Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Mol Sci ; 23(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35806128

ABSTRACT

Globally in 2020, an estimated ~600,000 women were diagnosed with and 340,000 women died from cervical cancer. Compared to 2012, the number of cases increased by 7.5% and the number of deaths increased by 17%. MiRNAs are involved in multiple processes in the pathogenesis of cervical cancer. Dysregulation of miRNAs in the pre-stage of cervical cancer is the focus of this review. Here we summarize the dysregulated miRNAs in clinical samples from cervical pre-cancer patients and relate them to the early transformation process owing to human papillomavirus (HPV) infection in the cervical cells. When HPV infects the normal cervical cells, the DNA damage response is initiated with the involvement of HPV's E1 and E2 proteins. Later, cell proliferation and cell death are affected by the E6 and E7 proteins. We find that the expressions of miRNAs in cervical pre-cancerous tissue revealed by different studies seldom agreed with each other. The discrepancy in sample types, samples' HPV status, expression measurement, and methods for analysis contributed to the non-aligned results across studies. However, several miRNAs (miR-34a, miR-9, miR-21, miR-145, and miR-375) were found to be dysregulated across multiple studies. In addition, there are hints that the DNA damage response and cell growth response induced by HPV during the early transformation of the cervical cells are related to these miRNAs. Currently, no review articles analyse the relationship between the dysregulated miRNAs in cervical pre-cancerous tissue and their possible roles in the early processes involving HPV's protein encoded by the early genes and DNA damage response during normal cell transformation. Our review provides insight on spotting miRNAs involved in the early pathogenic processes and pointing out their potential as biomarker targets of cervical pre-cancer.


Subject(s)
MicroRNAs , Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Cell Transformation, Neoplastic , Female , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Oncogene Proteins, Viral/genetics , Papillomaviridae/genetics , Papillomaviridae/metabolism , Papillomavirus Infections/complications , Papillomavirus Infections/diagnosis , Papillomavirus Infections/genetics , Uterine Cervical Neoplasms/pathology
2.
Mol Pharm ; 17(10): 3941-3951, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32931292

ABSTRACT

In cancer photodynamic therapy (PDT), a photosensitizer taken up by cancer cells can generate reactive oxygen species upon near-infrared light activation to induce cancer cell death. To increase PDT potency and decrease its adverse effect, one approach is to conjugate the photosensitizer with an antibody that specifically targets cancer cells. In the present study, IR700, a hydrophilic phthalocyanine photosensitizer, was conjugated to the humanized monoclonal antibody ARB102, which binds specifically cadherin-17 (CDH17 aka CA17), a cell surface marker highly expressed in gastrointestinal cancer to produce ARB102-IR700. Photoimmunotherapy (PIT) of gastrointestinal cancer cell lines was conducted by ARB102-IR700 treatment and near-infrared light irradiation. The results showed that ARB102-IR700 PIT could induce cell death in CDH17-positive cancer cells with high potency. In a co-culture model, CDH17-negative and CDH17-overexpressing SW480 cells were labeled with distinct fluorescent dyes and cultured together prior to PIT treatment. The results confirmed that ARB102-IR700 PIT could kill CDH17-positive cells specifically, while leaving the adjacent CDH17-negative cells unaffected. An in vivo efficacy study was conducted using a pancreatic adenocarcinoma AsPC-1 xenograft tumor model in nude mice. Fluorescence scanning indicated that ARB102-IR700 accumulated specifically in the tumor sites. To perform PIT, at 24 and 48 h postinjection, mice were irradiated with a 680 nm laser at the tumor site to activate the photosensitizer. It was shown that ARB102-IR700 PIT could inhibit tumor growth significantly. In summary, this study demonstrated that the novel ARB102-IR700 is a promising agent for PIT in gastrointestinal cancers.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Cadherins/antagonists & inhibitors , Gastrointestinal Neoplasms/drug therapy , Photochemotherapy/methods , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Cadherins/metabolism , Cell Culture Techniques , Cell Line, Tumor , Coculture Techniques , Female , Gastrointestinal Neoplasms/pathology , Humans , Infrared Rays , Injections, Intravenous , Mice , Tissue Distribution , Xenograft Model Antitumor Assays
3.
World J Gastroenterol ; 18(30): 3923-30, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22912540

ABSTRACT

Gastric cancer and liver cancer are among the most common malignancies and the leading causes of death worldwide, due to late detection and high recurrence rates. Today, these cancers have a heavy socioeconomic burden, for which a full understanding of their pathophysiological features is warranted to search for promising biomarkers and therapeutic targets. Osteopontin (OPN) is overexpressed in most patients with gastric and liver cancers. Over the past decade, emerging evidence has revealed a correlation of OPN level and clinicopathological features and prognosis in gastric and liver cancers, indicating its potential as an independent prognostic indicator in such patients. Functional studies have verified the potential of OPN knockdown as a therapeutic approach in vitro and in vivo. Furthermore, OPN mediates multifaceted roles in the interaction between cancer cells and the tumor microenvironment, in which many details need further exploration. OPN signaling results in various functions, including prevention of apoptosis, modulation of angiogenesis, malfunction of tumor-associated macrophages, degradation of extracellular matrix, activation of phosphoinositide 3-kinase-Akt and nuclear factor-κB pathways, which lead to tumor formation and progression, particularly in gastric and liver cancers. This editorial aims to review recent findings on alteration in OPN expression and its clinicopathological associations with tumor progression, its potential as a therapeutic target, and putative mechanisms in gastric and liver cancers. Better understanding of the implications of OPN in tumorigenesis might facilitate development of therapeutic regimens to benefit patients with these deadly malignancies.


Subject(s)
Biomarkers, Tumor/blood , Liver Neoplasms/drug therapy , Osteopontin/metabolism , RNA, Small Interfering/therapeutic use , Stomach Neoplasms/drug therapy , Animals , Gene Knockdown Techniques , Gene Silencing , Humans , Liver Neoplasms/metabolism , Osteopontin/genetics , Prognosis , RNA, Messenger/metabolism , Signal Transduction , Stomach Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL