATPase gene (CsPH8) in regulating citrate accumulation in response to drought. Abscisic acid (ABA)-responsive element binding factor 3 (CsABF3) was upregulated by drought in an ABA-dependent manner. CsABF3 activated CsAN1 and CsPH8 expression by directly and specifically binding to the ABA-responsive elements (ABREs) in the promoters and positively regulated citrate accumulation. Taken together, this study sheds new light on the regulatory module ABA-CsABF3-CsAN1-CsPH8 responsible for citrate accumulation under drought stress, which advances our understanding of quality formation of citrus fruit.


Subject(s)
Citrus , Citrus/genetics , Citrus/metabolism , Citric Acid/metabolism , Droughts , Seasons , Citrates/metabolism , Gene Expression Regulation, Plant , Abscisic Acid/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Fruit/genetics , Fruit/metabolism
5.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34074749

ABSTRACT

Ataxia telangiectasia and Rad3 related (ATR) activation after replication stress involves a cascade of reactions, including replication protein A (RPA) complex loading onto single-stranded DNA and ATR activator loading onto chromatin. The contribution of histone modifications to ATR activation, however, is unclear. Here, we report that H3K14 trimethylation responds to replication stress by enhancing ATR activation. First, we confirmed that H3K14 monomethylation, dimethylation, and trimethylation all exist in mammalian cells, and that both SUV39H1 and SETD2 methyltransferases can catalyze H3K14 trimethylation in vivo and in vitro. Interestingly, SETD2-mediated H3K14 trimethylation markedly increases in response to replication stress induced with hydroxyurea, a replication stress inducer. Under these conditions, SETD2-mediated H3K14me3 recruited the RPA complex to chromatin via a direct interaction with RPA70. The increase in H3K14me3 levels was abolished, and RPA loading was attenuated when SETD2 was depleted or H3K14 was mutated. Rather, the cells were sensitive to replication stress such that the replication forks failed to restart, and cell-cycle progression was delayed. These findings help us understand how H3K14 trimethylation links replication stress with ATR activation.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Replication , DNA/biosynthesis , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Replication Protein A/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/chemistry , Ataxia Telangiectasia Mutated Proteins/genetics , DNA/chemistry , DNA/genetics , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/genetics , Histones/chemistry , Histones/genetics , Humans , Methylation , Methyltransferases/chemistry , Methyltransferases/genetics , Methyltransferases/metabolism , Replication Protein A/chemistry , Replication Protein A/genetics , Repressor Proteins/chemistry , Repressor Proteins/genetics , Repressor Proteins/metabolism
6.
BMC Plant Biol ; 23(1): 296, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37268922

ABSTRACT

BACKGROUND: Organic acids and anthocyanins are the most important compounds for the flavor and nutritional quality of citrus fruit. However, there are few reports on the involvement of co-regulation of citrate and anthocyanin metabolism. Here, we performed a comparative transcriptome analysis to elucidate the genes and pathways involved in both citrate and anthocyanin accumulation in postharvest citrus fruit with 'Tarocco' blood orange (TBO; high accumulation) and 'Bingtangcheng' sweet orange (BTSO; low accumulation). RESULTS: A robust core set of 825 DEGs were found to be temporally associated with citrate and anthocyanin accumulation throughout the storage period through transcriptome analysis. Further according to the results of weighted gene coexpression correlation network analysis (WGCNA), the turquoise and brown module was highly positively correlated with both of the content of citrate and anthocyanin, and p-type ATPase (PH8), phosphoenolpyruvate carboxylase kinase (PEPCK), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H) and glutathione S transferase (GST) were considered key structural genes. Moreover, MYB family transcription factor (PH4), Zinc finger PHD-type transcription factor (CHR4, HAC12), Zinc finger SWIM-type transcription factor (FAR1) and Zinc finger C3H1-type transcription factor (ATC3H64) were considered hub genes related to these structural genes. Further qRT-PCR analysis verified that these transcription factors were highly expressed in TBO fruit and their expression profiles were significantly positively correlated with the structural genes of citrate and anthocyanin metabolism as well as the content of citrate and anthocyanin content. CONCLUSIONS: The findings suggest that the CHR4, FAR1, ATC3H64 and HAC12 may be the new transcription regulators participate in controlling the level of citrate and anthocyanin in postharvest TBO fruit in addition to PH4. These results may providing new insight into the regulation mechanism of citrate and anthocyanin accumulation in citrus fruit.


Subject(s)
Anthocyanins , Citrus sinensis , Anthocyanins/metabolism , Citric Acid/metabolism , Fruit/genetics , Fruit/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome , Citrus sinensis/genetics , Citrus sinensis/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
7.
Oral Dis ; 29(5): 1979-1990, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35403775

ABSTRACT

BACKGROUND: Accumulating articles have suggested the important regulatory roles of circular RNAs in human cancers, including oral squamous cell carcinoma (OSCC). However, the role of circ_0001971 in OSCC progression remains to be determined. METHODS: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assays were conducted to analyze cell proliferation ability. Cell migration and invasion abilities were assessed by transwell assays. Dual-luciferase reporter assay was conducted to confirm the target relation between miR-107 and circ_0001971 or FZD4. Xenograft tumor model was established to analyze the biological role of circ_0001971 in regulating tumor growth in vivo. RESULTS: Circ_0001971 was markedly up-regulated in OSCC tissues and cell lines. Circ_0001971 knockdown inhibited the growth of xenograft tumors in vivo. miR-107 was confirmed as a direct target of circ_0001971, and circ_0001971 depletion-mediated anti-tumor effects in OSCC cells could be largely alleviated by silencing miR-107. miR-107 directly targeted the 3' untranslated region of FZD4, and FZD4 overexpression largely reversed the anti-tumor effects of circ_0001971 in OSCC cells. Circ_0001971 could positively regulate FZD4 expression by targeting miR-107 in OSCC cells. CONCLUSION: Circ_0001971 promoted the proliferation, migration, and glycolysis of OSCC cells through mediating miR-107/FZD4 axis. Circ_0001971 might be a new effective target for OSCC treatment in future.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , MicroRNAs , Mouth Neoplasms , Animals , Humans , Carcinoma, Squamous Cell/genetics , Squamous Cell Carcinoma of Head and Neck , Mouth Neoplasms/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Disease Models, Animal , MicroRNAs/genetics , Cell Line, Tumor , Frizzled Receptors/genetics
8.
FASEB J ; 35(4): e21326, 2021 04.
Article in English | MEDLINE | ID: mdl-33710666

ABSTRACT

Histone modifications play critical roles in DNA damage repair to safeguard genome integrity. However, how different histone modifiers coordinate to build appropriate chromatin context for DNA damage repair is largely unknown. Here, we report a novel interplay between the histone methyltransferase KMT5A and two E3 ligases RNF8 and RNF168 in establishing the histone modification status for DNA damage repair. KMT5A is a newly identified substrate of RNF8 in vitro and in vivo. In response to DNA double-strand breaks (DSBs), RNF8 promotes KMT5A recruitment onto damaged chromatin in a ubiquitination-dependent manner. RNF8-induced KMT5A ubiquitination increases the binding capacity of KMT5A to RNF168. Interestingly, KMT5A not only drives a local increase in H4K20 monomethylation at DSBs, but also promotes RNF168's activity in catalyzing H2A ubiquitination. We proved that the interaction between the H2A acidic patch and KMT5A R188/R189 residues is critical for KMT5A-mediated regulation of H2A ubiquitination. Taken together, our results highlight a new role for KMT5A in linking H4K20 methylation and H2A ubiquitination and provide insight into the histone modification network during DNA damage repair.


Subject(s)
DNA-Binding Proteins/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Ubiquitin-Protein Ligases/metabolism , Antibodies , Cell Survival , DNA Damage , DNA-Binding Proteins/genetics , Gene Deletion , Gene Expression Regulation , HCT116 Cells , Histone-Lysine N-Methyltransferase/genetics , Humans , Ubiquitin-Protein Ligases/genetics , Ubiquitination
9.
Nucleic Acids Res ; 48(6): 2982-3000, 2020 04 06.
Article in English | MEDLINE | ID: mdl-31970415

ABSTRACT

Genomic instability is an underlying hallmark of cancer and is closely associated with defects in DNA damage repair (DDR). Chromatin relaxation is a prerequisite for DDR, but how chromatin accessibility is regulated remains elusive. Here we report that the histone deacetylase SIRT6 coordinates with the chromatin remodeler CHD4 to promote chromatin relaxation in response to DNA damage. Upon DNA damage, SIRT6 rapidly translocates to DNA damage sites, where it interacts with and recruits CHD4. Once at the damage sites, CHD4 displaces heterochromatin protein 1 (HP1) from histone H3 lysine 9 trimethylation (H3K9me3). Notably, loss of SIRT6 or CHD4 leads to impaired chromatin relaxation and disrupted DNA repair protein recruitment. These molecular changes, in-turn, lead to defective homologous recombination (HR) and cancer cell hypersensitivity to DNA damaging agents. Furthermore, we show that SIRT6-mediated CHD4 recruitment has a specific role in DDR within compacted chromatin by HR in G2 phase, which is an ataxia telangiectasia mutated (ATM)-dependent process. Taken together, our results identify a novel function for SIRT6 in recruiting CHD4 onto DNA double-strand breaks. This newly identified novel molecular mechanism involves CHD4-dependent chromatin relaxation and competitive release of HP1 from H3K9me3 within the damaged chromatin, which are both essential for accurate HR.


Subject(s)
Chromatin/metabolism , DNA Repair , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Sirtuins/metabolism , Cell Line, Tumor , Cell Survival , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/metabolism , DNA Breaks, Double-Stranded , HEK293 Cells , Histones/metabolism , Humans , Lysine/metabolism , Methylation , Mi-2 Nucleosome Remodeling and Deacetylase Complex/chemistry , Models, Biological , Protein Binding , Protein Domains
10.
Biomed Chromatogr ; 36(12): e5484, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35997075

ABSTRACT

Oral antiseizure medications are the preferred option for the clinical treatment of epilepsy. Therapeutic drug monitoring has become an important means of achieving individualized treatment of epilepsy. A sensitive, accurate and rapid LC-ESI-MS/MS method was developed and validated for the simultaneous determination of 15 antiseizure medications in human plasma (carbamazepine, gabapentin, pregabalin, phenytoin, zonisamide, oxcarbazepine, tiagabine, lamotrigine, topiramate, phenobarbital, lacosamide, primidone, 10,11-Dihydro-10-hydroxy carbamazepine, ethosuximide, and levetiracetam). The sample preparation procedure was an one-step protein precipitation with methanol. Mass detection was performed in ionization polarity switching mode (positive-negative-positive) using multiple reaction monitoring mode. A "boot-shaped" gradient elution program was applied to separate and concentrate those target analytes, resulting in symmetrical peak shapes within 10 min, without endogenous interference. The method showed great linearity over the concentration ranges with acceptable correlation coefficients (0.9966-0.9996). The precision and accuracy values for intra- and inter-assays were within ±15%. Consequently, the method was successfully implemented on pediatric patients undergoing mono- or polytherapy for epilepsy and provided timely concentration results to ordering clinicians.


Subject(s)
Drug Monitoring , Epilepsy , Humans , Child , Drug Monitoring/methods , Tandem Mass Spectrometry/methods , Epilepsy/drug therapy , Anticonvulsants/therapeutic use , Carbamazepine
11.
Pharm Biol ; 60(1): 1819-1838, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36124995

ABSTRACT

CONTEXT: Shen-Shi-Jiang-Zhuo formula (SSJZF) exhibits a definite curative effect in the clinical treatment of non-alcoholic fatty liver disease (NAFLD). OBJECTIVE: To explore the therapeutic effect and mechanism of SSJZF on NAFLD. MATERIALS AND METHODS: Sprague Dawley rats were randomly divided into control, NAFLD, positive drug (12 mg/kg/day), SSJZF high-dose (200 mg/kg/day), SSJZF middle-dose (100 mg/kg/day), and SSJZF low-dose (50 mg/kg/day) groups. After daily intragastric administration of NAFLD rats for 8 weeks, lipid metabolism and hepatic fibrosis were evaluated by biochemical indices and histopathology. Then we uncovered the main active compounds and mechanism of SSJZF against NAFLD by integrating RNA-sequencing and network pharmacology, and PI3K/AKT pathway activity was verified by western blot. RESULTS: High dose SSJZF had the best inhibitory effect on hepatic lipid accumulation and fibrosis in rats with NAFLD, which significantly down-regulated total triglycerides (58%), cholesterol (62%), aspartate aminotransferase (57%), alanine aminotransferase (41%) andγ-glutamyl transpeptidase (36%), as well as the expression of ACC (5.3-fold), FAS (12.1-fold), SREBP1C (2.3-fold), and CD36 (4.4-fold), and significantly reduced collagen deposition (67%). Then we identified 23 compounds of SSJZF that acted on 25 key therapeutic targets of NAFLD by integrating RNA-sequencing and network pharmacology. Finally, we also confirmed that high dose SSJZF increased p-PI3K/PI3K (1.6-fold) and p-AKT/AKT (1.6-fold) in NAFLD rats. DISCUSSION AND CONCLUSION: We found for first time that SSJZF improved NAFLD in rats by activating the PI3K/Akt pathway. These findings provide scientific support for SSJZF in the clinical treatment of NAFLD and contribute to the development of new NAFLD drugs.


Subject(s)
Non-alcoholic Fatty Liver Disease , Alanine Transaminase , Animals , Aspartate Aminotransferases , Cholesterol , Diet, High-Fat , Network Pharmacology , Non-alcoholic Fatty Liver Disease/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA/therapeutic use , Rats , Rats, Sprague-Dawley , Triglycerides , gamma-Glutamyltransferase/therapeutic use
12.
Nucleic Acids Res ; 47(21): 10977-10993, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31612207

ABSTRACT

The binding of p53-binding protein 1 (53BP1) to damaged chromatin is a critical event in non-homologous DNA end joining (NHEJ)-mediated DNA damage repair. Although several molecular pathways explaining how 53BP1 binds damaged chromatin have been described, the precise underlying mechanisms are still unclear. Here we report that a newly identified H4K16 monomethylation (H4K16me1) mark is involved in 53BP1 binding activity in the DNA damage response (DDR). During the DDR, H4K16me1 rapidly increases as a result of catalyzation by the histone methyltransferase G9a-like protein (GLP). H4K16me1 shows an increased interaction level with 53BP1, which is important for the timely recruitment of 53BP1 to DNA double-strand breaks. Differing from H4K16 acetylation, H4K16me1 enhances the 53BP1-H4K20me2 interaction at damaged chromatin. Consistently, GLP knockdown markedly attenuates 53BP1 foci formation, leading to impaired NHEJ-mediated repair and decreased cell survival. Together, these data support a novel axis of the DNA damage repair pathway based on H4K16me1 catalysis by GLP, which promotes 53BP1 recruitment to permit NHEJ-mediated DNA damage repair.


Subject(s)
DNA End-Joining Repair/genetics , Histones/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism , DNA Breaks, Double-Stranded , HCT116 Cells , Histone-Lysine N-Methyltransferase/metabolism , Humans , Methylation , Protein Binding
13.
Ecotoxicol Environ Saf ; 227: 112909, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34673414

ABSTRACT

Wilforine, a compound of sesquiterpene alkaloids isolated from Tripterygium wilfordii, exhibits excellent insecticidal activity against Mythimna separata. In order to clarify the action mechanism of wilforine, the plasma membrane calcium transporting ATPase (PMCA) and inositol 1,4,5-trisphosphate receptor (IP3R) from M. separata were studied. Results showed that the open reading frame of MsIP3R and MsPMCA were 8118 bp and 3438 bp in length, as well as encoded 2706 and 1146 amino acids, respectively. Multiple sequence alignment and phylogenetic analysis revealed that the MsIP3R and MsPMCA had high homology with the IP3R and PMCA of other insects, but had low similarity with those of mammals, which means the IP3R and PMCA have potential to be the novel targets of insecticides with high selectivity between mammals and insects. Both MsIP3R and MsPMCA genes existed throughout the life cycle of M. separata, and were all predominantly expressed in somatic muscle of fifth-instar larvae and the adults. The susceptibilities of PMCA-silenced M. separata to wilforine were significantly lower than that of the normal M. separata, which illustrates that PMCA could be one of the targets of wilforine. However, the susceptibilities of IP3R-silenced M. separata to wilforine did not change significantly compared with the susceptibilities of normal M. separata, which shows that wilforine may not interact with the IP3R protein. These findings provide clues for elucidating the insecticidal mechanism of wilforine.


Subject(s)
Insecticides , Moths , Animals , Gene Silencing , Inositol , Inositol 1,4,5-Trisphosphate Receptors/genetics , Insecticides/toxicity , Lactones , Larva/genetics , Moths/genetics , Phylogeny , Plasma Membrane Calcium-Transporting ATPases , Pyridines , RNA Interference
14.
Proc Natl Acad Sci U S A ; 114(30): E6054-E6063, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28698370

ABSTRACT

Histone methyltransferase G9a has critical roles in promoting cancer-cell growth and gene suppression, but whether it is also associated with the DNA damage response is rarely studied. Here, we report that loss of G9a impairs DNA damage repair and enhances the sensitivity of cancer cells to radiation and chemotherapeutics. In response to DNA double-strand breaks (DSBs), G9a is phosphorylated at serine 211 by casein kinase 2 (CK2) and recruited to chromatin. The chromatin-enriched G9a can then directly interact with replication protein A (RPA) and promote loading of the RPA and Rad51 recombinase to DSBs. This mechanism facilitates homologous recombination (HR) and cell survival. We confirmed the interaction between RPA and G9a to be critical for RPA foci formation and HR upon DNA damage. Collectively, our findings demonstrate a regulatory pathway based on CK2-G9a-RPA that permits HR in cancer cells and provide further rationale for the use of G9a inhibitors as a cancer therapeutic.


Subject(s)
Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Recombinational DNA Repair , Replication Protein A/metabolism , Casein Kinase II/metabolism , Cell Survival , DNA Breaks, Double-Stranded , HCT116 Cells , Humans , Rad51 Recombinase/metabolism
15.
Int J Mol Sci ; 21(13)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630273

ABSTRACT

Jasmonic acid (JA) plays a crucial role in various biological processes including development, signal transduction and stress response. Allene oxide synthase (AOS) catalyzing (13S)-hydroperoxyoctadecatrienoic acid (13-HPOT) to an unstable allene oxide is involved in the first step of JA biosynthesis. Here, we isolated the PtAOS1 gene and its promoter from trifoliate orange (Poncirus trifoliata). PtAOS1 contains a putative chloroplast targeting sequence in N-terminal and shows relative to pistachio (Pistacia vera) AOS. A number of stress-, light- and hormone-related cis-elements were found in the PtAOS1 promoter which may be responsible for the up-regulation of PtAOS1 under drought and JA treatments. Transient expression in tobacco (Nicotiana benthamiana) demonstrated that the P-532 (-532 to +1) fragment conferring drive activity was a core region in the PtAOS1 promoter. Using yeast one-hybrid, three novel proteins, PtDUF886, PtDUF1685 and PtRAP2.4, binding to P-532 were identified. The dual luciferase assay in tobacco illustrated that all three transcription factors could enhance PtAOS1 promoter activity. Genes PtDUF1685 and PtRAP2.4 shared an expression pattern which was induced significantly by drought stress. These findings should be available evidence for trifoliate orange responding to drought through JA modulation.


Subject(s)
Intramolecular Oxidoreductases/genetics , Poncirus/genetics , Stress, Physiological/genetics , Chloroplasts/metabolism , Cyclopentanes/metabolism , Droughts , Gene Expression Regulation, Plant/genetics , Intramolecular Oxidoreductases/metabolism , Oxylipins/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Poncirus/metabolism , Promoter Regions, Genetic/genetics , Reactive Oxygen Species/metabolism , Transcription Factors/metabolism
16.
J Biomed Inform ; 93: 103153, 2019 05.
Article in English | MEDLINE | ID: mdl-30910623

ABSTRACT

Wearable activity trackers (WAT) are electronic monitoring devices that enable users to track and monitor their health-related physical fitness metrics including steps taken, level of activity, walking distance, heart rate, and sleep patterns. Despite the proliferation of these devices in various contexts of use and rising research interests, there is limited understanding of the broad research landscape. The purpose of this systematic review is therefore to synthesize the existing wealth of research on WAT, and to provide a comprehensive summary based on common themes and approaches. This article includes academic work published between 2013 and 2017 in PubMed, Embase, Scopus, Web of Science, ACM Digital Library, and Google Scholar. A final list of 463 articles was analyzed for this review. Topic modeling methods were used to identify six key themes (topics) of WAT research, namely: (1) Technology Focus, (2) Patient Treatment and Medical Settings, (3) Behavior Change, (4) Acceptance and Adoption (Abandonment), (5) Self-monitoring Data Centered, and (6) Privacy. We take an interdisciplinary approach to wearable activity trackers to propose several new research questions. The most important research gap we identify is to attempt to understand the rich human-information interaction that is enabled by WAT adoption.


Subject(s)
Diffusion of Innovation , Fitness Trackers , Patient Acceptance of Health Care , Adult , Humans
17.
J Biol Chem ; 292(32): 13296-13311, 2017 08 11.
Article in English | MEDLINE | ID: mdl-28655758

ABSTRACT

Sirtuin 7 (SIRT7), a member of the NAD+-dependent class III histone deacetylases, is involved in the regulation of various cellular processes and in resisting various stresses, such as hypoxia, low glucose levels, and DNA damage. Interestingly, SIRT7 is linked to the control of glycolysis, suggesting a role in glucose metabolism. Given the important roles of SIRT7, it is critical to clarify how SIRT7 activity is potentially regulated. It has been reported that some transcriptional and post-transcriptional regulatory mechanisms are involved. However, little is known how SIRT7 is regulated by the post-translational modifications. Here, we identified ubiquitin-specific peptidase 7 (USP7), a deubiquitinase, as a negative regulator of SIRT7. We showed that USP7 interacts with SIRT7 both in vitro and in vivo, and we further demonstrated that SIRT7 undergoes endogenous Lys-63-linked polyubiquitination, which is removed by USP7. Although the USP7-mediated deubiquitination of SIRT7 had no effect on its stability, the deubiquitination repressed its enzymatic activity. We also showed that USP7 coordinates with SIRT7 to regulate the expression of glucose-6-phosphatase catalytic subunit (G6PC), a gluconeogenic gene. USP7 depletion by RNA interference increased both G6PC expression and SIRT7 enzymatic activity. Moreover, SIRT7 targeted the G6PC promoter through the transcription factor ELK4 but not through forkhead box O1 (FoxO1). In summary, SIRT7 is a USP7 substrate and has a novel role as a regulator of gluconeogenesis. Our study may provide the basis for new clinical approaches to treat metabolic disorders related to glucose metabolism.


Subject(s)
Gene Expression Regulation, Enzymologic , Glucose-6-Phosphatase/metabolism , Promoter Regions, Genetic , Protein Processing, Post-Translational , Sirtuins/metabolism , Ubiquitin Thiolesterase/metabolism , ets-Domain Protein Elk-4/metabolism , Amino Acid Substitution , Cell Line, Tumor , Gene Deletion , Gluconeogenesis , Glucose-6-Phosphatase/antagonists & inhibitors , Glucose-6-Phosphatase/genetics , HEK293 Cells , Humans , Hydrolysis , Lysine/metabolism , Mutation , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Interaction Domains and Motifs , Protein Subunits/genetics , Protein Subunits/metabolism , RNA Interference , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Sirtuins/antagonists & inhibitors , Sirtuins/genetics , Substrate Specificity , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/genetics , Ubiquitin-Specific Peptidase 7 , Ubiquitination , ets-Domain Protein Elk-4/genetics
18.
FASEB J ; 29(10): 4313-23, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26116705

ABSTRACT

ß-Catenin, which is a key mediator of the wingless-integration site (Wnt)/ß-catenin signaling pathway, plays an important role in cell proliferation, cell fate determination, and tumorigenesis, by regulating the expression of a wide range of target genes. Although a variety of posttranslational modifications are involved in ß-catenin activity, the role of lysine methylation in ß-catenin activity is largely unknown. In this study, su(var)3-9, enhancer-of-zeste, trithorax (SET) domain-containing protein 7 (SET7/9), a lysine methyltransferase, interacted with and methylated ß-catenin, as demonstrated both in vitro and in vivo. The interaction and methylation were significantly enhanced in response to H2O2 stimulation. A mutagenesis assay and mass spectrometric analyses revealed that ß-catenin was monomethylated by SET7/9 at lysine residue 180. Methylated ß-catenin was easily recognized by phosphokinase glycogen synthase kinase (GSK)-3ß for degradation. Consistent with this finding, the mutated ß-catenin (K180R) that cannot be methylated exhibited a longer half-life than did the methylated ß-catenin. The consequent depletion of SET7/9 by shRNA or the mutation of the ß-catenin (K180R) significantly enhanced the expression of Wnt/ß-catenin target genes such as c-myc and cyclin D1 and promoted the growth of cancer cells. Together, these results provide a novel mechanism by which Wnt/ß-catenin signaling is regulated in response to oxidative stress.


Subject(s)
Cell Proliferation , Histone-Lysine N-Methyltransferase/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism , Berberine/pharmacology , Blotting, Western , Cyclin D1/metabolism , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , HCT116 Cells , HEK293 Cells , HeLa Cells , Histone-Lysine N-Methyltransferase/genetics , Humans , Hydrogen Peroxide/pharmacology , Methylation/drug effects , Mutation , Oxidants/pharmacology , Protein Binding/drug effects , Protein Stability , Proto-Oncogene Proteins c-myc/metabolism , RNA Interference , beta Catenin/genetics
19.
Physiol Plant ; 158(4): 463-482, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27507765

ABSTRACT

Citrate, the predominant organic acid in citrus, determines the taste of these fruits. However, little is known about the synergic molecular processes regulating citrate accumulation. Using 'Dahongtiancheng' (Citrus sinensis) and 'Bingtangcheng' (C. sinensis) with significant difference in citrate, the objectives of this study were to understand the global mechanisms of high-citrate accumulation in sweet orange. 'Dahongtiancheng' and 'Bingtangcheng' exhibit significantly different patterns in citrate accumulation throughout fruit development, with the largest differences observed at 50-70 days after full bloom (DAFB). Comparative transcriptome profiling was performed for the endocarps of both cultivars at 50 and 70 DAFB. Over 34.5 million clean reads per library were successfully mapped to the reference database and 670-2630 differentially expressed genes (DEGs) were found in four libraries. Among the genes, five transcription factors were ascertained to be the candidates regulating citrate accumulation. Functional assignments of the DEGs indicated that photosynthesis, the citrate cycle and amino acid metabolism were significantly altered in 'Dahongtiancheng'. Physiological and molecular analyses suggested that high photosynthetic efficiency and partial impairment of citrate catabolism were crucial for the high-citrate trait, and amino acid biosynthesis was one of the important directions for citrate flux. The results reveal a global insight into the gene expression changes in a high-citrate compared with a low-citrate sweet orange. High accumulating efficiency and impaired degradation of citrate may be associated with the high-citrate trait of 'Dahongtiancheng'. Findings in this study increase understanding of the molecular processes regulating citrate accumulation in sweet orange.


Subject(s)
Citric Acid/metabolism , Citrus sinensis/physiology , Citrus sinensis/metabolism , Fruit/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/physiology , Genes, Plant/physiology , Transcription Factors/physiology
20.
Proc Natl Acad Sci U S A ; 110(14): 5516-21, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23509280

ABSTRACT

Suppressor of variegation 3-9 homolog 1 (SUV39H1), a histone methyltransferase, catalyzes histone 3 lysine 9 trimethylation and is involved in heterochromatin organization and genome stability. However, the mechanism for regulation of the enzymatic activity of SUV39H1 in cancer cells is not yet well known. In this study, we identified SET domain-containing protein 7 (SET7/9), a protein methyltransferase, as a unique regulator of SUV39H1 activity. In response to treatment with adriamycin, a DNA damage inducer, SET7/9 interacted with SUV39H1 in vivo, and a GST pull-down assay confirmed that the chromodomain-containing region of SUV39H1 bound to SET7/9. Western blot using antibodies specific for antimethylated SUV39H1 and mass spectrometry demonstrated that SUV39H1 was specifically methylated at lysines 105 and 123 by SET7/9. Although the half-life and localization of methylated SUV39H1 were not noticeably changed, the methyltransferase activity of SUV39H1 was dramatically down-regulated when SUV39H1 was methylated by SET7/9. Consequently, H3K9 trimethylation in the heterochromatin decreased significantly, which, in turn, led to a significant increase in the expression of satellite 2 (Sat2) and α-satellite (α-Sat), indicators of heterochromatin relaxation. Furthermore, a micrococcal nuclease sensitivity assay and an immunofluorescence assay demonstrated that methylation of SUV39H1 facilitated genome instability and ultimately inhibited cell proliferation. Together, our data reveal a unique interplay between SET7/9 and SUV39H1--two histone methyltransferases--that results in heterochromatin relaxation and genome instability in response to DNA damage in cancer cells.


Subject(s)
DNA Methylation/genetics , Genomic Instability/physiology , Heterochromatin/physiology , Histone-Lysine N-Methyltransferase/metabolism , Methyltransferases/metabolism , Repressor Proteins/metabolism , Chromatin Immunoprecipitation , DNA Primers/genetics , Fluorescent Antibody Technique , Humans , Immunoprecipitation , In Situ Hybridization, Fluorescence , Luciferases , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL