Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Immunity ; 37(2): 264-75, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22902234

ABSTRACT

Mature dendritic cells (DCs) are established as unrivaled antigen-presenting cells (APCs) in the initiation of immune responses, whereas steady-state DCs induce peripheral T cell tolerance. Using various genetic approaches, we depleted CD11c(+) DCs in mice and induced autoimmune CNS inflammation. Unexpectedly, mice lacking DCs developed aggravated disease compared to control mice. Furthermore, when we engineered DCs to present a CNS-associated autoantigen in an induced manner, we found robust tolerance that prevented disease, which coincided with an upregulation of the PD-1 receptor on antigen-specific T cells. Additionally, we showed that PD-1 was necessary for DC-mediated induction of regulatory T cells. Our results show that a reduction of DCs interferes with tolerance, resulting in a stronger inflammatory response, and that other APC populations could compensate for the loss of immunogenic APC function in DC-depleted mice.


Subject(s)
Dendritic Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Immune Tolerance/immunology , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antigen Presentation/immunology , Autoantigens/immunology , Autoimmunity/immunology , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , CD11c Antigen , Dendritic Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes, Regulatory/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism
2.
Proc Natl Acad Sci U S A ; 114(8): E1480-E1489, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28167776

ABSTRACT

TGF-ß is an anti-inflammatory cytokine whose signaling is negatively controlled by Smad7. Previously, we established a role for Smad7 in the generation of autoreactive T cells; however, the function of Smad7 in dendritic cells (DCs) remains elusive. Here, we demonstrate that DC-specific Smad7 deficiency resulted in elevated expression of the transcription factors Batf3 and IRF8, leading to increased frequencies of CD8+CD103+ DCs in the spleen. Furthermore, Smad7-deficient DCs expressed higher levels of indoleamine 2,3-dioxygenase (IDO), an enzyme associated with tolerance induction. Mice devoid of Smad7 specifically in DCs are resistant to the development of experimental autoimmune encephalomyelitis (EAE) as a result of an increase of protective regulatory T cells (Tregs) and reduction of encephalitogenic effector T cells in the central nervous system. In agreement, inhibition of IDO activity or depletion of Tregs restored disease susceptibility. Intriguingly, when Smad7-deficient DCs also lacked the IFN-γ receptor, the mice regained susceptibility to EAE, demonstrating that IFN-γ signaling in DCs mediates their tolerogenic function. Our data indicate that Smad7 expression governs splenic DC subset differentiation and is critical for the promotion of their efficient function in immunity.


Subject(s)
Autoimmunity/physiology , Dendritic Cells/metabolism , Smad7 Protein/metabolism , Transforming Growth Factor beta/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/physiology , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Immune Tolerance , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferon Regulatory Factors/metabolism , Mice , Mice, Inbred C57BL , Signal Transduction/physiology , Spleen/metabolism , T-Lymphocytes, Regulatory/metabolism
3.
iScience ; 27(5): 109767, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38736545

ABSTRACT

T cells protect tissues from cancer. Although investigations in mice showed that amino acids (AA) critically regulate T cell immunity, this remains poorly understood in humans. Here, we describe the AA composition of interstitial fluids in keratinocyte-derived skin cancers (KDSCs) and study the effect of AA on T cells using models of primary human cells and tissues. Gln contributed to ∼15% of interstitial AAs and promoted interferon gamma (IFN-γ), but not granzyme B (GzB) expression, in CD8+ T cells. Furthermore, the Toll-like receptor 7 agonist imiquimod (IMQ), a common treatment for KDSCs, down-regulated the metabolic gatekeepers c-MYC and mTORC1, as well as the AA transporter ASCT2 and intracellular Gln, Asn, Ala, and Asp in T cells. Reduced proliferation and IFN-γ expression, yet increased GzB, paralleled IMQ effects on AA. Finally, Gln was sufficient to promote IFN-γ-production in IMQ-treated T cells. Our findings indicate that Gln metabolism can be harnessed for treating KDSCs.

4.
Eur J Immunol ; 41(3): 595-601, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21341261

ABSTRACT

A20/TNFAIP3 is an ubiquitin-editing enzyme, important for the regulation of the NF-κB pathway. Mutations in the TNFAIP3 gene have been linked to different human autoimmune disorders. In human B-cell lymphomas, the inactivation of A20 results in constitutive NF-κB activation. Recent studies demonstrate that in mice the germline inactivation of A20 leads to early lethality, due to inflammation in multiple organs of the body. In this report, we describe a new mouse strain allowing for the tissue-specific deletion of A20. We show that B-cell-specific deletion of A20 results in a dramatic reduction in marginal zone B cells. Furthermore, A20-deficient B cells display a hyperactive phenotype represented by enhanced proliferation upon activation. Finally, these mice develop higher levels of serum immunoglobulins, resulting in an excessive production of self-reactive autoantibodies.


Subject(s)
Autoantibodies/biosynthesis , B-Lymphocytes/immunology , Animals , B-Lymphocyte Subsets/cytology , B-Lymphocyte Subsets/immunology , B-Lymphocytes/cytology , Cell Proliferation , Cysteine Endopeptidases/deficiency , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/immunology , Germinal Center/cytology , Germinal Center/immunology , Humans , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/immunology , Lymphocyte Activation , Mice , Mice, Knockout , Models, Animal , NF-kappa B/immunology , Signal Transduction , Tumor Necrosis Factor alpha-Induced Protein 3
5.
Cell Rep ; 38(13): 110565, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35354043

ABSTRACT

Interleukin (IL)-10 is considered a prototypical anti-inflammatory cytokine, significantly contributing to the maintenance and reestablishment of immune homeostasis. Accordingly, it has been shown in the intestine that IL-10 produced by Tregs can act on effector T cells, thereby limiting inflammation. Herein, we investigate whether this role also applies to IL-10 produced by T cells during central nervous system (CNS) inflammation. During neuroinflammation, both CNS-resident and -infiltrating cells produce IL-10; yet, as IL-10 has a pleotropic function, the exact contribution of the different cellular sources is not fully understood. We find that T-cell-derived IL-10, but not other relevant IL-10 sources, can promote inflammation in experimental autoimmune encephalomyelitis. Furthermore, in the CNS, T-cell-derived IL-10 acts on effector T cells, promoting their survival and thereby enhancing inflammation and CNS autoimmunity. Our data indicate a pro-inflammatory role of T-cell-derived IL-10 in the CNS.


Subject(s)
Interleukin-10 , T-Lymphocytes , Animals , CD4-Positive T-Lymphocytes , Cell Survival , Central Nervous System , Inflammation , Interleukin-10/physiology , Mice
6.
Brain ; 133(Pt 4): 1067-81, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20354004

ABSTRACT

Autoreactive CD4+ T lymphocytes play a vital role in the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Since the discovery of T helper 17 cells, there is an ongoing debate whether T helper 1, T helper 17 or both subtypes of T lymphocytes are important for the initiation of autoimmune neuroinflammation. We examined peripheral blood CD4+ cells from patients with active and stable relapsing-remitting multiple sclerosis, and used mice with conditional deletion or over-expression of the transforming growth factor-beta inhibitor Smad7, to delineate the role of Smad7 in T cell differentiation and autoimmune neuroinflammation. We found that Smad7 is up-regulated in peripheral CD4+ cells from patients with multiple sclerosis during relapse but not remission, and that expression of Smad7 strongly correlates with T-bet, a transcription factor defining T helper 1 responses. Concordantly, mice with transgenic over-expression of Smad7 in T cells developed an enhanced disease course during experimental autoimmune encephalomyelitis, accompanied by elevated infiltration of inflammatory cells and T helper 1 responses in the central nervous system. On the contrary, mice with a T cell-specific deletion of Smad7 had reduced disease and central nervous system inflammation. Lack of Smad7 in T cells blunted T cell proliferation and T helper 1 responses in the periphery but left T helper 17 responses unaltered. Furthermore, frequencies of regulatory T cells were increased in the central nervous system of mice with a T cell-specific deletion and reduced in mice with a T cell-specific over-expression of Smad7. Downstream effects of transforming growth factor-beta on in vitro differentiation of naïve T cells to T helper 1, T helper 17 and regulatory T cell phenotypes were enhanced in T cells lacking Smad7. Finally, Smad7 was induced during T helper 1 differentiation and inhibited during T helper 17 differentiation. Taken together, the level of Smad7 in T cells determines T helper 1 polarization and regulates inflammatory cellular responses. Since a Smad7 deletion in T cells leads to immunosuppression, Smad7 may be a potential new therapeutic target in multiple sclerosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Smad7 Protein/physiology , Th1 Cells/immunology , Amino Acid Sequence , Animals , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Molecular Sequence Data , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Smad7 Protein/biosynthesis , Smad7 Protein/deficiency , Th1 Cells/metabolism
7.
Life (Basel) ; 11(9)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34575067

ABSTRACT

Interstitial pneumonia is a life-threatening clinical manifestation of cytomegalovirus infection in recipients of hematopoietic cell transplantation (HCT). The mouse model of experimental HCT and infection with murine cytomegalovirus revealed that reconstitution of virus-specific CD8+ T cells is critical for resolving productive lung infection. CD8+ T-cell infiltrates persisted in the lungs after the establishment of latent infection. A subset defined by the phenotype KLRG1+CD62L- expanded over time, a phenomenon known as memory inflation (MI). Here we studied the localization of these inflationary T effector-memory cells (iTEM) by comparing their frequencies in the intravascular and transmigration compartments, the IVC and TMC, respectively, with their frequency in the extravascular compartment (EVC), the alveolar epithelium. Frequencies of viral epitope-specific iTEM were comparable in the IVC and TMC but were reduced in the EVC, corresponding to an increase in KLRG1-CD62L- conventional T effector-memory cells (cTEM) and a decrease in functional IFNγ+CD8+ T cells. As maintained expression of KLRG1 requires stimulation by antigen, we conclude that iTEM lose KLRG1 and convert to cTEM after transmigration into the EVC because pneumocytes are not latently infected and, therefore, do not express antigens. Accordingly, antigen re-expression upon airway challenge infection recruited virus-specific CD8+ T cells to TMC and EVC.

8.
Semin Immunopathol ; 39(2): 153-163, 2017 02.
Article in English | MEDLINE | ID: mdl-27456849

ABSTRACT

Dendritic cells (DC) are unique hematopoietic cells, linking innate and adaptive immune responses. In particular, they are considered as the most potent antigen presenting cells, governing both T cell immunity and tolerance. In view of their exceptional ability to present antigen and to interact with T cells, DC play distinct roles in shaping T cell development, differentiation and function. The outcome of the DC-T cell interaction is determined by the state of DC maturation, the type of DC subset, the cytokine microenvironment and the tissue location. Both regulatory T cells (Tregs) and DC are indispensable for maintaining central and peripheral tolerance. Over the past decade, accumulating data indicate that DC critically contribute to Treg differentiation and homeostasis.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Immune Tolerance , Animals , Antigen Presentation/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/therapy , Biomarkers , Cell Communication , Cell Differentiation , Dendritic Cells/classification , Dendritic Cells/cytology , Homeostasis , Humans , Immunotherapy , Organ Specificity/immunology , Phenotype , Signal Transduction , T-Lymphocyte Subsets
SELECTION OF CITATIONS
SEARCH DETAIL