Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(10): e2219388120, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36848559

ABSTRACT

The soluble fraction of atmospheric transition metals is particularly associated with health effects such as reactive oxygen species compared to total metals. However, direct measurements of the soluble fraction are restricted to sampling and detection units in sequence burdened with a compromise between time resolution and system bulkiness. Here, we propose the concept of aerosol-into-liquid capture and detection, which allowed one-step particle capture and detection via the Janus-membrane electrode at the gas-liquid interface, enabling active enrichment and enhanced mass transport of metal ions. The integrated aerodynamic/electrochemical system was capable of capturing airborne particles with a cutoff size down to 50 nm and detecting Pb(II) with a limit of detection of 95.7 ng. The proposed concept can pave the way for cost-effective and miniaturized systems, for the capture and detection of airborne soluble metals in air quality monitoring, especially for abrupt air pollution events with high airborne metal concentrations (e.g., wildfires and fireworks).

2.
Haematologica ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813748

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is a cancer of the immune system. Approximately 20% of paediatric and 50% of adult T-ALL patients have refractory disease or relapse and die from the disease. To improve patient outcome new therapeutics are needed. With the aim to identify new therapeutic targets, we combined the analysis of T-ALL gene expression and metabolism to identify the metabolic adaptations that T-ALL cells exhibit. We found that glutamine uptake is essential for T-ALL proliferation. Isotope tracing experiments showed that glutamine fuels aspartate synthesis through the TCA cycle and that glutamine and glutamine-derived aspartate together supply three nitrogen atoms in purines and all but one atom in pyrimidine rings. We show that the glutamate-aspartate transporter EAAT1 (SLC1A3), which is normally expressed in the central nervous system, is crucial for glutamine conversion to aspartate and nucleotides and that T-ALL cell proliferation depends on EAAT1 function. Through this work, we identify EAAT1 as a novel therapeutic target for T-ALL treatment.

3.
Chem Res Toxicol ; 37(6): 923-934, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38842447

ABSTRACT

Benchmark dose (BMD) modeling estimates the dose of a chemical that causes a perturbation from baseline. Transcriptional BMDs have been shown to be relatively consistent with apical end point BMDs, opening the door to using molecular BMDs to derive human health-based guidance values for chemical exposure. Metabolomics measures the responses of small-molecule endogenous metabolites to chemical exposure, complementing transcriptomics by characterizing downstream molecular phenotypes that are more closely associated with apical end points. The aim of this study was to apply BMD modeling to in vivo metabolomics data, to compare metabolic BMDs to both transcriptional and apical end point BMDs. This builds upon our previous application of transcriptomics and BMD modeling to a 5-day rat study of triphenyl phosphate (TPhP), applying metabolomics to the same archived tissues. Specifically, liver from rats exposed to five doses of TPhP was investigated using liquid chromatography-mass spectrometry and 1H nuclear magnetic resonance spectroscopy-based metabolomics. Following the application of BMDExpress2 software, 2903 endogenous metabolic features yielded viable dose-response models, confirming a perturbation to the liver metabolome. Metabolic BMD estimates were similarly sensitive to transcriptional BMDs, and more sensitive than both clinical chemistry and apical end point BMDs. Pathway analysis of the multiomics data sets revealed a major effect of TPhP exposure on cholesterol (and downstream) pathways, consistent with clinical chemistry measurements. Additionally, the transcriptomics data indicated that TPhP activated xenobiotic metabolism pathways, which was confirmed by using the underexploited capability of metabolomics to detect xenobiotic-related compounds. Eleven biotransformation products of TPhP were discovered, and their levels were highly correlated with multiple xenobiotic metabolism genes. This work provides a case study showing how metabolomics and transcriptomics can estimate mechanistically anchored points-of-departure. Furthermore, the study demonstrates how metabolomics can also discover biotransformation products, which could be of value within a regulatory setting, for example, as an enhancement of OECD Test Guideline 417 (toxicokinetics).


Subject(s)
Biotransformation , Liver , Metabolomics , Animals , Rats , Liver/metabolism , Liver/drug effects , Male , Dose-Response Relationship, Drug , Benchmarking , Organophosphates/toxicity , Organophosphates/metabolism , Rats, Sprague-Dawley
4.
Transpl Int ; 36: 11506, 2023.
Article in English | MEDLINE | ID: mdl-37799668

ABSTRACT

Prolonged mechanical ventilation (PMV) after lung transplantation poses several risks, including higher tracheostomy rates and increased in-hospital mortality. Mechanical power (MP) of artificial ventilation unifies the ventilatory variables that determine gas exchange and may be related to allograft function following transplant, affecting ventilator weaning. We retrospectively analyzed consecutive double lung transplant recipients at a national transplant center, ventilated through endotracheal tubes upon ICU admission, excluding those receiving extracorporeal support. MP and derived indexes assessed up to 36 h after transplant were correlated with invasive ventilation duration using Spearman's coefficient, and we conducted receiver operating characteristic (ROC) curve analysis to evaluate the accuracy in predicting PMV (>72 h), expressed as area under the ROC curve (AUROC). PMV occurred in 82 (35%) out of 237 cases. MP was significantly correlated with invasive ventilation duration (Spearman's ρ = 0.252 [95% CI 0.129-0.369], p < 0.01), with power density (MP normalized to lung-thorax compliance) demonstrating the strongest correlation (ρ = 0.452 [0.345-0.548], p < 0.01) and enhancing PMV prediction (AUROC 0.78 [95% CI 0.72-0.83], p < 0.01) compared to MP (AUROC 0.66 [0.60-0.72], p < 0.01). Mechanical power density may help identify patients at risk for PMV after double lung transplantation.


Subject(s)
Lung Transplantation , Respiration, Artificial , Humans , Retrospective Studies , Time Factors , Ventilator Weaning , Lung
5.
Int J Mol Sci ; 24(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834211

ABSTRACT

RNA polymerase III (RNAP III) holoenzyme activity and the processing of its products have been linked to several metabolic dysfunctions in lower and higher eukaryotes. Alterations in the activity of RNAP III-driven synthesis of non-coding RNA cause extensive changes in glucose metabolism. Increased RNAP III activity in the S. cerevisiae maf1Δ strain is lethal when grown on a non-fermentable carbon source. This lethal phenotype is suppressed by reducing tRNA synthesis. Neither the cause of the lack of growth nor the underlying molecular mechanism have been deciphered, and this area has been awaiting scientific explanation for a decade. Our previous proteomics data suggested mitochondrial dysfunction in the strain. Using model mutant strains maf1Δ (with increased tRNA abundance) and rpc128-1007 (with reduced tRNA abundance), we collected data showing major changes in the TCA cycle metabolism of the mutants that explain the phenotypic observations. Based on 13C flux data and analysis of TCA enzyme activities, the present study identifies the flux constraints in the mitochondrial metabolic network. The lack of growth is associated with a decrease in TCA cycle activity and downregulation of the flux towards glutamate, aspartate and phosphoenolpyruvate (PEP), the metabolic intermediate feeding the gluconeogenic pathway. rpc128-1007, the strain that is unable to increase tRNA synthesis due to a mutation in the C128 subunit, has increased TCA cycle activity under non-fermentable conditions. To summarize, cells with non-optimal activity of RNAP III undergo substantial adaptation to a new metabolic state, which makes them vulnerable under specific growth conditions. Our results strongly suggest that balanced, non-coding RNA synthesis that is coupled to glucose signaling is a fundamental requirement to sustain a cell's intracellular homeostasis and flexibility under changing growth conditions. The presented results provide insight into the possible role of RNAP III in the mitochondrial metabolism of other cell types.


Subject(s)
Mitochondria , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Mitochondria/metabolism , Homeostasis , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Untranslated/metabolism
6.
Int J Obes (Lond) ; 46(4): 750-757, 2022 04.
Article in English | MEDLINE | ID: mdl-34912046

ABSTRACT

BACKGROUND: There is a paucity of data comparing 30-day morbidity and mortality of sleeve gastrectomy (SG), Roux-en-Y gastric bypass (RYGB), and one anastomosis gastric bypass (OAGB). This study aimed to compare the 30-day safety of SG, RYGB, and OAGB in propensity score-matched cohorts. MATERIALS AND METHODS: This analysis utilised data collected from the GENEVA study which was a multicentre observational cohort study of bariatric and metabolic surgery (BMS) in 185 centres across 42 countries between 01/05/2022 and 31/10/2020 during the Coronavirus Disease-2019 (COVID-19) pandemic. 30-day complications were categorised according to the Clavien-Dindo classification. Patients receiving SG, RYGB, or OAGB were propensity-matched according to baseline characteristics and 30-day complications were compared between groups. RESULTS: In total, 6770 patients (SG 3983; OAGB 702; RYGB 2085) were included in this analysis. Prior to matching, RYGB was associated with highest 30-day complication rate (SG 5.8%; OAGB 7.5%; RYGB 8.0% (p = 0.006)). On multivariate regression modelling, Insulin-dependent type 2 diabetes mellitus and hypercholesterolaemia were associated with increased 30-day complications. Being a non-smoker was associated with reduced complication rates. When compared to SG as a reference category, RYGB, but not OAGB, was associated with an increased rate of 30-day complications. A total of 702 pairs of SG and OAGB were propensity score-matched. The complication rate in the SG group was 7.3% (n = 51) as compared to 7.5% (n = 53) in the OAGB group (p = 0.68). Similarly, 2085 pairs of SG and RYGB were propensity score-matched. The complication rate in the SG group was 6.1% (n = 127) as compared to 7.9% (n = 166) in the RYGB group (p = 0.09). And, 702 pairs of OAGB and RYGB were matched. The complication rate in both groups was the same at 7.5 % (n = 53; p = 0.07). CONCLUSIONS: This global study found no significant difference in the 30-day morbidity and mortality of SG, RYGB, and OAGB in propensity score-matched cohorts.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Gastric Bypass , Obesity, Morbid , COVID-19/epidemiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/surgery , Gastrectomy/adverse effects , Humans , Morbidity , Obesity, Morbid/complications , Obesity, Morbid/epidemiology , Obesity, Morbid/surgery , Propensity Score , Retrospective Studies , Treatment Outcome
7.
J Phys Chem A ; 126(46): 8711-8726, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36350664

ABSTRACT

A flowing gas experiment using a Knudsen flow reactor was performed on a series of seven semivolatile probe gases interacting with two often used mineral dust materials, namely, coarse Arizona test dust (ATD-C) and kaolinite. The semivolatile probe gases used were applinate (acetate ester), pipol (ethyl ester of 2-methylvaleric acid), benzylacetate (acetate ester of benzylalcohol), menthol (alcohol), toluene, limonene, and γ-terpinene (terpene hydrocarbon). Uptake experiments under molecular flow conditions resulted in absolute coverages and initial uptake coefficients γ0 based on the geometric sample surface. Integration of a simple Langmuir adsorption model afforded an analytical solution of the desorption kinetics of the semivolatile hydrocarbon upon spontaneous desorption from the solid mineral dust substrate at ambient temperature. Numerical fitting of the desorption rate resulted in adsorption (ka) and desorption (kd) rate constants, where 1/kd represented the surface residence time of the adsorbed semivolatile. The major conclusions are as follows: (a) Desorption at short ("prompt") and long time scales reveal stronger binding to ATD compared to kaolinite for all tested organic probe gases. (b) No difference in the desorption yields and kinetics was observed for H2O vapor on either substrate. (c) Prompt desorption at ambient temperature starts with the immediate detection of probe gases adsorbed on the vessel walls of the sample compartment, followed by the slower growth and decay of semivolatiles adsorbed on the substrate, leading to ka and kd. (d) Surface residence times at ambient temperatures for semivolatile organics vary from 50 to 40 000 s for toluene/ATD and menthol/ATD, respectively. For H2O vapor, 3000 s was measured on both kaolinite and ATD. (e) Large initial uptake coefficients γ0 in the range of 0.25-0.77 were measured for all semivolatiles except toluene, whose values were lower by roughly one order of magnitude. Rapid saturation was observed in all cases except for limonene, which appeared to undergo chemical reactions on both mineral substrates.

8.
Int J Mol Sci ; 23(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36142632

ABSTRACT

During the onset of acute inflammation, rapid trafficking of leukocytes is essential to mount appropriate immune responses towards an inflammatory insult. Monocytes are especially indispensable for counteracting the inflammatory stimulus, neutralising the noxa and reconstituting tissue homeostasis. Thus, monocyte trafficking to the inflammatory sites needs to be precisely orchestrated. In this study, we identify a regulatory network driven by miR-125a that affects monocyte adhesion and chemotaxis by the direct targeting of two adhesion molecules, i.e., junction adhesion molecule A (JAM-A), junction adhesion molecule-like (JAM-L) and the chemotaxis-mediating chemokine receptor CCR2. By investigating monocytes isolated from patients undergoing cardiac surgery, we found that acute yet sterile inflammation reduces miR-125a levels, concomitantly enhancing the expression of JAM-A, JAM-L and CCR2. In contrast, TLR-4-specific stimulation with the pathogen-associated molecular pattern (PAMP) LPS, usually present within the perivascular inflamed area, resulted in dramatically induced levels of miR-125a with concomitant repression of JAM-A, JAM-L and CCR2 as early as 3.5 h. Our study identifies miR-125a as an important regulator of monocyte trafficking and shows that the phenotype of human monocytes is strongly influenced by this miRNA, depending on the type of inflammatory stimulus.


Subject(s)
MicroRNAs , Monocytes , Humans , Inflammation/genetics , Inflammation/metabolism , Junctional Adhesion Molecules/metabolism , Lipopolysaccharides/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Monocytes/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Receptors, Chemokine/metabolism , Toll-Like Receptor 4/metabolism
9.
Anaesthesist ; 71(3): 193-200, 2022 Mar.
Article in German | MEDLINE | ID: mdl-34351433

ABSTRACT

BACKGROUND: A pre-existing anticoagulation treatment and predisposing diseases for thromboembolic events represent common problems in patients with sepsis or septic shock; however, these conditions are not addressed in current national guidelines for sepsis and septic shock. One of the aims of this nationwide survey in Germany was therefore to determine how intensive care physicians deal with these problems. METHODS: From October 2019 to May 2020, we conducted a nationwide survey among German medical directors of intensive care units (ICU) addressing anticoagulation and drug-based prophylaxis of venous thromboembolism (VTE) in patients with sepsis and sepsis-induced coagulopathy. One focus was the procedure for patients with a pre-existing anticoagulation treatment or a previously known heparin-induced thrombocytopenia (HIT) type 2 (acute symptomatic vs. dating back years). RESULTS: In most of the participating ICUs pre-existing anticoagulation is largely continued with low molecular weight heparin preparations or unfractionated heparin. In patients with pre-existing HIT type 2 both acute symptomatic and dating back years, argatroban represents the drug of choice. There is a high degree of variability in the definition of the target values, usually being well above the range for pure VTE prophylaxis. CONCLUSION: Data on the continuation of anticoagulation beyond VTE prophylaxis with a subsequently increased risk of bleeding in patients with sepsis and septic shock is limited and treatment decisions are in many cases subject to individual consideration by the practitioner. The results of our survey imply the need for a systematic work-up of this topic in order to support daily practice in many ICUs with the required evidence.


Subject(s)
Sepsis , Shock, Septic , Thrombocytopenia , Thrombosis , Venous Thromboembolism , Anticoagulants/adverse effects , Heparin/adverse effects , Humans , Intensive Care Units , Pharmaceutical Preparations , Sepsis/complications , Sepsis/drug therapy , Shock, Septic/complications , Shock, Septic/drug therapy , Thrombocytopenia/chemically induced , Thrombocytopenia/complications , Thrombocytopenia/drug therapy , Venous Thromboembolism/drug therapy , Venous Thromboembolism/etiology , Venous Thromboembolism/prevention & control
10.
Anaesthesist ; 71(2): 104-109, 2022 02.
Article in German | MEDLINE | ID: mdl-34351432

ABSTRACT

BACKGROUND: The 11th revision of the International Classification of Diseases (ICD-11) will come into effect in January 2022. Among other things, The Third International Consensus Definitions for Sepsis and Septic Shock (SEPSIS­3 definition) will be implemented in it. This defines sepsis as a "life-threatening organ dysfunction caused by a dysregulated host response to infection". The aim of the present secondary analysis of a survey on the topic of "sepsis-induced coagulopathy" was to evaluate whether the SEPSIS­3 definition, 4 years after its international introduction, has arrived in everyday clinical practice of intensive care units (ICU) run by anesthesiologists in Germany and thus the requirements for its use of the ICD-11 are given. METHODS: Between October 2019 and May 2020, we carried out a nationwide survey among German medical directors of ICUs. In a separate block of questions we asked about the definition of sepsis used in daily practice. In addition, we asked whether the quick-sequential (sepsis-related) organ failure assessment (qSOFA) score is used in screening for sepsis in the hospital to which to the participating ICU belongs. RESULTS: A total of 50 medical directors from anesthesiological ICUs took part in the survey. In total, the ICUs evaluated stated that they had around 14% of the high-care beds registered in Germany. The SEPSIS­3 definition is integrated into everyday clinical practice at 78.9% of the university hospitals and 84.0% of the participating teaching hospitals. In contrast, the qSOFA screening test is only used by 26.3% of the participating university hospitals, but at least 52% of the teaching hospitals and 80% of the other hospitals. CONCLUSION: The data show that both SEPSIS­3 and qSOFA have become part of everyday clinical practice in German hospitals. The cautious use of qSOFA at university hospitals with simultaneous broad acceptance of the SEPSIS­3 definition can be interpreted as an indication that the search for a suitable screening test for sepsis has not yet been completed.


Subject(s)
International Classification of Diseases , Sepsis , Critical Care , Germany , Humans , Intensive Care Units , Organ Dysfunction Scores , Sepsis/diagnosis , Sepsis/therapy
11.
Mater Struct ; 55(10): 243, 2022.
Article in English | MEDLINE | ID: mdl-36447990

ABSTRACT

Production of blended cements in which Portland cement is combined with supplementary cementitious materials (SCM) is an effective strategy for reducing the CO2 emissions during cement manufacturing and achieving sustainable concrete production. However, the high Al2O3 and SiO2 contents of SCM change the chemical composition of the main hydration product, calcium aluminate silicate hydrate (C-A-S-H). Herein, spectroscopic and structural data for C-A-S-H gels are reported in a large range of equilibration times from 3 months up to 2 years and Al/Si molar ratios from 0.001 to 0.2. The 27Al MAS NMR spectroscopy and thermogravimetric analysis indicate that in addition to the C-A-S-H phase, secondary phases such as strätlingite, katoite, Al(OH)3 and calcium aluminate hydrate are present at Al/Si ≥ 0.03 limiting the uptake of Al in C-A-S-H. More secondary phases are present at higher Al concentrations; their content decreases with equilibration time while more Al is taken up in the C-A-S-H phase. At low Al contents, Al concentrations decrease strongly with time indicating a slow equilibration, in contrast to high Al contents where a clear change in Al concentrations over time was not observed indicating that the equilibrium has been reached faster. The 27Al NMR studies show that tetrahedrally coordinated Al is incorporated in C-A-S-H and its amount increases with the amount of Al present in the solution. Supplementary Information: The online version contains supplementary material available at 10.1617/s11527-022-02080-x.

12.
J Minim Access Surg ; 18(1): 90-96, 2022.
Article in English | MEDLINE | ID: mdl-35017398

ABSTRACT

BACKGROUND: Numerous techniques have been described for fashioning gastrojejunostomy (GJ) in a Roux-en-Y gastric bypass. These include hand-sewn anastomosis (HSA) and mechanical anastomosis; the latter includes circular stapled anastomosis (CSA) or manual linear stapled anastomosis (mLSA). More recently, this list also includes powered linear stapled anastomosis (pLSA). The aim of this study was to analyse if addition of power to stapling would improve the integrity of GJ anastomosis in ex vivo porcine models. SUBJECTS AND METHODS: The present study included five groups - mLSA1, mLSA2, HSA, CSA, and pLSA. Sequential infusions of methylene blue-coloured saline were performed into the GJ models. Pressure readings were recorded till the point of leak denoting burst pressure (BP). Total volume (TV) and site of leak were recorded. Compliance was calculated from the equation ΔTV/ΔBP. RESULTS: Differences in pouch and intestinal thickness were not statistically significant between the models. BPs were higher in the mechanical anastomosis groups, i.e., pLSA 21 ± 9.85 mmHg, CSA 20.33 ± 5.78 mmHg, mLSA1 18 ± 4.69 mmHg and mLSA2 11 ± 2.94 mmHg, when compared to HSA 9.67 ± 3.79 mm Hg, which was found to be statistically significant (Kruskal-Wallis test, P = 0.03). Overall, the highest BP was recorded for powered stapling followed by circular, and then, linear stapling; however, this difference was not statistically significant (P = 0.86). There was no statistically significant difference among groups with regard to compliance (Kruskal-Wallis test, P = 0.082). CONCLUSION: Despite the limited number of samples, mechanical anastomosis showed a statistically higher BP when compared to HSA, suggesting better anastomotic integrity. The pLSA group showed promising results with the highest BP recorded among all groups; however, this did not reach statistical significance.

13.
Magn Reson Chem ; 59(3): 287-299, 2021 03.
Article in English | MEDLINE | ID: mdl-32830359

ABSTRACT

Nuclear magnetic resonance (NMR) spectroscopy is integral to metabolic studies; yet, it can suffer from the long acquisition times required to collect data of sufficient signal strength and resolution. The use of non-uniform sampling (NUS) allows faster collection of NMR spectra without loss of spectral integrity. When planning experimental methodologies to perform metabolic flux analysis (MFA) of cell metabolism, a variety of options are available for the acquisition of NUS NMR data. Before beginning data collection, decisions have to be made regarding selection of pulse sequence, number of transients and NUS specific parameters such as the sampling level and sampling schedule. Poor choices will impact data quality, which may have a negative effect on the subsequent analysis and biological interpretation. Herein, we describe factors that should be considered when setting up non-uniformly sampled 2D-1 H,13 C HSQC NMR experiments for MFA and provide a standard protocol for users to follow.


Subject(s)
Metabolic Flux Analysis/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Signal-To-Noise Ratio
14.
Anaesthesist ; 70(8): 662-670, 2021 Aug.
Article in German | MEDLINE | ID: mdl-33558944

ABSTRACT

BACKGROUND: In the context of sepsis and septic shock, coagulopathy often occurs due to the close relationship between coagulation and inflammation. Sepsis-induced coagulopathy (SIC) is the most severe and potentially fatal form. Anticoagulants used in prophylactic or therapeutic doses are discussed to potentially exert beneficial effects in patients with sepsis and/or SIC; however, due to the lack of evidence recent guidelines are limited to recommendations for drug prophylaxis of venous thromboembolism (VTE), while treatment of SIC has not been addressed. METHODS: In order to determine the status quo of VTE prophylaxis as well as treatment of SIC in German intensive care units (ICU), we conducted a Germany-wide online survey among heads of ICUs from October 2019 to May 2020. In April 2020, the survey was supplemented by an additional block of questions on VTE prophylaxis and SIC treatment in coronavirus disease 2019 (COVID-19) patients. RESULTS: A total of 67 senior doctors took part in the survey. The majority (n = 50; 74.6%) of the responses were from ICU under the direction of an anesthesiologist and/or a department of anesthesiology. Most of the participants worked either at a university hospital (n = 31; 47.8%) or an academic teaching hospital (n = 27; 40.3%). The survey results show a pronounced heterogeneity in clinical practice with respect to the prophylaxis of VTE as well as SIC treatment. In an exemplary case of pneumogenic sepsis, low molecular weight heparins (LMWH) were by far the most frequently mentioned group of medications (n = 51; 76.1% of the responding ITS). In the majority of cases (n = 43; 64.2%), anti-FXa activity is not monitored with the use of LMWH in prophylaxis doses. Unfractionated heparin (UFH) was listed as a strategy for VTE prophylaxis in 37.3% of the responses (n = 25). In an exemplary case of abdominal sepsis 54.5% of the participants (n = 36; multiple answers possible) stated the use of UFH or LMWH and UFH with dosage controlled by PTT is used on two participating ICUs. The anti-FXa activity under prophylactic anticoagulation with LMWH is monitored in 7 participating clinics (10.6%) in abdominal sepsis. Systematic screening for sepsis-associated coagulation disorders does not take place in most hospitals and patterns in the use of anticoagulants show significant variability between ICUs. In the case of COVID-19 patients, it is particularly noticeable that in three quarters of the participating ICUs the practice of drug-based VTE prophylaxis and SIC treatment does not differ from that of non-COVID-19 patients. CONCLUSION: The heterogeneity of answers collected in the survey suggests that a systematic approach to this topic via clinical trials is urgently needed to underline individualized patient care with the necessary evidence.


Subject(s)
Anticoagulants , Blood Coagulation Disorders , Heparin, Low-Molecular-Weight/therapeutic use , Sepsis , Anticoagulants/therapeutic use , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/etiology , COVID-19 , Germany , Heparin/therapeutic use , Humans , Intensive Care Units , Sepsis/complications
15.
Am J Transplant ; 20(8): 2030-2043, 2020 08.
Article in English | MEDLINE | ID: mdl-32012434

ABSTRACT

With oxygenation proposed as a resuscitative measure during hypothermic models of preservation, the aim of this study was to evaluate the optimal start time of oxygenation during continuous hypothermic machine perfusion (HMP). In this porcine ischemia-reperfusion autotransplant model, the left kidney of a ±40 kg pig was exposed to 30 minutes of warm ischemia prior to 22 hours of HMP and autotransplantation. Kidneys were randomized to receive 2 hours of oxygenation during HMP either at the start (n = 6), or end of the perfusion (n = 5) and outcomes were compared to standard, nonoxygenated HMP (n = 6) and continuous oxygenated HMP (n = 8). The brief initial and continuous oxygenated HMP groups were associated with superior graft recovery compared to either standard, nonoxygenated HMP or kidneys oxygenated at the end of HMP. This correlated with significant metabolic differences in perfusate (eg, lactate, succinate, flavin mononucleotide) and tissues (eg, succinate, adenosine triphosphate, hypoxia-inducible factor-1α, nuclear factor erythroid 2-related factor 2) suggesting superior mitochondrial preservation with initial oxygenation. Brief initial O2 uploading during HMP at procurement site might be an easy and effective preservation strategy to maintain aerobic metabolism, protect mitochondria, and achieve an improved early renal graft function compared with standard HMP or oxygen supply shortly at the end of HMP preservation.


Subject(s)
Hypothermia, Induced , Organ Preservation , Animals , Autografts , Kidney , Perfusion , Swine , Transplantation, Autologous
16.
Anal Chem ; 92(1): 1316-1325, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31825206

ABSTRACT

Metal emissions are of major environmental and practical concern because of their highly toxic effects on human health and ecosystems. Current technologies available in the market for their detection are typically limited by a time resolution of 1 h or longer (e.g., via semicontinuous X-ray fluorescence measurements) or are nonquantitative (e.g., laser ablation mass spectrometry). In this work, we report the development of a novel technique for the real-time detection and monitoring of metal particles in situ using an extractive electrospray ionization (EESI) source coupled to a high-resolution time-of-flight mass spectrometer (TOF-MS). The experiments were conducted in negative ionization mode using disodium ethylenediamine tetraacetic acid (EDTA) dihydrate to chelate with metals and form stable metal complexes. Results for water-soluble metal compounds were obtained. The following representative metal ions were examined: Pb, Cd, Zn, Ce (III), Ba, Ni, Fe(II), Fe(III), Cu(II), Cr, Mo, Co(II), Mg, Nd, Li, Ti, Ca, Cs, Ag, Tm, Er(III), La(III), Yb(III), Eu(III), Pr(III), Gd(III), Lu(III), Dy(III), Tb(III), Ho, and Ru(III). The results showed a very good linear mass response (R2 = 0.9983), low ng/m3 limits of detection (LoD), and a fast response time (1 s). The stability and repeatability of the developed EESI-TOF-MS were tested under complex dynamic and periodic experimental conditions, and negligible matrix effects were measured for internally and externally mixed metal particles. Benchmark testing against inductively coupled plasma-mass spectrometry (ICP-MS) was also performed, highlighting the online measurement capabilities of aerosol metals with a LoD lower than those of ICP-MS. Proof-of-concept ambient measurements were performed in New Delhi, India, and very promising results were obtained, allowing further exploitation elsewhere.


Subject(s)
Metals, Heavy/analysis , Aerosols/analysis , Edetic Acid/chemistry , Spectrometry, Mass, Electrospray Ionization , Time Factors
17.
Am J Physiol Heart Circ Physiol ; 319(2): H422-H431, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32648823

ABSTRACT

Alterations in the metabolism of substrates such as glucose are integrally linked to the structural and functional changes that occur in the remodeling heart. Assessment of such metabolic changes under in vivo conditions would provide important insights into this interrelationship. We aimed to investigate glucose carbon metabolism in pressure-overload and volume-overload cardiac hypertrophy by using an in vivo [U-13C]glucose labeling strategy to enable analyses of the metabolic fates of glucose carbons in the mouse heart. Therefore, [U-13C]glucose was administered in anesthetized mice by tail vein infusion, and the optimal duration of infusion was established. Hearts were then excised for 13C metabolite isotopomer analysis by NMR spectroscopy. [U-13C]glucose infusions were performed in mice 2 wk following transverse aortic constriction (TAC) or aortocaval fistula (Shunt) surgery. At this time point, there were similar increases in left ventricular (LV) mass in both groups, but TAC resulted in concentric hypertrophy with impaired LV function, whereas Shunt caused eccentric hypertrophy with preserved LV function. TAC was accompanied by significant changes in glycolysis, mitochondrial oxidative metabolism, glucose metabolism to anaplerotic substrates, and de novo glutamine synthesis. In contrast to TAC, hardly any metabolic changes could be observed in the Shunt group. Taken together, in vivo [U-13C]glucose labeling is a valuable method to investigate the fate of nutrients such as glucose in the remodeling heart. We find that concentric and eccentric cardiac remodeling are accompanied by distinct differences in glucose carbon metabolism.NEW & NOTEWORTHY This study implemented a method for assessing the fate of glucose carbons in the heart in vivo and used this to demonstrate that pressure and volume overload are associated with distinct changes. In contrast to volume overload, pressure overload-induced changes affect the tricarboxylic acid cycle, glycolytic pathways, and glutamine synthesis. A better understanding of cardiac glucose metabolism under pathological conditions in vivo may provide new therapeutic strategies specific for different types of hemodynamic overload.


Subject(s)
Blood Glucose/metabolism , Energy Metabolism , Hypertrophy, Left Ventricular/metabolism , Myocardium/metabolism , Ventricular Function, Left , Ventricular Remodeling , Animals , Carbon Isotopes , Citric Acid Cycle , Disease Models, Animal , Glycolysis , Hypertrophy, Left Ventricular/physiopathology , Kinetics , Lactic Acid/metabolism , Magnetic Resonance Spectroscopy , Male , Mice, Inbred C57BL
18.
Environ Sci Technol ; 54(7): 4504-4514, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32155334

ABSTRACT

Like conventional material products, waste is the last stage of the life cycle of engineered nanomaterials, which are then incinerated or stabilized before disposal. However, because of their special physical characteristics, the fate of the thermally treated nanomaterials may differ or not from the conventional ones. In this study the thermal release of metals from three nanomaterials, namely CuO, ZnO, and TiO2, embedded in matrices containing organic and inorganic compounds was investigated by using an in-house developed setup. The latter, which combines a TGA (Thermogravimetric Analyzer) and an ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometer), offers the possibility to gain simultaneously thermogravimetric and elemental information. It is shown that the matrix composition, such as chlorine and silicon, plays a key role in the evaporation of Cu and Zn at temperatures above 700 °C, while at relatively low temperatures (250 to 450 °C) the nanomaterials are most probably entrained in the flue gas independently of their chemical properties. Incineration experiments using a tubular furnace and subsequent ICP-MS (ICP Mass Spectrometry) analysis of the obtained residues allowed for quantification of the metal evaporation from the three nanomaterials.


Subject(s)
Metals, Heavy , Nanostructures , Cellulose , Incineration , Metals , Oxides
19.
Anal Chem ; 90(1): 649-656, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29035042

ABSTRACT

NMR is a widely used analytical technique with a growing number of repositories available. As a result, demands for a vendor-agnostic, open data format for long-term archiving of NMR data have emerged with the aim to ease and encourage sharing, comparison, and reuse of NMR data. Here we present nmrML, an open XML-based exchange and storage format for NMR spectral data. The nmrML format is intended to be fully compatible with existing NMR data for chemical, biochemical, and metabolomics experiments. nmrML can capture raw NMR data, spectral data acquisition parameters, and where available spectral metadata, such as chemical structures associated with spectral assignments. The nmrML format is compatible with pure-compound NMR data for reference spectral libraries as well as NMR data from complex biomixtures, i.e., metabolomics experiments. To facilitate format conversions, we provide nmrML converters for Bruker, JEOL and Agilent/Varian vendor formats. In addition, easy-to-use Web-based spectral viewing, processing, and spectral assignment tools that read and write nmrML have been developed. Software libraries and Web services for data validation are available for tool developers and end-users. The nmrML format has already been adopted for capturing and disseminating NMR data for small molecules by several open source data processing tools and metabolomics reference spectral libraries, e.g., serving as storage format for the MetaboLights data repository. The nmrML open access data standard has been endorsed by the Metabolomics Standards Initiative (MSI), and we here encourage user participation and feedback to increase usability and make it a successful standard.


Subject(s)
Databases, Chemical/standards , Magnetic Resonance Spectroscopy/statistics & numerical data , Metabolomics/methods , Software
20.
Org Biomol Chem ; 16(35): 6576-6585, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30168560

ABSTRACT

The labelling of DNA oligonucleotides with signalling groups that give a unique response to duplex formation depending on the target sequence is a highly effective strategy in the design of DNA-based hybridisation sensors. A key challenge in the design of these so-called base discriminating probes (BDPs) is to understand how the local environment of the signalling group affects the sensing response. The work herein describes a comprehensive study involving a variety of photophysical techniques, NMR studies and molecular dynamics simulations, on anthracene-tagged oligonucleotide probes that can sense single base changes (point variants) in target DNA strands. A detailed analysis of the fluorescence sensing mechanism is provided, with a particular focus on rationalising the high dependence of this process on not only the linker stereochemistry but also the site of nucleobase variation within the target strand. The work highlights the various factors and techniques used to respectively underpin and rationalise the BDP approach to point variant sensing, which relies on different responses to duplex formation rather than different duplex binding strengths.


Subject(s)
Anthracenes/chemistry , DNA/chemistry , DNA/genetics , Molecular Probes/chemistry , Polymorphism, Single Nucleotide , Base Sequence , Molecular Dynamics Simulation , Nucleic Acid Conformation , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL