Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 773
Filter
Add more filters

Publication year range
1.
Genome Res ; 34(1): 145-159, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38290977

ABSTRACT

Hundreds of inbred mouse strains and intercross populations have been used to characterize the function of genetic variants that contribute to disease. Thousands of disease-relevant traits have been characterized in mice and made publicly available. New strains and populations including consomics, the collaborative cross, expanded BXD, and inbred wild-derived strains add to existing complex disease mouse models, mapping populations, and sensitized backgrounds for engineered mutations. The genome sequences of inbred strains, along with dense genotypes from others, enable integrated analysis of trait-variant associations across populations, but these analyses are hampered by the sparsity of genotypes available. Moreover, the data are not readily interoperable with other resources. To address these limitations, we created a uniformly dense variant resource by harmonizing multiple data sets. Missing genotypes were imputed using the Viterbi algorithm with a data-driven technique that incorporates local phylogenetic information, an approach that is extendable to other model organisms. The result is a web- and programmatically accessible data service called GenomeMUSter, comprising single-nucleotide variants covering 657 strains at 106.8 million segregating sites. Interoperation with phenotype databases, analytic tools, and other resources enable a wealth of applications, including multitrait, multipopulation meta-analysis. We show this in cross-species comparisons of type 2 diabetes and substance use disorder meta-analyses, leveraging mouse data to characterize the likely role of human variant effects in disease. Other applications include refinement of mapped loci and prioritization of strain backgrounds for disease modeling to further unlock extant mouse diversity for genetic and genomic studies in health and disease.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Mice , Animals , Phylogeny , Genotype , Mice, Inbred Strains , Phenotype , Mutation , Genetic Variation
2.
Genome Res ; 34(2): 310-325, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38479837

ABSTRACT

In diploid mammals, allele-specific three-dimensional (3D) genome architecture may lead to imbalanced gene expression. Through ultradeep in situ Hi-C sequencing of three representative somatic tissues (liver, skeletal muscle, and brain) from hybrid pigs generated by reciprocal crosses of phenotypically and physiologically divergent Berkshire and Tibetan pigs, we uncover extensive chromatin reorganization between homologous chromosomes across multiple scales. Haplotype-based interrogation of multi-omic data revealed the tissue dependence of 3D chromatin conformation, suggesting that parent-of-origin-specific conformation may drive gene imprinting. We quantify the effects of genetic variations and histone modifications on allelic differences of long-range promoter-enhancer contacts, which likely contribute to the phenotypic differences between the parental pig breeds. We also observe the fine structure of somatically paired homologous chromosomes in the pig genome, which has a functional implication genome-wide. This work illustrates how allele-specific chromatin architecture facilitates concomitant shifts in allele-biased gene expression, as well as the possible consequential phenotypic changes in mammals.


Subject(s)
Chromatin , Chromosomes , Animals , Swine/genetics , Chromatin/genetics , Haplotypes , Chromosomes/genetics , Genome , Mammals/genetics
3.
Trends Immunol ; 45(2): 81-84, 2024 02.
Article in English | MEDLINE | ID: mdl-38302341

ABSTRACT

SARS-CoV-2 is continuously evolving. The Omicron subvariant BA.2.86, with >30 mutations in its spike (S) protein compared with its predecessor strain BA.2, was expected to quickly become predominant worldwide, but this has not happened. Instead, its descendant strain, JN.1, with just one additional mutation, has become the predominant SARS-CoV-2 subvariant. Here, we offer a possible explanation for these unexpected consequences.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Mutation/genetics
4.
Proc Natl Acad Sci U S A ; 121(31): e2405744121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39047039

ABSTRACT

Multistable structures have widespread applications in the design of deployable aerospace systems, mechanical metamaterials, flexible electronics, and multimodal soft robotics due to their capability of shape reconfiguration between multiple stable states. Recently, the snap-folding of rings, often in the form of circles or polygons, has shown the capability of inducing diverse stable configurations. The natural curvature of the rod segment (curvature in its stress-free state) plays an important role in the elastic stability of these rings, determining the number and form of their stable configurations during folding. Here, we develop a general theoretical framework for the elastic stability analysis of segmented rings (e.g., polygons) based on an energy variational approach. Combining this framework with finite element simulations, we map out all planar stable configurations of various segmented rings and determine the natural curvature ranges of their multistable states. The theoretical and numerical results are validated through experiments, which demonstrate that a segmented ring with a rectangular cross-section can show up to six distinct planar stable states. The results also reveal that, by rationally designing the segment number and natural curvature of the segmented ring, its one- or multiloop configuration can store more strain energy than a circular ring of the same total length. We envision that the proposed strategy for achieving multistability in the current work will aid in the design of multifunctional, reconfigurable, and deployable structures.

5.
PLoS Pathog ; 20(1): e1011880, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38271294

ABSTRACT

BACKGROUND: West Nile virus (WNV) outbreaks in birds, humans, and livestock have occurred in multiple areas in Europe and have had a significant impact on animal and human health. The patterns of emergence and spread of WNV in Europe are very different from those in the US and understanding these are important for guiding preparedness activities. METHODS: We mapped the evolution and spread history of WNV in Europe by incorporating viral genome sequences and epidemiological data into phylodynamic models. Spatially explicit phylogeographic models were developed to explore the possible contribution of different drivers to viral dispersal direction and velocity. A "skygrid-GLM" approach was used to identify how changes in environments would predict viral genetic diversity variations over time. FINDINGS: Among the six lineages found in Europe, WNV-2a (a sub-lineage of WNV-2) has been predominant (accounting for 73% of all sequences obtained in Europe that have been shared in the public domain) and has spread to at least 14 countries. In the past two decades, WNV-2a has evolved into two major co-circulating clusters, both originating from Central Europe, but with distinct dynamic history and transmission patterns. WNV-2a spreads at a high dispersal velocity (88km/yr-215 km/yr) which is correlated to bird movements. Notably, amongst multiple drivers that could affect the spread of WNV, factors related to land use were found to strongly influence the spread of WNV. Specifically, the intensity of agricultural activities (defined by factors related to crops and livestock production, such as coverage of cropland, pasture, cultivated and managed vegetation, livestock density) were positively associated with both spread direction and velocity. In addition, WNV spread direction was associated with high coverage of wetlands and migratory bird flyways. CONCLUSION: Our results suggest that-in addition to ecological conditions favouring bird- and mosquito- presence-agricultural land use may be a significant driver of WNV emergence and spread. Our study also identified significant gaps in data and the need to strengthen virological surveillance in countries of Central Europe from where WNV outbreaks are likely seeded. Enhanced monitoring for early detection of further dispersal could be targeted to areas with high agricultural activities and habitats of migratory birds.


Subject(s)
West Nile Fever , West Nile virus , Animals , Humans , West Nile virus/genetics , West Nile Fever/epidemiology , West Nile Fever/veterinary , Phylogeography , Europe/epidemiology , Disease Outbreaks
6.
J Neurosci ; 44(26)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38777602

ABSTRACT

The striatum plays a central role in directing many complex behaviors ranging from motor control to action choice and reward learning. In our study, we used 55 male CFW mice with rapid decay linkage disequilibrium to systematically mine the striatum-related behavioral functional genes by analyzing their striatal transcriptomes and 79 measured behavioral phenotypic data. By constructing a gene coexpression network, we clustered the genes into 13 modules, with most of them being positively correlated with motor traits. Based on functional annotations as well as Fisher's exact and hypergeometric distribution tests, brown and magenta modules were identified as core modules. They were significantly enriched for striatal-related functional genes. Subsequent Mendelian randomization analysis verified the causal relationship between the core modules and dyskinesia. Through the intramodular gene connectivity analysis, Adcy5 and Kcnma1 were identified as brown and magenta module hub genes, respectively. Knock outs of both Adcy5 and Kcnma1 lead to motor dysfunction in mice, and KCNMA1 acts as a risk gene for schizophrenia and smoking addiction in humans. We also evaluated the cellular composition of each module and identified oligodendrocytes in the striatum to have a positive role in motor regulation.


Subject(s)
Adenylyl Cyclases , Corpus Striatum , Animals , Mice , Male , Corpus Striatum/metabolism , Corpus Striatum/physiology , Adenylyl Cyclases/genetics , Behavior, Animal/physiology , Gene Regulatory Networks/genetics , Transcriptome
7.
Mol Biol Evol ; 41(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38241079

ABSTRACT

Transmissibility, the ability to spread within host populations, is a prerequisite for a pathogen to have epidemic or pandemic potential. Here, we estimate the phylogenies of human infectivity and transmissibility using 1,408 genome sequences from 743 distinct RNA virus species/types in 59 genera. By repeating this analysis using data sets censored by virus discovery date, we explore how temporal changes in the known diversity of RNA viruses-especially recent increases in recognized nonhuman viruses-have altered these phylogenies. Over time, we find significant increases in the proportion of RNA virus genera estimated to have a nonhuman-infective ancestral state, in the fraction of distinct human virus lineages that are purely human-transmissible or strictly zoonotic (compared to mixed lineages), and in the number of human viruses with nearest relatives known not to infect humans. Our results are consistent with viruses that are capable of spreading in human populations commonly emerging from a nonhuman reservoir. This is more likely in lineages that already contain human-transmissible viruses but is rare in lineages that contain only strictly zoonotic viruses.


Subject(s)
Orthomyxoviridae Infections , RNA Viruses , Humans , Orthomyxoviridae Infections/epidemiology , RNA , RNA Viruses/genetics , Pandemics , Phylogeny
8.
J Virol ; 98(3): e0140123, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38358287

ABSTRACT

Since 2020, clade 2.3.4.4b highly pathogenic avian influenza H5N8 and H5N1 viruses have swept through continents, posing serious threats to the world. Through comprehensive analyses of epidemiological, genetic, and bird migration data, we found that the dominant genotype replacement of the H5N8 viruses in 2020 contributed to the H5N1 outbreak in the 2021/2022 wave. The 2020 outbreak of the H5N8 G1 genotype instead of the G0 genotype produced reassortment opportunities and led to the emergence of a new H5N1 virus with G1's HA and MP genes. Despite extensive reassortments in the 2021/2022 wave, the H5N1 virus retained the HA and MP genes, causing a significant outbreak in Europe and North America. Furtherly, through the wild bird migration flyways investigation, we found that the temporal-spatial coincidence between the outbreak of the H5N8 G1 virus and the bird autumn migration may have expanded the H5 viral spread, which may be one of the main drivers of the emergence of the 2020-2022 H5 panzootic.IMPORTANCESince 2020, highly pathogenic avian influenza (HPAI) H5 subtype variants of clade 2.3.4.4b have spread across continents, posing unprecedented threats globally. However, the factors promoting the genesis and spread of H5 HPAI viruses remain unclear. Here, we found that the spatiotemporal genotype replacement of H5N8 HPAI viruses contributed to the emergence of the H5N1 variant that caused the 2021/2022 panzootic, and the viral evolution in poultry of Egypt and surrounding area and autumn bird migration from the Russia-Kazakhstan region to Europe are important drivers of the emergence of the 2020-2022 H5 panzootic. These findings provide important targets for early warning and could help control the current and future HPAI epidemics.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza in Birds , Animals , Birds , Genotype , Influenza A virus/physiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/physiology , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/physiology , Influenza in Birds/epidemiology , Influenza in Birds/virology , Phylogeny , Poultry
9.
FASEB J ; 38(3): e23458, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38315453

ABSTRACT

Diabetic kidney disease (DKD), a major microvascular complication of diabetes, is characterized by its complex pathogenesis, high risk of chronic renal failure, and lack of effective diagnosis and treatment methods. GSK3ß (glycogen synthase kinase 3ß), a highly conserved threonine/serine kinase, was found to activate glycogen synthase. As a key molecule of the glucose metabolism pathway, GSK3ß participates in a variety of cellular activities and plays a pivotal role in multiple diseases. However, these effects are not only mediated by affecting glucose metabolism. This review elaborates on the role of GSK3ß in DKD and its damage mechanism in different intrinsic renal cells. GSK3ß is also a biomarker indicating the progression of DKD. Finally, the protective effects of GSK3ß inhibitors on DKD are also discussed.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Glycogen Synthase Kinase 3 beta , Humans , Diabetic Nephropathies/drug therapy , Glucose/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Kidney/metabolism
10.
Genomics ; 116(1): 110769, 2024 01.
Article in English | MEDLINE | ID: mdl-38141931

ABSTRACT

Estrogen receptor α (ESR1) is involved in E2 signaling and plays a major role in postmenopausal bone loss. However, the molecular network underlying ESR1 has not been explored. We used systems genetics and bioinformatics to identify important genes associated with Esr1 in postmenopausal bone loss. We identified ~2300 Esr1-coexpressed genes in female BXD bone femur, functional analysis of which revealed 'osteoblast signaling' as the most enriched pathway. PPI network led to the identification of 25 'female bone candidates'. The gene-regulatory analysis revealed RUNX2 as a key TF. ANKRD1 and RUNX2 were significantly different between osteoporosis patients and healthy controls. Sp7, Col1a1 and Pth1r correlated with multiple femur bone phenotypes in BXD mice. miR-3121-3p targeted Csf1, Ankrd1, Sp7 and Runx2. ß-estradiol treatment markedly increased the expression of these candidates in mouse osteoblast. Our study revealed that Esr1-correlated genes Ankrd1, Runx2, Csf1 and Sp7 may play important roles in female bone development.


Subject(s)
Osteoporosis, Postmenopausal , Osteoporosis , Humans , Female , Mice , Animals , Osteoporosis, Postmenopausal/genetics , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Bone and Bones/metabolism , Osteoporosis/genetics , Bone Development/genetics , Cell Differentiation
11.
Nano Lett ; 24(7): 2264-2272, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38324803

ABSTRACT

Developing general methods to fabricate water-dispersible and biocompatible fluorescent probes will promote different biological visualization applications. Herein, we report a metal-facilitated method to fabricate ultrabright green-emissive nanodots via the one-step solvothermal treatment of rose bengal, ethanol, and various metal ions. These metal-doped nanodots show good water dispersity, ultrahigh photoluminescence quantum yields (PLQYs) (e.g., the PLQY of Fe-doped nanodots (FeNDs) was ∼97%), and low phototoxicity. Owing to the coordination effect of metal ions, the FeNDs realize glutathione detection with outstanding properties. Benefiting from the high endoplasmic reticulum (ER) affinity of the chloride group, the FeNDs can act as an ER tracker with long ER imaging capacity (FeNDs: >24 h; commercial ER tracker: ∼1 h) and superb photostability and can achieve tissue visualization in living Caenorhabditis elegans. The metal-doped nanodots represent a general nanodot preparation method and may shed new light on diverse biological visualization uses.


Subject(s)
Quantum Dots , Carbon , Fluorescent Dyes , Ions , Water
12.
BMC Genomics ; 25(1): 681, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982349

ABSTRACT

Analyzing the genetic diversity and selection characteristics of sheep (Ovis aries) holds significant value in understanding their environmental adaptability, enhancing breeding efficiency, and achieving effective conservation and rational utilization of genetic resources. In this study, we utilized Illumina Ovine SNP 50 K BeadChip data from four indigenous sheep breeds from the southern margin of the Taklamakan Desert (Duolang sheep: n = 36, Hetian sheep: n = 74, Kunlun sheep: n = 27, Qira black sheep: n = 178) and three foreign meat sheep breeds (Poll Dorset sheep: n = 105, Suffolk sheep: n = 153, Texel sheep: n = 150) to investigate the population structure, genetic diversity, and genomic signals of positive selection within the indigenous sheep. According to the Principal component analysis (PCA), the Neighbor-Joining tree (NJ tree), and Admixture, we revealed distinct clustering patterns of these seven sheep breeds based on their geographical distribution. Then used Cross Population Extended Haplotype Homozygosity (XP-EHH), Fixation Index (FST), and Integrated Haplotype Score (iHS), we identified a collective set of 32 overlapping genes under positive selection across four indigenous sheep breeds. These genes are associated with wool follicle development and wool traits, desert environmental adaptability, disease resistance, reproduction, and high-altitude adaptability. This study reveals the population structure and genomic selection characteristics in the extreme desert environments of native sheep breeds from the southern edge of the Taklimakan Desert, providing new insights into the conservation and sustainable use of indigenous sheep genetic resources in extreme environments. Additionally, these findings offer valuable genetic resources for sheep and other mammals to adapt to global climate change.


Subject(s)
Desert Climate , Polymorphism, Single Nucleotide , Selection, Genetic , Animals , Sheep/genetics , Genetics, Population , Haplotypes , Genetic Variation , Breeding
13.
J Am Chem Soc ; 146(1): 84-88, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38157411

ABSTRACT

Alkali metal-based metal-organic frameworks (MOFs) with permanent porosity are scarce because of their high tendency to coordinate with solvents such as water. However, these MOFs are lightweight and bear gravimetric benefits for gas adsorption related applications. In this study, we present the successful construction of a microporous MOF, designated as HIAM-111, built solely on sodium ions by using an octacarboxylate linker. The structure of HIAM-111 is based on 8-connected Na4 clusters and exhibits a novel topology with an underlying 32,42,8-c net. Remarkably, HAM-111 possesses a robust and highly porous framework with a BET surface area of 1561 m2/g, significantly surpassing that of the previously reported Na-MOFs. Further investigations demonstrate that HIAM-111 is capable of separating C2H2/CO2 and purifying C2H4 directly from C2H4/C2H2/C2H6 with high adsorption capacities. The current work may shed light on the rational design of robust and porous MOFs based on alkali metals.

14.
Emerg Infect Dis ; 30(8): 1-13, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043566

ABSTRACT

Influenza A/H9 viruses circulate worldwide in wild and domestic avian species, continuing to evolve and posing a zoonotic risk. A substantial increase in human infections with A/H9N2 subtype avian influenza viruses (AIVs) and the emergence of novel reassortants carrying A/H9N2-origin internal genes has occurred in recent years. Different names have been used to describe the circulating and emerging A/H9 lineages. To address this issue, an international group of experts from animal and public health laboratories, endorsed by the WOAH/FAO Network of Expertise on Animal Influenza, has created a practical lineage classification and nomenclature system based on the analysis of 10,638 hemagglutinin sequences from A/H9 AIVs sampled worldwide. This system incorporates phylogenetic relationships and epidemiologic characteristics designed to trace emerging and circulating lineages and clades. To aid in lineage and clade assignment, an online tool has been created. This proposed classification enables rapid comprehension of the global spread and evolution of A/H9 AIVs.


Subject(s)
Influenza in Birds , Influenza, Human , Phylogeny , Terminology as Topic , Animals , Humans , Influenza, Human/epidemiology , Influenza, Human/virology , Influenza in Birds/virology , Influenza in Birds/epidemiology , Birds/virology , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/classification , Hemagglutinin Glycoproteins, Influenza Virus/genetics
15.
Antimicrob Agents Chemother ; 68(7): e0016824, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38809067

ABSTRACT

Zika virus (ZIKV) is one of the mosquito-borne flaviviruses that exhibits a unique tropism to nervous systems and is associated with Guillain-Barre syndrome and congenital Zika syndrome (CZS). Dengue virus (DENV) and yellow fever virus (YFV), the other two mosquito-borne flaviviruses, have also been circulating for a long time and cause severe diseases, such as dengue hemorrhagic fever and yellow fever, respectively. However, there are no safe and effective antiviral drugs approved for the treatment of infections or coinfections of these flaviviruses. Here, we found that zafirlukast, a pregnancy-safe leukotriene receptor antagonist, exhibited potent antiviral activity against infections of ZIKV strains from different lineages in different cell lines, as well as against infections of DENV-2 and YFV 17D. Mechanistic studies demonstrated that zafirlukast directly and irreversibly inactivated these flaviviruses by disrupting the integrity of the virions, leading to the loss of viral infectivity, hence inhibiting the entry step of virus infection. Considering its efficacy against flaviviruses, its safety for pregnant women, and its neuroprotective effect, zafirlukast is a promising candidate for prophylaxis and treatment of infections or coinfections of ZIKV, DENV, and YFV, even in pregnant women.


Subject(s)
Antiviral Agents , Dengue Virus , Indoles , Sulfonamides , Yellow fever virus , Zika Virus , Zika Virus/drug effects , Humans , Antiviral Agents/pharmacology , Dengue Virus/drug effects , Dengue Virus/genetics , Animals , Yellow fever virus/drug effects , Indoles/pharmacology , Sulfonamides/pharmacology , Chlorocebus aethiops , Vero Cells , Zika Virus Infection/drug therapy , Zika Virus Infection/virology , Cell Line , Phenylcarbamates
16.
Antimicrob Agents Chemother ; : e0005424, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687016

ABSTRACT

Human enteroviruses are the major pathogens causing hand-foot-and-mouth disease in infants and young children throughout the world, and infection with enterovirus is also associated with severe complications, such as aseptic meningitis and myocarditis. However, there are no antiviral drugs available to treat enteroviruses infection at present. In this study, we found that 4'-fluorouridine (4'-FlU), a nucleoside analog with low cytotoxicity, exhibited broad-spectrum activity against infections of multiple enteroviruses with EC50 values at low micromolar levels, including coxsackievirus A10 (CV-A10), CV-A16, CV-A6, CV-A7, CV-B3, enterovirus A71 (EV-A71), EV-A89, EV-D68, and echovirus 6. With further investigation, the results indicated that 4'-FlU directly interacted with the RNA-dependent RNA polymerase of enterovirus, the 3D pol, and impaired the polymerase activity of 3D pol, hence inhibiting viral RNA synthesis and significantly suppressing viral replication. Our findings suggest that 4'-FlU could be promisingly developed as a broad-spectrum direct-acting antiviral agent for anti-enteroviruses therapy.

17.
Anal Chem ; 96(1): 67-75, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38153001

ABSTRACT

Origins of pH effects on the kinetics of electrocatalytic reactions involving the transfer of both protons and electrons, including the hydrogen evolution reaction (HER) considered in this study, are heatedly debated. By taking the HER at Au(111) in acid solutions of different pHs and ionic concentrations as the model systems, herein, we report how to derive the intrinsic kinetic parameters of such reactions and their pH dependence through the measurement of j-E curves and the corresponding kinetic simulation based on the Frumkin-Butler-Volmer theory and the modified Poisson-Nernst-Planck equation. Our study reveals the following: (i) the same set of kinetic parameters, such as the standard activation Gibbs free energy, charge transfer coefficient, and Gibbs adsorption energy for Had at Au(111), can simulate well all the j-E curves measured in solutions with different pH and temperatures; (ii) on the reversible hydrogen electrode scale, the intrinsic rate constant increases with the increase of pH, which is in contrast with the decrease of the HER current with the increase of pH; and (iii) the ratio of the rate constants for HER at Au(111) in x M HClO4 + (0.1 - x) M NaClO4 (pH ≤ 3) deduced before properly correcting the electric double layer (EDL) effects to the ones estimated with EDL correction is in the range of ca. 10 to 40, and even in a solution of x M HClO4 + (1 - x) M NaClO4 (pH ≤ 2) there is a difference of ca. 5× in the rate constants without and with EDL correction. The importance of proper correction of the EDL effects as well as several other important factors on unveiling the intrinsic pH-dependent reaction kinetics are discussed to help converge our analysis of pH effects in electrocatalysis.

18.
BMC Plant Biol ; 24(1): 516, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851686

ABSTRACT

BACKGROUND: The influence of native secondary succession associated with anthropogenic disturbance on the biodiversity of the forests in subtropical China remains uncertain. In particular, the evolutionary response of small understory shrubs, particularly pioneer species inhabiting continuously disturbed habitats, to topographic heterogeneity and climate change is poorly understood. This study aimed to address this knowledge gap by focusing on the Gaultheria crenulata group, a clade of small pioneer shrubs in subtropical China. RESULTS: We examined the genetic structure and demographic history of all five species of the G. crenulata group with two maternally inherited chloroplast DNA (cpDNA) fragments and two biparentally inherited low-copy nuclear genes (LCG) over 89 natural populations. We found that the genetic differentiation of this group was influenced by the geomorphological boundary between different regions of China in association with Quaternary climatic events. Despite low overall genetic diversity, we observed an isolation-by-distance (IBD) pattern at a regional scale, rather than isolation-by-environment (IBE), which was attributed to ongoing human disturbance in the region. CONCLUSION: Our findings suggest that the genetic structure of the G. crenulata group reflects the interplay of geological topography, historical climates, and anthropogenic disturbance during the Pliocene-Pleistocene-Holocene periods in subtropical China. The observed IBD pattern, particularly prominent in western China, highlights the role of limited dispersal and gene flow, possibly influenced by physical barriers or decreased connectivity over geographic distance. Furthermore, the east-to-west trend of gene flow, potentially facilitated by the East Asian monsoon system, underscores the complex interplay of biotic and abiotic factors shaping the genetic dynamics of pioneer species in subtropical China's secondary forests. These findings can be used to assess the impact of environmental changes on the adaptation and persistence of biodiversity in subtropical forest ecosystems.


Subject(s)
Forests , Genetic Variation , China , DNA, Chloroplast/genetics , Population Dynamics , Biodiversity , Gene Flow
19.
J Neuroinflammation ; 21(1): 195, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097747

ABSTRACT

Chronic cerebral hypoperfusion (CCH), a disease afflicting numerous individuals worldwide, is a primary cause of cognitive deficits, the pathogenesis of which remains poorly understood. Bruton's tyrosine kinase inhibition (BTKi) is considered a promising strategy to regulate inflammatory responses within the brain, a crucial process that is assumed to drive ischemic demyelination progression. However, the potential role of BTKi in CCH has not been investigated so far. In the present study, we elucidated potential therapeutic roles of BTK in both in vitro hypoxia and in vivo ischemic demyelination model. We found that cerebral hypoperfusion induced white matter injury, cognitive impairments, microglial BTK activation, along with a series of microglia responses associated with inflammation, oxidative stress, mitochondrial dysfunction, and ferroptosis. Tolebrutinib treatment suppressed both the activation of microglia and microglial BTK expression. Meanwhile, microglia-related inflammation and ferroptosis processes were attenuated evidently, contributing to lower levels of disease severity. Taken together, BTKi ameliorated white matter injury and cognitive impairments induced by CCH, possibly via skewing microglia polarization towards anti-inflammatory and homeostatic phenotypes, as well as decreasing microglial oxidative stress damage and ferroptosis, which exhibits promising therapeutic potential in chronic cerebral hypoperfusion-induced demyelination.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Brain Ischemia , White Matter , Animals , Male , Mice , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Brain Ischemia/metabolism , Chronic Disease , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , White Matter/drug effects , White Matter/pathology , White Matter/metabolism
20.
Small ; 20(33): e2400149, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38528389

ABSTRACT

Layered Na2FePO4F (NFPF) cathode material has received widespread attention due to its green nontoxicity, abundant raw materials, and low cost. However, its poor inherent electronic conductivity and sluggish sodium ion transportation seriously impede its capacity delivery and cycling stability. In this work, NFPF by Ti doping and conformal carbon layer coating via solid-state reaction is modified. The results of experimental study and density functional theory calculations reveal that Ti doping enhances intrinsic conductivity, accelerates Na-ion transport, and generates more Na-ion storage sites, and pyrolytic carbon from polyvinylpyrrolidone (PVP) uniformly coated on the NFPF surface improves the surface/interface conductivity and suppresses the side reactions. Under the combined effect of Ti doping and carbon coating, the optimized NFPF (marked as 5T-NF@C) exhibits excellent electrochemical performance, with a high capacity of 108.4 mAh g-1 at 0.2C, a considerable capacity of 80.0 mAh g-1 even at high current density of 10C, and a high capacity retention rate of 81.8% after 2000 cycles at 10C. When assembled into a full cell with a hard carbon anode, 5T-NF@C also show good applicability. This work indicates that co-modification of Ti doping and carbon coating makes NFPF achieve high rate and long cycle performance for sodium-ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL