Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Nano Lett ; 22(10): 4215-4222, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35575461

ABSTRACT

We demonstrate two-photon-excited single-molecule fluorescence enhancement by single end-to-end self-assembled gold nanorod dimers. We employed biotinylated streptavidin as the molecular linker, which connected two gold nanorods in end-to-end fashion. The typical size of streptavidin of around 5 nm separates the gold nanorods with gaps suitable for the access of fresh dyes in aqueous solution, yet small enough to give very high two-photon fluorescence enhancement. Simulations show that enhancements of more than 7 orders of magnitude can be achieved for two-photon-excited fluorescence in the plasmonic hot spots. With such high enhancements, we successfully detect two-photon-excited fluorescence for a common organic dye (ATTO 610) at the single-molecule, single-nanoparticle level.


Subject(s)
Gold , Nanotubes , Fluorescence , Nanotechnology , Streptavidin
2.
J Environ Manage ; 301: 113840, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34607138

ABSTRACT

This study investigated the long-term leachability of antimony (Sb) in a smelting residue (39519 mg/kg) solidified/stabilized by reactive magnesia (MgO). Different dosages of MgO (0% as control, 2%, 5%, and 10% on a dry basis) were compared, and the long-term performance was evaluated by an accelerated exposure test consist of 20 consecutive leaching steps with simulated strong acid rain (SAR, HNO3: H2SO4 = 1:2, pH = 3.20) as the extractant. Notably, the MgO treatments efficiently reduced the Sb leachability. Compared to the original slag (8.3 mg/L), the leaching concentrations based on a Chinese standard HJ/T299-2007 were reduced by 58%, 79%, 85%, and 86% at MgO dosages of 0%, 2%, 5%, and 10%, respectively. Because the studied slag was rich in oxides like SiO2, CaO, and MgO, the hydration reactions probably happened during the aging processes with oxic water. It was inferred that the formed hydration products have a self-solidification/stabilization function to suppress the Sb leaching from the solid phase. The mineralogical characterization results proved that the hydrated Mg(OH)2 played an essential role in the decrease of Sb leachability. Besides, the MgO addition promoted the hydration of this smelting slag and formed new hydrate gels that immobilize Sb in this slag. Our results confirmed that MgO-amended slags were resistant to continuous SAR corrosion. Compared to the control, the dosage of 5% MgO could effectively reduce the cumulatively released Sb by 57%, with only 0.46% of total Sb could be leached. The decomposition of Mg(OH)2 and hydrate gels determined the re-release of Sb in a long term. Our work has demonstrated that reactive MgO amendment could be potentially selected as an effective strategy for the treatment of Sb-containing smelting residues in field conditions.


Subject(s)
Acid Rain , Antimony , Magnesium Oxide , Silicon Dioxide
3.
Nanotechnology ; 31(29): 295601, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32217813

ABSTRACT

Self-assembly of metal nanocrystals is able to create a gap of sub-nanometer distance for concentrating incoming light by the strong coupling of surface plasmon resonance, known as a 'hot spot'. Although the plasmonic property of silver is better than other metals in the visible range, the superior Raman enhancement of silver compared to gold is still under debate. To provide direct evidence, in this work, we studied the silver adsorption on assembled gold nanorods (AuNRs) using in situ surface-enhanced Raman scattering (SERS) measurements. The self-assembled AuNR multimers were used as the SERS substrate, where the 4-mercaptophenol (MPh) molecules in our experiment played dual roles as both probe molecules for the Raman scattering and linking molecules for the AuNR assembly in a basic environment. Silver atoms were adsorbed on the surface of gold nanorod assemblies by reduction of Ag+ anions. The stability of the adsorbed silver was guaranteed by the basic environment. We monitored the SERS signal during the silver adsorption with a home-built in situ Raman spectroscope, which was synchronized by recording the UV-vis absorption spectra of the reaction solution to instantly quantify the plasmonic effect of the silver adsorption. Although a minor change was found in the plasmonic resonance wavelength or intensity, the measured SERS signal at specific modes faced a sudden increase by 2.1 folds during the silver adsorption. The finite element method (FEM) simulation confirmed that the silver adsorption corresponding to the plasmonic resonance variation gave little change to the electric field enhancement. We attributed the mode-specific enhancement mechanism of the adsorption of silver to the chemical enhancement from charge transfer (CT) for targeting molecules with a specific orientation. Our findings provided new insights to construct SERS substrates with higher enhancement factor (EF), which hopefully would encourage new applications in the field of surface-enhanced optical spectroscopies.

4.
Phys Chem Chem Phys ; 20(31): 20468-20475, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30043814

ABSTRACT

Fluorescence enhancement by plasmonic nanostructures enables the optical detection of single molecules with weak fluorescence, extending the scope of molecular fluorescence imaging to new materials and systems. In this work, we study single-molecule fluorescence enhancement by individual gold nanorods exploiting a DNA-based transient binding technique. Single molecules are attached to short DNA oligomers that can reversibly hybridize to their complementary docking DNA strands immobilized on the surface of gold nanorods or the glass substrate next to gold nanorods. This method continuously refreshes the single molecule in the near field of the gold nanorod, and enables a study of fluorescence enhancement at a well-defined position, with long dwell time and without limitation by photobleaching. Docking strands attached to the glass substrate are found to be more photo-stable. We find over 3000-fold fluorescence enhancement of single molecules of IRDye800CW, a near-infrared dye with a low quantum yield of 7%. This strong enhancement, consistent with numerical simulations, arises from the combined effect of local field enhancement and the competition between radiative and nonradiative decay rate enhancements.


Subject(s)
DNA/chemistry , Fluorescent Dyes/chemistry , Gold/chemistry , Nanotubes/chemistry , Binding Sites , DNA/metabolism , Immobilized Nucleic Acids/chemistry , Immobilized Nucleic Acids/metabolism , Microscopy, Confocal , Molecular Docking Simulation , Nucleic Acid Conformation , Spectroscopy, Near-Infrared
5.
J Am Chem Soc ; 138(6): 1764-7, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26824749

ABSTRACT

Precise control over surface functionalities of nanomaterials offers great opportunities for fabricating complex functional nanoarchitectures but still remains challenging. In this work, we successfully developed a novel strategy to modify a gold nanorod (AuNR) with specific surface recognition sites using a DNA origami clamp. AuNRs were encapsulated by the DNA origami through hybridization of single-stranded DNA on the AuNRs and complementary capture strands inside the clamp. Another set of capture strands on the outside of the clamp create the specific recognition sites on the AuNR surface. By means of this strategy, AuNRs were site-specifically modified with gold nanoparticles at the top, middle, and bottom of the surface, respectively, to construct a series of well-defined heterostructures with controlled "chemical valence". Our study greatly expands the utility of DNA origami as a tool for building complex nanoarchitectures and represents a new approach for precise tailoring of nanomaterial surfaces.


Subject(s)
DNA, Single-Stranded/chemistry , Gold/chemistry , Nanotubes/chemistry , Microscopy, Electron, Transmission , Nucleic Acid Hybridization , Surface Properties
6.
Small ; 12(36): 5081-5089, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27159087

ABSTRACT

Surface modifications of plasmonic nanoparticles with metal adsorbates are essential in applications such as plasmonic sensing, plasmon-enhanced photocatalysis, etc., where spectral broadening is usually observed. A single particle study is presented on plasmon damping by adsorption of platinum (Pt) clusters. Single particle dark-field spectroscopy is employed to measure exactly the same gold nanorod before and after the Pt adsorption. The Pt-induced plasmon damping in terms of linewidth increase is found dependent on the resonance wavelength of the measured nanorod, which is dispersive in nature. The measured dispersion generally matches the theoretical prediction, and it basically exhibits a gradual increase with decreasing resonance energy. This increase can be attributed to the fact that the nanorod as a better resonator is more susceptible to the Pt adsorption than the spherical particles. Moreover, simulated results based on discrete dipole approximation method further indicate that the damping is mainly contributed from the adsorbates on the ends of the nanorod and independent on the type of the metal adsorbed. Knowledge and insights gained in this study can be very important for the design and fabrication of plasmonic heterostructures as functional nanomaterials.

7.
J Am Chem Soc ; 137(1): 457-62, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25516475

ABSTRACT

A great challenge for nanotechnology is to controllably organize anisotropic nanomaterials into well-defined three-dimensional superstructures with customized properties. Here we successfully constructed anisotropic Au nanorod (AuNR) helical superstructures (helices) with tailored chirality in a programmable manner. By designing the 'X' pattern of the arrangement of DNA capturing strands (15nt) on both sides of a two-dimensional DNA origami template, AuNRs functionalized with the complementary DNA sequences were positioned on the origami and were assembled into AuNR helices with the origami intercalated between neighboring AuNRs. Left-handed (LH) and right-handed (RH) AuNR helices were conveniently accomplished by solely tuning the mirrored-symmetric 'X' patterns of capturing strands on the origami. The inter-rod distance was precisely defined as 14 nm and inter-rod angle as 45°, thus a full helix contains 9 AuNRs with its length up to about 220 nm. By changing the AuNR/origami molar ratio in the assembly system, the average number of AuNR in the helices was tuned from 2 to 4 and 9. Intense chiroptical activities arose from the longest AuNR helices with a maximum anisotropy factor of ∼0.02, which is highly comparable to the reported macroscopic AuNR assemblies. We expect that our strategy of origami templated assembly of anisotropic chiral superstructures would inspire the bottom-up fabrication of optically active nanostructures and shed light on a variety of applications, such as chiral fluids, chiral signal amplification, and fluorescence combined chiral spectroscopy.


Subject(s)
DNA/chemistry , Gold/chemistry , Nanotubes/chemistry , Molecular Structure , Stereoisomerism
8.
J Am Chem Soc ; 135(31): 11441-4, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23879265

ABSTRACT

Discrete three-dimensional (3D) plasmonic nanoarchitectures with well-defined spatial configuration and geometry have aroused increasing interest, as new optical properties may originate from plasmon resonance coupling within the nanoarchitectures. Although spherical building blocks have been successfully employed in constructing 3D plasmonic nanoarchitectures because their isotropic nature facilitates unoriented localization, it still remains challenging to assemble anisotropic building blocks into discrete and rationally tailored 3D plasmonic nanoarchitectures. Here we report the first example of discrete 3D anisotropic gold nanorod (AuNR) dimer nanoarchitectures formed using bifacial DNA origami as a template, in which the 3D spatial configuration is precisely tuned by rationally shifting the location of AuNRs on the origami template. A distinct plasmonic chiral response was experimentally observed from the discrete 3D AuNR dimer nanoarchitectures and appeared in a spatial-configuration-dependent manner. This study represents great progress in the fabrication of 3D plasmonic nanoarchitectures with tailored optical chirality.


Subject(s)
DNA/chemistry , Gold/chemistry , Nanotubes/chemistry , Anisotropy , Circular Dichroism , Dimerization , Nanotechnology , Nanotubes/ultrastructure
9.
RSC Adv ; 12(21): 13464-13471, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35527728

ABSTRACT

End-to-end gold nanorod dimers provide unique plasmonic hotspots with extremely large near-field enhancements in the gaps. Thereby they are beneficial in a wide range of applications, such as enhancing the emissions from ultra-weak emitters. For practical purposes, synthesis of gold nanorod dimers with high yield, especially on the substrates, is essential. Here, we demonstrate two controllable strategies to synthesize gold nanorod dimers based on the self-assembly of gold nanorods, either in bulk solution or on the surface of a glass substrate directly. Both methods can give a high yield of gold nanorod dimers, yet, assembling them directly on the substrate provides more flexibility in controlling the shape and size of each nanorod within the dimer. We also show that these gold nanorod dimers can be used to enhance two-photon-excited fluorescence signals at the single-molecule level.

10.
Chemosphere ; 291(Pt 1): 132699, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34710457

ABSTRACT

This study investigated the long-term leachability of antimony (Sb) in a smelting residue immobilized by three commercial micro-sized zero-valent iron (ZVI) products. Effect of oxic incubation time (14 days and 120 days) on the immobilization efficiency of Sb were compared, and the long-term leaching risk was evaluated by an accelerated exposure test, in which the slag was consecutively extracted by simulated strong acid rain (SSAR, HNO3: H2SO4 = 1:2, pH = 3.20). Notably, all ZVI treatments efficiently immobilized the Sb in this slag in a short term (14 days); the one-step SSAR-leached Sb was reduced by 89%-91% compared to the original slag (5.9 mg/L) and was far below the environmental standard (0.6 mg/L) established by the US EPA. The sequential SSAR leaching results reflected that the 14-d incubated slags after ZVI treatments had strong H+ resistance, and the immobilized Sb was not easily activated by continuous SSAR corrosion. The binding of Sb with amorphous phase Fe oxyhydroxides (e.g. ferrihydrite) derived from ZVI corrosion played a dominant role in the Sb immobilization efficiency. However, the longer aging process (120 days) easily resulted in the reduction of Sb immobilization by ZVI treatments. The changes in crystallinity of Fe oxyhydroxides (transformation from poorly-crystalline to crystalline ones) and the pH elevation to alkaline range might explain the weakening of the immobilization of Sb in ZVI-amended slags with 120 days of incubation. In total, the effectiveness of Sb immobilization in smelting residue greatly depended on the type of ZVI and the aging process. Our work has demonstrated that the ZVI treatment was potentially feasible to mitigate the Sb leaching risk from smelting slags; however, the ZVI type needs to be carefully selected and its long-term performance should be adequately verified before practical application.


Subject(s)
Acid Rain , Antimony , Corrosion , Iron/analysis
11.
Nat Commun ; 13(1): 3330, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35680880

ABSTRACT

Sensitive detection of local acoustic vibrations at the nanometer scale has promising potential applications involving miniaturized devices in many areas, such as geological exploration, military reconnaissance, and ultrasound imaging. However, sensitive detection of weak acoustic signals with high spatial resolution at room temperature has become a major challenge. Here, we report a nanometer-scale system for acoustic detection with a single molecule as a probe based on minute variations of its distance to the surface of a plasmonic gold nanorod. This system can extract the frequency and amplitude of acoustic vibrations with experimental and theoretical sensitivities of 10 pm Hz-1/2 and 10 fm Hz-1/2, respectively. This approach provides a strategy for the optical detection of acoustic waves based on molecular spectroscopy without electromagnetic interference. Moreover, such a small nano-acoustic detector with 40-nm size can be employed to monitor acoustic vibrations or read out the quantum states of nanomechanical devices.


Subject(s)
Surface Plasmon Resonance , Vibration , Acoustics , Nanotechnology/methods , Surface Plasmon Resonance/methods , Temperature
12.
ACS Photonics ; 5(7): 2960-2968, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-30057930

ABSTRACT

Plasmonic enhancement of two-photon-excited fluorescence is not only of fundamental interest but also appealing for many bioimaging and photonic applications. The high peak intensity required for two-photon excitation may cause shape changes in plasmonic nanostructures, as well as transient plasmon broadening. Yet, in this work, we report on strong enhancement of the two-photon-excited photoluminescence of single colloidal quantum dots close to isolated chemically synthesized gold nanorods. Upon resonant excitation of the localized surface plasmon resonance, a gold nanorod can enhance the photoluminescence of a single quantum dot more than 10 000-fold. This strong enhancement arises from the combined effect of local field amplification and the competition between radiative and nonradiative decay rate enhancements, as is confirmed by time-resolved fluorescence measurements and numerical simulations.

13.
Nanomicro Lett ; 9(1): 5, 2017.
Article in English | MEDLINE | ID: mdl-30460302

ABSTRACT

ABSTRACT: Biosynthesis of gold nanostructures has drawn increasing concerns because of its green and sustainable synthetic process. However, biosynthesis of gold nanoplates is still a challenge because of the expensive source and difficulties of controllable formation of morphology and size. Herein, one-pot biosynthesis of gold nanoplates is proposed, in which cheap yeast was extracted as a green precursor. The morphologies and sizes of the gold nanostructures can be controlled via varying the pH value of the biomedium. In acid condition, gold nanoplates with side length from 1300 ± 200 to 300 ± 100 nm and height from 18 to 15 nm were obtained by increasing the pH value. Whereas, in neutral or basic condition, only gold nanoflowers and nanoparticles were obtained. It was determined that organic molecules, such as succinic acid, lactic acid, malic acid, and glutathione, which are generated in metabolism process, played important role in the reduction of gold ions. Besides, it was found that the gold nanoplates exhibited plasmonic property with prominent dipole infrared resonance in near-infrared region, indicating their potential in surface plasmon-enhanced applications, such as bioimaging and photothermal therapy.

14.
Nanoscale ; 8(10): 5417-21, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26585611

ABSTRACT

We demonstrate a CTAB-templated approach towards direct coating of mesoporous titania on gold nanorods in aqueous solutions. The formation of the mesoporous shell is found to be closely correlated with CTAB concentration and the amount of the titania precursor. This approach can be readily extended to form mesoporous titania shells on other CTAB-capped nanoparticles.

15.
Chem Commun (Camb) ; 51(71): 13627-9, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26229996

ABSTRACT

A series of 3D AuNR dimers and trimers were fabricated under the guidance of DNA origami. By tuning the size, number and spatial configuration of AuNRs, their structural and componential asymmetries were rationally designed. Circular dichroism measurements showed that the resultant plasmonic chiroptical activities of these nanorod assemblies can be precisely tailored.


Subject(s)
DNA/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Circular Dichroism , Dimerization , Microscopy, Electron, Transmission
16.
Nanoscale ; 6(23): 14244-53, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25307740

ABSTRACT

Circular dichroism (CD) studies on single nanostructures can yield novel insights into chiroptical physics that are not available from traditional ensemble-based measurements, yet they are challenging because of their weak signals. By introducing an oblique excitation beam, we demonstrate the observation and spectroscopic analysis of a prominent plasmonic chiroptical response from a single v-shaped gold nanorod dimer nanostructure. We show that circular differential scattering from the obliquely excited gold nanorod dimer yields a characteristic bisignate peak-dip spectral shape at hybridized energies of the dimer. This chiroptical response can be ascribed to extrinsic chirality which depends on the geometry configurations of the chiral arrangement. Due to strong near-field coupling, the dipole orientations of the hybridized resonance modes can be in favor of the incident circularly polarized light where a maximum g-factor of ∼0.4 is observed. Promising applications of this chiroptical arrangement as a key component can be in electronics, photonics, or metamaterials.

17.
Nanomicro Lett ; 6(4): 372-380, 2014.
Article in English | MEDLINE | ID: mdl-30464949

ABSTRACT

Through wet-chemical assembly methods, gold nanorods were placed close to each other and formed a dimer with a gap distance ~1 nm, and hence degenerated plasmonic dipole modes of individual nanorods coupled together to produce hybridized bonding and antibonding resonance modes. Previous studies using a condenser for illumination result in averaged signals over all excitation angles. By exciting an individual dimer obliquely at different angles, we demonstrate that these two new resonance modes are highly tunable and sensitive to the angle between the excitation polarization and the dimer orientation, which follows cos2 φ dependence. Moreover, for dimer structures with various structure angles, the resonance wavelengths as well as the refractive index sensitivities were found independent of the structure angle. Calculated angle-resolved plasmonic properties are in good agreement with the measurements. The assembled nanostructures investigated here are important for fundamental researches as well as potential applications when they are used as building blocks in plasmon-based optical and optoelectronic devices.

18.
ACS Appl Mater Interfaces ; 6(8): 5388-92, 2014 Apr 23.
Article in English | MEDLINE | ID: mdl-24716524

ABSTRACT

Discrete, three-dimensional (3D) gold nanoparticle (AuNP) tetrahedron nanoarchitectures are successfully self-assembled with DNA origami as template with high purity (>85%). A distinct plasmonic chiral response is experimentally observed from the AuNP tetrahedron nanoarchitectures and appears in a configuration-dependent manner. The chiral optical properties are then rationally engineered by modifying the structural parameters including the AuNP size and interparticle distance. Theoretical study of the AuNP tetrahedron nanoarchitectures shows the dependence of the chiral optical property on the AuNP size and interparticle distance, consistent with the ensemble averaged measurements.


Subject(s)
DNA/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Circular Dichroism/instrumentation , Light
19.
Nat Commun ; 5: 3313, 2014.
Article in English | MEDLINE | ID: mdl-24531189

ABSTRACT

Hydrogels are generally thought to be formed by nano- to micrometre-scale fibres or polymer chains, either physically branched or entangled with each other to trap water. Although there are also anisotropic hydrogels with apparently ordered structures, they are essentially polymer fibre/discrete polymer chains-based network without exception. Here we present a type of polymer-free anisotropic lamellar hydrogels composed of 100-nm-thick water layers sandwiched by two bilayer membranes of a self-assembled nonionic surfactant, hexadecylglyceryl maleate. The hydrogels appear iridescent as a result of Bragg's reflection of visible light from the periodic lamellar plane. The particular lamellar hydrogel with extremely wide water spacing was used as a soft two-dimensional template to synthesize single-crystalline nanosheets in the confined two-dimensional space. As a consequence, flexible, ultrathin and large area single-crystalline gold membranes with atomically flat surface were produced in the hydrogel. The optical and electrical properties were detected on a single gold membrane.

20.
ACS Appl Mater Interfaces ; 5(21): 10423-7, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24116932

ABSTRACT

Gold nanodimers (GNDs) are assembled with high uniformity as ideal surface-enhanced Raman scattering (SERS) substrates through DNA-directed self-assembly of gold nanoparticles. The interparticle distance within GNDs is precisely tailored on the order of a few nanometers with changing the molecule length of DNA bridge. The ensemble SERS activity of monodispersed GNDs is then rationally engineered by modifying the structural parameters of GNDs including the particle size and interparticle distance. Theoretical studies on the level of single GND evidence the particle size- and interparticle-distance-dependent SERS effects, consistent with the ensemble averaged measurements.


Subject(s)
DNA/chemistry , Gold/chemistry , Nanoparticles/chemistry , Models, Theoretical , Particle Size , Spectrum Analysis, Raman , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL