Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 110(7): 1162-1176, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37352861

ABSTRACT

Large-scale genetic association studies have identified multiple susceptibility loci for nasopharyngeal carcinoma (NPC), but the underlying biological mechanisms remain to be explored. To gain insights into the genetic etiology of NPC, we conducted a follow-up study encompassing 6,907 cases and 10,472 controls and identified two additional NPC susceptibility loci, 9q22.33 (rs1867277; OR = 0.74, 95% CI = 0.68-0.81, p = 3.08 × 10-11) and 17q12 (rs226241; OR = 1.42, 95% CI = 1.26-1.60, p = 1.62 × 10-8). The two additional loci, together with two previously reported genome-wide significant loci, 5p15.33 and 9p21.3, were investigated by high-throughput sequencing for chromatin accessibility, histone modification, and promoter capture Hi-C (PCHi-C) profiling. Using luciferase reporter assays and CRISPR interference (CRISPRi) to validate the functional profiling, we identified PHF2 at locus 9q22.33 as a susceptibility gene. PHF2 encodes a histone demethylase and acts as a tumor suppressor. The risk alleles of the functional SNPs reduced the expression of the target gene PHF2 by inhibiting the enhancer activity of its long-range (4.3 Mb) cis-regulatory element, which promoted proliferation of NPC cells. In addition, we identified CDKN2B-AS1 as a susceptibility gene at locus 9p21.3, and the NPC risk allele of the functional SNP rs2069418 promoted the expression of CDKN2B-AS1 by increasing its enhancer activity. The overexpression of CDKN2B-AS1 facilitated proliferation of NPC cells. In summary, we identified functional SNPs and NPC susceptibility genes, which provides additional explanations for the genetic association signals and helps to uncover the underlying genetic etiology of NPC development.


Subject(s)
Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Follow-Up Studies , Genetic Predisposition to Disease , Genetic Association Studies , Polymorphism, Single Nucleotide/genetics , Homeodomain Proteins/genetics
2.
PLoS Pathog ; 20(5): e1012263, 2024 May.
Article in English | MEDLINE | ID: mdl-38805547

ABSTRACT

Genetic variants in Epstein-Barr virus (EBV) have been strongly associated with nasopharyngeal carcinoma (NPC) in South China. However, different results regarding the most significant viral variants, with polymorphisms in EBER2 and BALF2 loci, have been reported in separate studies. In this study, we newly sequenced 100 EBV genomes derived from 61 NPC cases and 39 population controls. Comprehensive genomic analyses of EBV sequences from both NPC patients and healthy carriers in South China were conducted, totaling 279 cases and 227 controls. Meta-analysis of genome-wide association study revealed a 4-bp deletion downstream of EBER2 (coordinates, 7188-7191; EBER-del) as the most significant variant associated with NPC. Furthermore, multiple viral variants were found to be genetically linked to EBER-del forming a risk haplotype, suggesting that multiple viral variants might be associated with NPC pathogenesis. Population structure and phylogenetic analyses further characterized a high risk EBV lineage for NPC revealing a panel of 38 single nucleotide polymorphisms (SNPs), including those in the EBER2 and BALF2 loci. With linkage disequilibrium clumping and feature selection algorithm, the 38 SNPs could be narrowed down to 9 SNPs which can be used to accurately detect the high risk EBV lineage. In summary, our study provides novel insight into the role of EBV genetic variation in NPC pathogenesis by defining a risk haplotype of EBV for downstream functional studies and identifying a single high risk EBV lineage characterized by 9 SNPs for potential application in population screening of NPC.


Subject(s)
Epstein-Barr Virus Infections , Genome, Viral , Herpesvirus 4, Human , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Female , Humans , Male , China/epidemiology , East Asian People , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/genetics , Genetic Variation , Genome-Wide Association Study , Herpesvirus 4, Human/genetics , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/virology , Nasopharyngeal Neoplasms/genetics , Phylogeny , Polymorphism, Single Nucleotide
3.
Br J Cancer ; 127(12): 2166-2174, 2022 12.
Article in English | MEDLINE | ID: mdl-36261585

ABSTRACT

BACKGROUND: The patients with dual oesophageal squamous cell carcinoma (ESCC) and hypopharyngeal cancer (HPC) have poor prognosis; their underlying genetic pathogenesis is unclear. We hypothesise that development of synchronous ESCC/HPC depends on multicentricity or independent origin, rather than multifocality due to local or lateral spreading. METHOD: Multiple region whole-exome sequencing (M-WES) and clonality analysis were used to assess clonal relationship and spatial inter- or intra-tumour heterogeneity (ITH) in 62 tumour regions from eight dual ESCC/HPC and ten ESCC patients. RESULTS: All synchronous ESCC/HPC patients had COSMIC 16 mutation signatures, compared to only 40% ESCC in the current study (p = 0.013) and public data set (n = 165, p = 0.003). This alcohol consumption-related mutation signature 16, commonly involved in multiple alcohol-related cancers, was significantly associated with drinking and alcohol metabolism-related ADH1B rs1229984. The mutational landscape and copy number profiles were completely distinct between the two primary tumours; clonality analysis further suggested the two primary tumours shared no or only one clone accompanying independent subclone evolution. M-WES strategy demonstrated higher sensitivity and accuracy for detection of mutational prevalence and the late branch mutations among different regions in the ESCC tumours, compared to traditional sequencing analysis based on single biopsy strategy. Patients with high ITH assessed by cancer cell fraction analysis after M-WES were significantly associated with both relapse and survival. CONCLUSIONS: Our hypothesis-generating M-WES ITH assessment data have implications for prognostication. Collectively, our findings support multicentric independent clonal evolution, the field cancerisation theory, and suggest novel insights implicating an aetiologic role of alcohol metabolism in dual ESCC/HPC carcinogenesis.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Hypopharyngeal Neoplasms , Humans , Hypopharyngeal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Neoplasms/genetics , Mutation , Alcohol Drinking/adverse effects , Alcohol Drinking/genetics
4.
Proc Natl Acad Sci U S A ; 116(28): 14144-14153, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31235597

ABSTRACT

Epstein-Barr virus (EBV) induces histone modifications to regulate signaling pathways involved in EBV-driven tumorigenesis. To date, the regulatory mechanisms involved are poorly understood. In this study, we show that EBV infection of epithelial cells is associated with aberrant histone modification; specifically, aberrant histone bivalent switches by reducing the transcriptional activation histone mark (H3K4me3) and enhancing the suppressive mark (H3K27me3) at the promoter regions of a panel of DNA damage repair members in immortalized nasopharyngeal epithelial (NPE) cells. Sixteen DNA damage repair family members in base excision repair (BER), homologous recombination, nonhomologous end-joining, and mismatch repair (MMR) pathways showed aberrant histone bivalent switches. Among this panel of DNA repair members, MLH1, involved in MMR, was significantly down-regulated in EBV-infected NPE cells through aberrant histone bivalent switches in a promoter hypermethylation-independent manner. Functionally, expression of MLH1 correlated closely with cisplatin sensitivity both in vitro and in vivo. Moreover, seven BER members with aberrant histone bivalent switches in the EBV-positive NPE cell lines were significantly enriched in pathway analysis in a promoter hypermethylation-independent manner. This observation is further validated by their down-regulation in EBV-infected NPE cells. The in vitro comet and apurinic/apyrimidinic site assays further confirmed that EBV-infected NPE cells showed reduced DNA damage repair responsiveness. These findings suggest the importance of EBV-associated aberrant histone bivalent switch in host cells in subsequent suppression of DNA damage repair genes in a methylation-independent manner.


Subject(s)
Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/genetics , Histone Code/genetics , Histones/genetics , CpG Islands/genetics , DNA Damage/genetics , DNA Methylation/genetics , DNA Mismatch Repair/genetics , DNA Repair/genetics , Epithelial Cells/metabolism , Epithelial Cells/virology , Epstein-Barr Virus Infections/pathology , Epstein-Barr Virus Infections/virology , Gene Expression Regulation/genetics , Herpesvirus 4, Human/pathogenicity , Homologous Recombination/genetics , Humans , MutL Protein Homolog 1/genetics , Nasopharynx/growth & development , Nasopharynx/pathology , Nasopharynx/virology , Promoter Regions, Genetic
5.
Nutr J ; 20(1): 14, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33531022

ABSTRACT

BACKGROUND: The role of dietary fiber intake on risk of nasopharyngeal carcinoma (NPC) remains unclear. We examined the associations of dietary fiber intake on the risk of NPC adjusting for a comprehensive list of potential confounders. METHODS: Using data from a multicenter case-control study, we included 815 histologically confirmed NPC incident cases and 1502 controls in Hong Kong, China recruited in 2014-2017. Odds ratios (ORs) of NPC (cases vs controls) for dietary fiber intake from different sources at different life periods (age 13-18, age 19-30, and 10 years before recruitment) were evaluated using unconditional logistic regression, adjusting for sex, age, socioeconomic status, smoking and drinking status, occupational hazards, family history of cancer, salted fish, and total energy intake in Model 1, Epstein-Barr virus viral capsid antigen serological status in Model 2, and duration of sun exposure and circulating 25-hydroxyvitamin D in Model 3. RESULTS: Higher intake of total dietary fiber 10 years before recruitment was significantly associated with decreased NPC risk, with demonstrable dose-response relationship (P-values for trend = 0.001, 0.020 and 0.024 in Models 1-3, respectively). The adjusted ORs (95% CI) in the highest versus the lowest quartile were 0.51 (0.38-0.69) in Model 1, 0.48 (0.33-0.69) in Model 2, and 0.48 (0.33-0.70) in Model 3. However, the association was less clear after adjustment of other potential confounders (e.g. EBV) in the two younger periods (age of 13-18 and 19-30 years). Risks of NPC were significantly lower for dietary fiber intake from fresh vegetables and fruits and soybean products over all three periods, with dose-response relationships observed in all Models (P-values for trend for age 13-18, age 19-30 and 10 years before recruitment were, respectively, 0.002, 0.009 and 0.001 for Model1; 0.020, 0.031 and 0.003 for Model 2; and 0.022, 0.037 and 0.004 for Model 3). No clear association of NPC risk with dietary fiber intake from preserved vegetables, fruits and condiments was observed. CONCLUSION: Our study has shown the protective role of dietary fiber from fresh food items in NPC risk, but no association for total dietary fiber intake was observed, probably because total intake also included intake of preserved food. Further studies with detailed dietary information and in prospective settings are needed to confirm this finding, and to explore the possible underlying biological mechanisms.


Subject(s)
Dietary Fiber , Epstein-Barr Virus Infections , Food, Preserved , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Adolescent , Case-Control Studies , China/epidemiology , Herpesvirus 4, Human , Humans , Nasopharyngeal Carcinoma/epidemiology , Nasopharyngeal Neoplasms/epidemiology , Prospective Studies , Risk Factors , Seafood
6.
Int J Cancer ; 146(4): 1042-1051, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31396961

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) occurs with highest frequency in China with over 90% mortality, highlighting the need for early detection and improved treatment strategies. We aimed to identify ESCC cancer predisposition gene(s). Our study included 4,517 individuals. The discovery phase using whole-exome sequencing (WES) included 186 familial ESCC patients from high-risk China. Targeted gene sequencing validation of 598 genes included 3,289 Henan and 1,228 moderate-risk Hong Kong Chinese. A WES approach identified BRCA2 loss-of-function (LOF) mutations in 3.23% (6/186) familial ESCC patients compared to 0.21% (9/4300) in the ExAC East Asians (odds ratio [OR] = 15.89, p = 2.48 × 10-10 ). BRCA2 LOF mutation frequency in the combined Henan cohort has significantly higher prevalence (OR = 10.55, p = 0.0035). Results were independently validated in an ESCC Hong Kong cohort (OR = 10.64, p = 0.022). One Hong Kong pedigree was identified to carry a BRCA2 LOF mutation. BRCA2 inactivation in ESCC was via germline LOF mutations and wild-type somatic allelic loss via loss of heterozygosity. Gene-based association analysis, including LOF mutations and rare deleterious missense variants defined with combined annotation dependent depletion score ≥30, confirmed the genetic predisposition role of BRCA2 (OR = 9.50, p = 3.44 × 10-5 ), and provided new evidence for potential association of ESCC risk with DNA repair genes (POLQ and MSH2), inflammation (TTC39B) and angiogenesis (KDR). Our findings are the first to provide compelling evidence of the role of BRCA2 in ESCC genetic susceptibility in Chinese, suggesting defective homologous recombination is an underlying cause in ESCC pathogenesis, which is amenable to therapeutic options based on synthetic lethality approaches such as targeting BRCA2 with PARP1 inhibitors in ESCC.


Subject(s)
BRCA2 Protein/genetics , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Genes, BRCA2 , Germ-Line Mutation , Adult , Aged , Asian People/genetics , China , Cohort Studies , Exome , Female , Genetic Predisposition to Disease , Humans , Loss of Heterozygosity , Male , Middle Aged , Mutation, Missense , Pedigree , Penetrance
7.
Br J Cancer ; 123(1): 114-125, 2020 07.
Article in English | MEDLINE | ID: mdl-32372027

ABSTRACT

BACKGROUND: Nasopharyngeal carcinoma (NPC) is an important cancer in Hong Kong. We aim to utilise liquid biopsies for serial monitoring of disseminated NPC in patients to compare with PET-CT imaging in detection of minimal residual disease. METHOD: Prospective serial monitoring of liquid biopsies was performed for 21 metastatic patients. Circulating tumour cell (CTC) enrichment and characterisation was performed using a sized-based microfluidics CTC chip, enumerating by immunofluorescence staining, and using target-capture sequencing to determine blood mutation load. PET-CT scans were used to monitor NPC patients throughout their treatment according to EORTC guidelines. RESULTS: The longitudinal molecular analysis of CTCs by enumeration or NGS mutational profiling findings provide supplementary information to the plasma EBV assay for disease progression for good responders. Strikingly, post-treatment CTC findings detected positive findings in 75% (6/8) of metastatic NPC patients showing complete response by imaging, thereby demonstrating more sensitive CTC detection of minimal residual disease. Positive baseline, post-treatment CTC, and longitudinal change of CTCs significantly associated with poorer progression-free survival by the Kaplan-Meier analysis. CONCLUSIONS: We show the potential usefulness of application of serial analysis in metastatic NPC of liquid biopsy CTCs, as a novel more sensitive biomarker for minimal residual disease, when compared with imaging.


Subject(s)
Biomarkers, Tumor/blood , Nasopharyngeal Carcinoma/blood , Neoplasm, Residual/blood , Neoplastic Cells, Circulating/metabolism , Adolescent , Adult , Aged , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Nasopharyngeal Carcinoma/diagnostic imaging , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Neoplasm Metastasis , Neoplasm, Residual/genetics , Neoplasm, Residual/pathology , Neoplastic Cells, Circulating/pathology , Positron Emission Tomography Computed Tomography , Progression-Free Survival , Young Adult
8.
Int J Mol Sci ; 21(15)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32752071

ABSTRACT

The Wnt signaling pathway is one of the major signaling pathways used by cancer stem cells (CSC). Ecotropic Viral Integration Site 1 (EVI1) has recently been shown to regulate oncogenic development of tumor cells by interacting with multiple signaling pathways, including the Wnt signaling. In the present study, we found that the Wnt modulator ICG-001 could inhibit the expression of EVI1 in nasopharyngeal carcinoma (NPC) cells. Results from loss-of-function and gain-of-function studies revealed that EVI1 expression positively regulated both NPC cell migration and growth of CSC-enriched tumor spheres. Subsequent studies indicated ICG-001 inhibited EVI1 expression via upregulated expression of miR-96. Results from EVI1 3'UTR luciferase reporter assay confirmed that EVI1 is a direct target of miR-96. Further mechanistic studies revealed that ICG-001, overexpression of miR-96, or knockdown of EVI1 expression could restore the expression of miR-449a. The suppressive effect of miR-449a on the cell migration and tumor sphere formation was confirmed in NPC cells. Taken together, the miR-96/EVI1/miR-449a axis is a novel pathway involved in ICG-001-mediated inhibition of NPC cell migration and growth of the tumor spheres.


Subject(s)
MDS1 and EVI1 Complex Locus Protein/genetics , MicroRNAs/genetics , Nasopharyngeal Carcinoma/genetics , 3' Untranslated Regions , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Nasopharyngeal Carcinoma/pathology , Neoplastic Stem Cells/metabolism , Wnt Signaling Pathway/genetics
9.
Int J Cancer ; 144(12): 3031-3042, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30536939

ABSTRACT

Whether certain variants of Epstein-Barr virus (EBV) are linked to the pathogenesis of nasopharyngeal carcinoma (NPC), which shows a marked geographic restriction, remains an unresolved issue. We performed a case-control study comparing genomic sequences of EBV isolated from saliva samples of 142 population carriers with those from primary tumour biopsies derived from 62 patients with NPC of Hong Kong. Cluster analysis discovered five EBV subgroups 1A-C and 2A-B amongst the population carriers in contrast to the predominance of 1A and -B in the majority of NPC. Genome-wide association study (GWAS) identified a panel of NPC-associated single nucleotide polymorphisms (SNPs) and indels in the EBER locus. The most significant polymorphism, which can be found in 96.8% NPC cases and 40.1% population carriers of Hong Kong, is a four-base-deletion polymorphism downstream of EBER2 (EBER-del) from coordinates 7188-7191 (p = 1.91 × 10-7 ). In addition, the predicted secondary structure of EBER2 is altered with likely functional consequence in nearly all NPC cases. Using the SNPs and indels associated with NPC, genetic risk score is assigned for each EBV variant. EBV variants with high genetic risk score are found to be much more prevalent in Hong Kong Chinese than individuals of other geographic regions and in NPC than other EBV-associated cancers. We conclude that high risk EBV variants with polymorphisms in the EBER locus, designated as HKNPC-EBERvar, are strongly associated with NPC. Further investigation of the biological function and potential clinical application of these newly identified polymorphisms in NPC and other EBV-associated cancers is warranted.


Subject(s)
Herpesvirus 4, Human/genetics , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Neoplasms/virology , RNA, Viral/genetics , Carrier State/virology , Case-Control Studies , DNA, Viral/genetics , Epstein-Barr Virus Infections/virology , Genetic Loci , Genome, Viral , Genome-Wide Association Study , Haplotypes , Herpesvirus 4, Human/classification , Herpesvirus 4, Human/isolation & purification , Hong Kong , Humans , Polymorphism, Single Nucleotide , Principal Component Analysis , Saliva/virology
10.
Proc Natl Acad Sci U S A ; 113(12): 3317-22, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26951679

ABSTRACT

Multiple factors, including host genetics, environmental factors, and Epstein-Barr virus (EBV) infection, contribute to nasopharyngeal carcinoma (NPC) development. To identify genetic susceptibility genes for NPC, a whole-exome sequencing (WES) study was performed in 161 NPC cases and 895 controls of Southern Chinese descent. The gene-based burden test discovered an association between macrophage-stimulating 1 receptor (MST1R) and NPC. We identified 13 independent cases carrying the MST1R pathogenic heterozygous germ-line variants, and 53.8% of these cases were diagnosed with NPC aged at or even younger than 20 y, indicating that MST1R germline variants are relevant to disease early-age onset (EAO) (age of ≤20 y). In total, five MST1R missense variants were found in EAO cases but were rare in controls (EAO vs. control, 17.9% vs. 1.2%, P = 7.94 × 10(-12)). The validation study, including 2,160 cases and 2,433 controls, showed that the MST1R variant c.G917A:p.R306H is highly associated with NPC (odds ratio of 9.0). MST1R is predominantly expressed in the tissue-resident macrophages and is critical for innate immunity that protects organs from tissue damage and inflammation. Importantly, MST1R expression is detected in the ciliated epithelial cells in normal nasopharyngeal mucosa and plays a role in the cilia motility important for host defense. Although no somatic mutation of MST1R was identified in the sporadic NPC tumors, copy number alterations and promoter hypermethylation at MST1R were often observed. Our findings provide new insights into the pathogenesis of NPC by highlighting the involvement of the MST1R-mediated signaling pathways.


Subject(s)
Exome , Genetic Predisposition to Disease , Nasopharyngeal Neoplasms/genetics , Receptor Protein-Tyrosine Kinases/genetics , Sequence Analysis , Adolescent , Adult , Carcinoma , Case-Control Studies , Female , Humans , Male , Middle Aged , Nasopharyngeal Carcinoma , Young Adult
11.
Proc Natl Acad Sci U S A ; 113(40): 11283-11288, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27647909

ABSTRACT

Nasopharyngeal carcinoma (NPC) is an epithelial malignancy with a unique geographical distribution. The genomic abnormalities leading to NPC pathogenesis remain unclear. In total, 135 NPC tumors were examined to characterize the mutational landscape using whole-exome sequencing and targeted resequencing. An APOBEC cytidine deaminase mutagenesis signature was revealed in the somatic mutations. Noticeably, multiple loss-of-function mutations were identified in several NF-κB signaling negative regulators NFKBIA, CYLD, and TNFAIP3 Functional studies confirmed that inhibition of NFKBIA had a significant impact on NF-κB activity and NPC cell growth. The identified loss-of-function mutations in NFKBIA leading to protein truncation contributed to the altered NF-κB activity, which is critical for NPC tumorigenesis. In addition, somatic mutations were found in several cancer-relevant pathways, including cell cycle-phase transition, cell death, EBV infection, and viral carcinogenesis. These data provide an enhanced road map for understanding the molecular basis underlying NPC.


Subject(s)
Carcinoma/genetics , Exome Sequencing/methods , Loss of Function Mutation/genetics , NF-kappa B/metabolism , Nasopharyngeal Neoplasms/genetics , Signal Transduction/genetics , Cell Line, Tumor , Gene Knockdown Techniques , Humans , Mutation Rate , NF-KappaB Inhibitor alpha/metabolism , Nasopharyngeal Carcinoma
12.
Lab Invest ; 98(8): 1093-1104, 2018 08.
Article in English | MEDLINE | ID: mdl-29769697

ABSTRACT

Epstein-Barr virus (EBV) infects more than 90% of the adult human population. Undifferentiated nasopharyngeal carcinoma (NPC) is common in Southeast Asia, with a particularly high incidence among southern Chinese. The EBV genome can be detected in practically all cancer cells in undifferentiated NPC. The role of EBV in pathogenesis of undifferentiated NPC remains elusive. NPC cell lines are known to be difficult to establish in culture. The EBV+ve NPC cell lines, even if established in culture, rapidly lost their EBV episomes upon prolonged propagation. At present, the C666-1 NPC cell line, which is defective in lytic EBV reactivation, is the only EBV+ve NPC cell line available for NPC and EBV research. The need to establish new and representative NPC cell lines is eminent for NPC and EBV research. In this study, we report the use of the Rho-associated kinase inhibitor (Y-27632) has facilitated the establishment of a new EBV+ve NPC cell line from an earlier established NPC xenograft, C17. The C17 cell line was tumorigenic in immune-deficient mice (NOD/SCID). It retained the EBV episomes and could be induced to undergo productive lytic reactivation of EBV to generate infectious virus particles. The C17 cell line represents a new investigative tool for NPC and EBV studies. The ability of C17 to undergo lytic reactivation is unique and opens up the opportunity to examine regulation of latent and lytic infection of EBV and their contributions to NPC pathogenesis.


Subject(s)
Epstein-Barr Virus Infections/pathology , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/pathology , Virus Activation , Animals , Cell Line, Tumor , Epstein-Barr Virus Infections/virology , Genome, Viral/genetics , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/physiology , Host-Pathogen Interactions , Humans , Karyotyping , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Neoplasms/virology , Transplantation, Heterologous , Tumor Burden
13.
Int J Cancer ; 143(9): 2289-2298, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29873071

ABSTRACT

Telomere shortening occurs as an early event in tumorigenesis. The TERT-CLPTM1L locus associates with nasopharyngeal carcinoma (NPC) risk. It remains unknown if leukocyte telomere length (LTL) associates with NPC risk and survival. The relative LTL (rLTL) was measured by quantitative-PCR in 2,996 individuals comprised of 1,284 NPC cases and 1712 matched controls. The odds ratio (OR) and 95% confidence intervals (CI) were calculated by logistic regression. The hazard ratio (HR) and 95% CI were calculated by Cox regression for survival analysis with rLTL and other clinical parameters in 1,243 NPC with a minimum follow-up period of 25 months. NPC patients had significantly shorter telomere length than controls. Shorter rLTL significantly associated with increased NPC risk, when the individuals were dichotomized into long and short telomeres based on median-split rLTL in the control group (OR = 2.317; 95% CI = 1.989-2.700, p = 4.10 × 10-27 ). We observed a significant dose-response association (ptrend  = 3.26 × 10-34 ) between rLTL and NPC risk with OR being 3.555 (95% CI = 2.853-4.429) for the individuals in the first quartile (shortest) compared with normal individuals in the fourth quartile (longest). A multivariate Cox regression analysis adjusted by age demonstrated an independent effect of rLTL on NPC survival for late-stage NPC patients, when the individuals were categorized into suboptimal rLTL versus the medium rLTL based on a threshold set from normal (HR = 1.471, 95% CI = 1.056-2.048, p = 0.022). Shorter blood telomeres may be markers for higher susceptibility for NPC risk. Suboptimal rLTL may be a poor prognostic factor for advanced NPC patients, as it associates independently with poor survival.


Subject(s)
Asian People/genetics , Leukocytes/pathology , Nasopharyngeal Carcinoma/blood , Nasopharyngeal Carcinoma/mortality , Telomere Shortening/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Child , Female , Follow-Up Studies , Hong Kong , Humans , Leukocytes/metabolism , Male , Middle Aged , Nasopharyngeal Carcinoma/genetics , Prognosis , Retrospective Studies , Risk Factors , Survival Rate , Young Adult
14.
J Virol ; 91(6)2017 03 15.
Article in English | MEDLINE | ID: mdl-28053105

ABSTRACT

Accumulating evidence indicates that oncogenic viral protein plays a crucial role in activating aerobic glycolysis during tumorigenesis, but the underlying mechanisms are largely undefined. Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is a transmembrane protein with potent cell signaling properties and has tumorigenic transformation property. Activation of NF-κB is a major signaling pathway mediating many downstream transformation properties of LMP1. Here we report that activation of mTORC1 by LMP1 is a key modulator for activation of NF-κB signaling to mediate aerobic glycolysis. NF-κB activation is involved in the LMP1-induced upregulation of glucose transporter 1 (Glut-1) transcription and growth of nasopharyngeal carcinoma (NPC) cells. Blocking the activity of mTORC1 signaling effectively suppressed LMP1-induced NF-κB activation and Glut-1 transcription. Interfering NF-κB signaling had no effect on mTORC1 activity but effectively altered Glut-1 transcription. Luciferase promoter assay of Glut-1 also confirmed that the Glut-1 gene is a direct target gene of NF-κB signaling. Furthermore, we demonstrated that C-terminal activating region 2 (CTAR2) of LMP1 is the key domain involved in mTORC1 activation, mainly through IKKß-mediated phosphorylation of TSC2 at Ser939 Depletion of Glut-1 effectively led to suppression of aerobic glycolysis, inhibition of cell proliferation, colony formation, and attenuation of tumorigenic growth property of LMP1-expressing nasopharyngeal epithelial (NPE) cells. These findings suggest that targeting the signaling axis of mTORC1/NF-κB/Glut-1 represents a novel therapeutic target against NPC.IMPORTANCE Aerobic glycolysis is one of the hallmarks of cancer, including NPC. Recent studies suggest a role for LMP1 in mediating aerobic glycolysis. LMP1 expression is common in NPC. The delineation of essential signaling pathways induced by LMP1 in aerobic glycolysis contributes to the understanding of NPC pathogenesis. This study provides evidence that LMP1 upregulates Glut-1 transcription to control aerobic glycolysis and tumorigenic growth of NPC cells through mTORC1/NF-κB signaling. Our results reveal novel therapeutic targets against the mTORC1/NF-κB/Glut-1 signaling axis in the treatment of EBV-infected NPC.


Subject(s)
Glucose Transporter Type 1/biosynthesis , Herpesvirus 4, Human/physiology , Host-Pathogen Interactions , Multiprotein Complexes/metabolism , NF-kappa B/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Viral Matrix Proteins/metabolism , Cell Line , Humans , Mechanistic Target of Rapamycin Complex 1 , Transcription, Genetic
15.
J Pathol ; 242(4): 500-510, 2017 08.
Article in English | MEDLINE | ID: mdl-28608921

ABSTRACT

Oesophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers, owing to a high frequency of metastasis. However, little is known about the genomic landscape of metastatic ESCC. To identify the genetic alterations that underlie ESCC metastasis, whole-exome sequencing was performed for 41 primary tumours and 15 lymph nodes (LNs) with metastatic ESCCs. Eleven cases included matched primary tumours, synchronous LN metastases, and non-neoplastic mucosa. Approximately 50-76% of the mutations identified in primary tumours appeared in the synchronous LN metastases. Metastatic ESCCs harbour frequent mutations of TP53, KMT2D, ZNF750, and IRF5. Importantly, ZNF750 was recurrently mutated in metastatic ESCC. Combined analysis from current and previous genomic ESCC studies indicated more frequent ZNF750 mutation in diagnosed cases with LN metastasis than in those without metastasis (14% versus 3.4%, n = 629, P = 1.78 × 10-5 ). The Cancer Genome Atlas data further showed that ZNF750 genetic alterations were associated with early disease relapse. Previous ESCC studies have demonstrated that ZNF750 knockdown strongly promotes proliferation, migration, and invasion. Collectively, these results suggest a role for ZNF750 as a metastasis suppressor. TP53 is highly mutated in ESCC, and missense mutations are associated with poor overall survival, independently of pathological stage, suggesting that these missense mutations have important functional impacts on tumour progression, and are thus likely to be gain-of-function (GOF) mutations. Additionally, mutations of epigenetic regulators, including KMT2D, TET2, and KAT2A, and chromosomal 6p22 and 11q23 deletions of histone variants, which are important for nucleosome assembly, were detected in 80% of LN metastases. Our study highlights the important role of critical genetic events including ZNF750 mutations, TP53 putative GOF mutations and nucleosome disorganization caused by genetic lesions seen with ESCC metastasis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/secondary , Esophageal Neoplasms/genetics , Esophageal Neoplasms/secondary , Mutation , Carcinoma, Squamous Cell/pathology , DNA Copy Number Variations/genetics , DNA Mutational Analysis/methods , Epigenesis, Genetic/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma , Exome , Genes, p53/genetics , Humans , Kaplan-Meier Estimate , Lymphatic Metastasis , Nucleosomes/genetics , Point Mutation , Telomerase/genetics , Transcription Factors/genetics , Transcriptome/genetics , Tumor Suppressor Proteins
16.
Int J Cancer ; 138(12): 2940-51, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-26856390

ABSTRACT

Esophageal cancer is ranked as the eighth most common cancer and the sixth leading cause of cancer deaths worldwide. To identify candidate tumor suppressor genes related to esophageal squamous cell carcinoma (ESCC) development, a cDNA microarray analysis was performed using paired tumor and nontumor tissue samples from ESCC patients. Differentially expressed in squamous cell carcinoma 1 (DESC1), which belongs to the Type II transmembrane serine protease family, was frequently downregulated in ESCC. This study aims to elucidate the molecular mechanism for the tumor suppressive function of DESC1 in ESCC. We show that DESC1 reduced cell viability and sensitized cells to apoptosis, when cells were under apoptotic stimuli. The proapoptotic effect of DESC1 was mediated through downregulating AKT1 activation and the restoration of AKT activation by the introduction of the constitutively active AKT, myr-AKT, abolished the apoptosis-sensitizing effect of DESC1. DESC1 also reduced EGFR protein level, which was abrogated when the proteolytic function of DESC1 was lost, suggesting that DESC1 cleaved EGFR and downregulated the EGFR/AKT pathway to favor apoptosis. The transmembrane localization and the structural domains provide an opportunity for DESC1 to interact with the extracellular environment. The importance of such interaction was highlighted by the finding that DESC1 reduced cell colony formation ability in three-dimensional culture. In line with this, DESC1 reduced tumor growth kinetics in the in vivo orthotopic tumorigenesis assay. Taken together, our novel findings suggest how DESC1 may suppress ESCC development by sensitizing cells to apoptosis under an apoptotic stimulus through downregulating the EGFR/AKT signaling pathway.


Subject(s)
Carcinoma, Squamous Cell/enzymology , ErbB Receptors/metabolism , Esophageal Neoplasms/enzymology , Membrane Proteins/metabolism , Serine Endopeptidases/metabolism , Animals , Antimetabolites, Antineoplastic/pharmacology , Apoptosis , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Down-Regulation , Drug Resistance, Neoplasm , Esophageal Neoplasms/drug therapy , Fluorouracil/pharmacology , Humans , Mice, Nude , Neoplasm Transplantation , Phosphorylation , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
17.
Int J Cancer ; 138(1): 125-36, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26205347

ABSTRACT

Pan-histone deacetylase (HDAC) inhibitors, which inhibit 11 HDAC isoforms, are widely used to induce Epstein-Barr virus (EBV) lytic cycle in EBV-associated cancers in vitro and in clinical trials. Here, we hypothesized that inhibition of one or several specific HDAC isoforms by selective HDAC inhibitors could potently induce EBV lytic cycle in EBV-associated malignancies such as nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC). We found that inhibition of class I HDACs, particularly HDAC-1, -2 and -3, was sufficient to induce EBV lytic cycle in NPC and GC cells in vitro and in vivo. Among a panel of selective HDAC inhibitors, the FDA-approved HDAC inhibitor romidepsin was found to be the most potent lytic inducer, which could activate EBV lytic cycle at ∼0.5 to 5 nM (versus ∼800 nM achievable concentration in patients' plasma) in more than 75% of cells. Upregulation of p21(WAF1) , which is negatively regulated by class I HDACs, was observed before the induction of EBV lytic cycle. The upregulation of p21(WAF1) and induction of lytic cycle were abrogated by a specific inhibitor of PKC-δ but not the inhibitors of PI3K, MEK, p38 MAPK, JNK or ATM pathways. Interestingly, inhibition of HDAC-1, -2 and -3 by romidepsin or shRNA knockdown could confer susceptibility of EBV-positive epithelial cells to the treatment with ganciclovir (GCV). In conclusion, we demonstrated that inhibition of class I HDACs by romidepsin could potently induce EBV lytic cycle and mediate enhanced cell death with GCV, suggesting potential application of romidepsin for the treatment of EBV-associated cancers.


Subject(s)
Antiviral Agents/pharmacology , Depsipeptides/pharmacology , Ganciclovir/pharmacology , Herpesvirus 4, Human/drug effects , Herpesvirus 4, Human/physiology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Virus Replication/drug effects , Acetylation , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Carcinoma , Cell Death/drug effects , Cell Line , Cell Proliferation/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Disease Models, Animal , Disease Susceptibility , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/virology , Histone Deacetylases/genetics , Histones/metabolism , Humans , MAP Kinase Signaling System/drug effects , Mice , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/virology , Protein Kinase C-delta/metabolism , Signal Transduction/drug effects , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/virology , Virus Activation/drug effects , Xenograft Model Antitumor Assays
18.
Int J Cancer ; 138(5): 1175-85, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26370441

ABSTRACT

NF-κB is a key regulator of inflammatory response and is frequently activated in human cancer including the undifferentiated nasopharyngeal carcinoma (NPC), which is common in Southern China including Hong Kong. Activation of NF-κB is common in NPC and may contribute to NPC development. The role of NF-κB activation in immortalization of nasopharyngeal epithelial (NPE) cells, which may represent an early event in NPC pathogenesis, is unknown. Examination of NF-κB activation in immortalization of NPE cells is of particular interest as the site of NPC is often heavily infiltrated with inflammatory cellular components. We found that constitutive activation of NF-κB signaling is a common phenotype in telomerase-immortalized NPE cell lines. Our results suggest that NF-κB activation promotes the growth of telomerase-immortalized NPE cells, and suppression of NF-κB activity inhibits their proliferation. Furthermore, we observed upregulation of c-Myc, IL-6 and Bmi-1 in our immortalized NPE cells. Inhibition of NF-κB downregulated expression of c-Myc, IL-6 and Bmi-1, suggesting that they are downstream events of NF-κB activation in immortalized NPE cells. We further delineated that EGFR/MEK/ERK/IKK/mTORC1 is the key upstream pathway of NF-κB activation in immortalized NPE cells. Elucidation of events underlying immortalization of NPE cells may provide insights into early events in pathogenesis of NPC. The identification of NF-κB activation and elucidation of its activation mechanism in immortalized NPE cells may reveal novel therapeutic targets for treatment and prevention of NPC.


Subject(s)
NF-kappa B/physiology , Nasopharyngeal Neoplasms/etiology , Nasopharynx/pathology , Cell Line, Tumor , Cell Proliferation , Epithelial Cells , ErbB Receptors/physiology , Humans , MAP Kinase Signaling System , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes/physiology , Polycomb Repressive Complex 1/physiology , Signal Transduction , TOR Serine-Threonine Kinases/physiology
19.
Int J Cancer ; 138(1): 160-70, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26227166

ABSTRACT

Tumor suppressor genes (TSGs) play a prominent role in cancer and are important in the development of nasopharyngeal carcinoma (NPC), which is endemic in Southern China as well as Southeast Asia. Apart from TSGs, aberrant signalling pathways are also commonly associated with tumor progression. Unsurprisingly, the NF-κB pathway is frequently associated with angiogenesis and promoting tumor growth and development. Functional complementation studies using microcell-mediated chromosome transfer helped to identify IKBB as a putative TSG in NPC. IKBB, an inhibitor of NF-κB, has recently been shown to be inversely associated with tumor growth and metastasis via inactivation of the NF-κB pathway, but its suppressive role is still only poorly understood. This study takes the lead in revealing the suppressive role of IKBB in NPC. IKBB is silenced in the majority of NPC tumor tissues in all stages. Its suppressive role is substantiated by perturbation in tumor formation, cell migration and angiogenesis. Interestingly, IKBB not only affects the 'seed', but also influences the 'soil' by downregulating the transcriptional level of proangiogenic factors Rantes, Upar, IL6, and IL8. For the first time, our data establish the importance of a novel tumor suppressive IKBB gene in abrogating angiogenesis in NPC via the NF-κB signalling pathway, which is likely mediated by crosstalk with the Akt/Gsk3ß signalling pathway.


Subject(s)
I-kappa B Proteins/metabolism , NF-kappa B/metabolism , Nasopharyngeal Neoplasms/metabolism , Signal Transduction , Tumor Suppressor Proteins/metabolism , Adult , Aged , Carcinoma , Cell Line, Tumor , Cell Movement/genetics , Cytokines/genetics , Cytokines/metabolism , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , I-kappa B Proteins/genetics , Male , Middle Aged , NF-kappa B/genetics , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/mortality , Nasopharyngeal Neoplasms/pathology , Neoplasm Staging , Neovascularization, Pathologic/genetics , Prognosis , Protein Binding , Proto-Oncogene Proteins c-akt/metabolism , Tumor Suppressor Proteins/genetics
20.
Gastroenterology ; 149(7): 1825-1836.e5, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26302489

ABSTRACT

BACKGROUND & AIMS: The DnaJ (Hsp40) homolog, subfamily B, member 6 (DNAJB6) is part of a family of proteins that regulates chaperone activities. One of its isoforms, DNAJB6a, contains a nuclear localization signal and regulates ß-catenin signaling during breast cancer development. We investigated the role of DNAJB6 in the pathogenesis of esophageal squamous cell carcinoma (ESCC). METHODS: We performed immunohistochemical analyses of primary ESCC samples and lymph node metastases from a cohort of 160 patients who underwent esophagectomy with no preoperative chemoradiotherapy at Hong Kong Queen Mary Hospital. Data were collected on patient outcomes over a median time of 12.1 ± 2.9 months. Retrospective survival association analyses were performed. Wild-type and mutant forms of DNAJB6a were overexpressed in cancer cell lines (KYSE510, KYSE 30TSI, KYSE140, and KYSE70TS), which were analyzed in proliferation and immunoblot assays, or injected subcutaneously into nude mice. Levels of DNAJB6 were knocked down in ESCC cell lines (KYSE450 and T.Tn), immortalized normal esophageal epithelial cell lines (NE3 and NE083), and other cells with short hairpin RNAs, or by genome engineering. Bimolecular fluorescence complementation was used to study interactions between proteins in living cells. RESULTS: In primary ESCC samples, patients whose tumors had high nuclear levels of DNAJB6 had longer overall survival times (19.2 ± 1.8 months; 95% confidence interval [CI], 15.6-22.8 mo) than patients whose tumors had low nuclear levels of DNAJB6 (12.6 ± 1.4 mo; 95% CI, 9.8-15.4 mo; P = .004, log-rank test). Based on Cox regression analysis, patients whose tumors had high nuclear levels of DNAJB6 had a lower risk of death than patients with low levels (hazard ratio, 0.562; 95% CI, 0.379-0.834; P = .004). Based on log-rank analysis and Cox regression analysis, the combination of the nuclear level of DNAJB6 and the presence of lymph node metastases at diagnosis could be used to stratify patients into groups with good or bad outcomes (P < .0005 for both analyses). There was a negative association between the nuclear level of DNAJB6 and the presence of lymph node metastases (P = .022; Pearson χ(2) test). Cancer cell lines that overexpressed DNAJB6a formed tumors more slowly in nude mice than control cells or cells that expressed a mutant form of DNAJB6a that did not localize to the nucleus. DNAJB6 knockdown in cancer cell lines promoted their growth as xenograft tumors in mice. A motif of histidine, proline, and aspartic acid in the J domain of DNAJB6a was required for its tumor-suppressive effects and signaling via AKT1. Loss of DNAJB6a resulted in up-regulation of AKT signaling in cancer cell lines and immortalized esophageal epithelial cells. Expression of a constitutively active form of AKT1 restored proliferation to tumor cells that overexpressed DNAJB6a, and DNAJB6a formed a complex with AKT1 in living cells. The expression of DNAJB6a reduced the sensitivity of ESCC to AKT inhibitors; the expression level of DNAJB6a affected AKT signaling in multiple cancer cell lines. CONCLUSIONS: Nuclear localization of DNAJB6 is associated with longer survival times of patients with ESCC. DNAJB6a reduces AKT signaling, and DNAJB6 expression in cancer cells reduces their proliferation and growth of xenograft tumors in mice. DNAJB6a might be developed as a biomarker for progression of ESCC.


Subject(s)
Carcinoma, Squamous Cell/enzymology , Cell Nucleus/metabolism , Cell Proliferation , Esophageal Neoplasms/enzymology , HSP40 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Nerve Tissue Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Active Transport, Cell Nucleus , Aged , Animals , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/surgery , Cell Line, Tumor , Cell Proliferation/drug effects , Esophageal Neoplasms/genetics , Esophageal Neoplasms/mortality , Esophageal Neoplasms/pathology , Esophageal Neoplasms/surgery , Esophageal Squamous Cell Carcinoma , Esophagectomy , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , HSP40 Heat-Shock Proteins/genetics , Heterografts , Humans , Kaplan-Meier Estimate , Lymphatic Metastasis , Male , Mice, Nude , Middle Aged , Molecular Chaperones/genetics , Mutation , Nerve Tissue Proteins/genetics , Proportional Hazards Models , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , RNA Interference , Retrospective Studies , Risk Factors , Signal Transduction , Time Factors , Transfection , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL