Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Neurophysiol ; 117(3): 903-909, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27903640

ABSTRACT

The objectives of this study were 1) to probe the effects of visual motion adaptation on early visual and V5/MT cortical excitability and 2) to investigate whether changes in cortical excitability following visual motion adaptation are related to the degree of visual dependency, i.e., an overreliance on visual cues compared with vestibular or proprioceptive cues. Participants were exposed to a roll motion visual stimulus before, during, and after visual motion adaptation. At these stages, 20 transcranial magnetic stimulation (TMS) pulses at phosphene threshold values were applied over early visual and V5/MT cortical areas from which the probability of eliciting a phosphene was calculated. Before and after adaptation, participants aligned the subjective visual vertical in front of the roll motion stimulus as a marker of visual dependency. During adaptation, early visual cortex excitability decreased whereas V5/MT excitability increased. After adaptation, both early visual and V5/MT excitability were increased. The roll motion-induced tilt of the subjective visual vertical (visual dependence) was not influenced by visual motion adaptation and did not correlate with phosphene threshold or visual cortex excitability. We conclude that early visual and V5/MT cortical excitability is differentially affected by visual motion adaptation. Furthermore, excitability in the early or late visual cortex is not associated with an increase in visual reliance during spatial orientation. Our findings complement earlier studies that have probed visual cortical excitability following motion adaptation and highlight the differential role of the early visual cortex and V5/MT in visual motion processing.NEW & NOTEWORTHY We examined the influence of visual motion adaptation on visual cortex excitability and found a differential effect in V1/V2 compared with V5/MT. Changes in visual excitability following motion adaptation were not related to the degree of an individual's visual dependency.


Subject(s)
Adaptation, Physiological , Motion Perception , Visual Cortex/physiology , Adult , Cortical Excitability , Female , Humans , Male , Phosphenes , Photic Stimulation , Transcranial Magnetic Stimulation , Young Adult
2.
Ergonomics ; 56(9): 1430-6, 2013.
Article in English | MEDLINE | ID: mdl-23845047

ABSTRACT

Motion sickness symptoms and increased postural instability induced by motion pictures have been reported in a laboratory, but not in a real cinema. We, therefore, carried out an observational study recording sickness severity and postural instability in 19 subjects before, immediately and 45 min after watching a 1 h 3D aviation documentary in a cinema. Sickness was significantly larger right after the movie than before, and in a lesser extent still so after 45 min. The average standard deviation of the lateral centre of pressure excursions was significantly larger only right afterwards. When low-pass filtered at 0.1 Hz, lateral and for-aft excursions were both significantly larger right after the movie, while for-aft excursions then remained larger even after 45 min. Speculating on previous findings, we predict more sickness and postural instability in 3D than in 2D movies, also suggesting a possible, but yet unknown risk for work-related activities and vehicle operation. PRACTITIONER SUMMARY: Watching motion pictures may be sickening and posturally destabilising, but effects in a cinema are unknown. We, therefore, carried out an observational study showing that sickness then is mainly an issue during the exposure while postural instability is an issue afterwards.


Subject(s)
Motion Pictures , Motion Sickness/etiology , Postural Balance , Adult , Aged , Female , Humans , Male , Middle Aged , Motion Sickness/physiopathology , Time Factors , Young Adult
3.
J Vestib Res ; 27(5-6): 251-263, 2018.
Article in English | MEDLINE | ID: mdl-29400688

ABSTRACT

BACKGROUND: Regular treatments of Ménière's disease (MD) vary largely, and no single satisfactory treatment exists. A complementary treatment popular among Dutch and Belgian patients involves eyeglasses with weak asymmetric base-in prisms, with a perceived high success rate. An explanatory mechanism is, however, lacking. OBJECTIVE: To speculate on a working mechanism explaining an effectiveness of weak asymmetric base-in prims in MD, based on available knowledge. METHODS: After describing the way these prisms are prescribed using a walking test and its effect reported on, we give an explanation of its underlying mechanism, based on the literature. RESULTS: The presumed effect can be explained by considering the typical star-like walking pattern in MD, induced by a drifting after-image comparable to the oculogyral illusion. Weak asymmetric base-in prisms can furthermore eliminate the conflict between a net vestibular angular velocity bias in the efferent signal controlling the VOR, and a net re-afferent ocular signal. CONCLUSIONS: The positive findings with these glasses reported on, the fact that the treatment itself is simple, low-cost, and socially acceptable, and the fact that an explanation is at hand, speak in favour of elaborating further on this treatment.


Subject(s)
Eyeglasses , Meniere Disease/therapy , Adult , Female , Humans , Male , Meniere Disease/diagnosis , Meniere Disease/physiopathology , Middle Aged , Reflex, Vestibulo-Ocular/physiology , Rotation , Vestibular Diseases/diagnosis , Vestibular Diseases/physiopathology , Vestibular Diseases/therapy , Vestibule, Labyrinth/physiology , Visual Fields/physiology
4.
Atten Percept Psychophys ; 78(8): 2612-2620, 2016 11.
Article in English | MEDLINE | ID: mdl-27363414

ABSTRACT

Effects of visual roll-motion on postural sway and the subjective visual vertical (SVV) often is studied using mechanical devices, whereas electronic displays offer cheaper and more flexible alternatives. These devices typically emit and reflect light scattered by the edges of the screen, providing Earth-fixed cues of verticality. These cues may decrease the effects of rotating stimuli, a possibility that has not been studied explicitly before in one experimental design. We exposed 16 participants to a visual dot pattern, either stationary, or rotating in roll, that was or was not surrounded by a visible Earth-fixed reference frame. To eliminate unintended visual cues, the experiment was performed in complete darkness and participants wore neutral density goggles passing only 1% of light. Postural sway was measured using a force platform. SVV measurements were obtained from a visible rod. To monitor the participants, motion sickness severity was obtained with an 11-point rating scale. Results showed that the presence of an Earth-fixed frame significantly decreased the effect of the rotating pattern on postural sway and SVV deviations. Therefore, when studying subjective verticality related effects of visual stimuli, it is imperative that all visual Earth-fixed cues are not just minimized but completely eliminated. The observation that an Earth-fixed frame significantly decreased the effect of the rotating pattern on both postural sway and the SVV points towards a common neural origin, possibly involving a neural representation of verticality. Finally, we showed that an electronic screen can yield similar effect sizes as those taken from the literature using mechanical devices.


Subject(s)
Motion Perception/physiology , Adult , Analysis of Variance , Cues , Female , Fixation, Ocular/physiology , Humans , Male , Photic Stimulation/methods , Postural Balance/physiology , Posture , Proprioception/physiology , Visual Perception/physiology , Young Adult
5.
PLoS One ; 10(12): e0144034, 2015.
Article in English | MEDLINE | ID: mdl-26630658

ABSTRACT

OBJECTIVE: Vection, a feeling of self-motion while being physically stationary, and postural sway can be modulated by various visual factors. Moreover, vection and postural sway are often found to be closely related when modulated by such visual factors, suggesting a common neural mechanism. One well-known visual factor is the depth order of the stimulus. The density, i.e. number of objects per unit area, is proposed to interact with the depth order in the modulation of vection and postural sway, which has only been studied to a limited degree. METHODS: We therefore exposed 17 participants to 18 different stimuli containing a stationary pattern and a pattern rotating around the naso-occipital axis. The density of both patterns was varied between 10 and 90%; the densities combined always added up to 100%. The rotating pattern occluded or was occluded by the stationary pattern, suggesting foreground or background motion, respectively. During pattern rotation participants reported vection by pressing a button, and postural sway was recorded using a force plate. RESULTS: Participants always reported more vection and swayed significantly more when rotation was perceived in the background and when the rotating pattern increased in density. As hypothesized, we found that the perceived depth order interacted with pattern density. A pattern rotating in the background with a density between 60 and 80% caused significantly more vection and postural sway than when it was perceived to rotate in the foreground. CONCLUSIONS: The findings suggest that the ratio between fore- and background pattern densities is an important factor in the interaction with the depth order, and it is not the density of rotating pattern per se. Moreover, the observation that vection and postural sway were modulated in a similar way points towards a common neural origin regulating both variables.


Subject(s)
Depth Perception/physiology , Postural Balance/physiology , Adult , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL