Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Semin Dial ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37697455

ABSTRACT

INTRODUCTION: The purity of water and dialysis fluids is of utmost importance in ensuring the safe and effective administration of hemodialysis treatment to patients with chronic kidney disease. It is crucial to enforce compliance with international standards for dialysis water and fluids, as this is mandatory in reducing chemical hazards, mitigating the adverse effects of bioincompatibility resulting from contaminated water and ultimately enhancing long-term patient outcomes. STANDARDS AND RISKS: Within this comprehensive review, we highlight the presence of water contaminants and thoroughly assess the existing international standards for dialysis water and fluids, spanning from pure to ultrapure. Additionally, we delve into the fundamental components of water purification and present a comprehensive range of water treatment options, encompassing pre-treatment, primary treatment (reverse osmosis), and tertiary water treatment. Furthermore, we outline recommended monitoring and maintenance procedures, ensuring the consistent delivery of high-quality water and dialysis fluids at the point of care. WATER PURIFICATION AND MONITORING SUSTAINABILITY AND FUTURE CHALLENGES: Importantly, we raise concerns regarding the sustainability and conservation of water resources in hemodialysis treatment. It is imperative that these concerns be addressed in the future to avert the potential shortage of this essential resource. CONCLUSION: In conclusion, the contemporary landscape of hemodialysis conditions has engendered an urgent necessity for advanced water treatment systems and optimized delivery of dialysis fluids. This review serves as a comprehensive update on the latest technological advancements aimed at meeting these critical demands. Dialysis water and fluids must adhere to increasingly stringent purity constraints, encompassing both biochemical and microbiological perspectives.

2.
Biosci Rep ; 36(3)2016 07.
Article in English | MEDLINE | ID: mdl-27129286

ABSTRACT

There is conflicting evidence as to whether water drinking elicits a pressor response in healthy young adults. The inclusion of a variable number of women may have contributed to the discrepancies found in past research. Thus, we aimed at exploring whether the osmopressor response follows a sexually dimorphic pattern. In a randomized fashion, 31 healthy adults (16 men; 15 women, aged 18-40 years) ingested 50 and 500 ml of water before completing a resting protocol on two separate days. Arterial blood pressure, heart rate and spectral heart rate variability were measured in the seated position at pre- and post-25 min of water ingestion. Women responded to 500 ml of water with a greater proportion of change in diastolic and mean arterial pressure (MAP) (P<0.05). Conversely, the percent change in systolic blood pressure (SBP) and heart rate was not different between sexes after 500 ml of water. Overall, women demonstrated lower blood pressure, but higher resting heart rate compared with men (P<0.05). In contrast, heart rate variability was similar between sexes before and after ingesting either volume of water. There was a bradycardic effect of water and, irrespectively of sex; this was accompanied by increased high frequency power (HF) (P<0.05). We conclude that women display a greater magnitude of pressor response than men post-water ingestion. Accordingly, we provide direct evidence of sexual dimorphism in the haemodynamic response to water intake in young healthy adults.


Subject(s)
Blood Pressure , Drinking , Heart Rate , Sex Characteristics , Adolescent , Adult , Female , Hemodynamics , Humans , Male , Water/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL