Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Nature ; 624(7991): 366-377, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092913

ABSTRACT

Cytosine DNA methylation is essential in brain development and is implicated in various neurological disorders. Understanding DNA methylation diversity across the entire brain in a spatial context is fundamental for a complete molecular atlas of brain cell types and their gene regulatory landscapes. Here we used single-nucleus methylome sequencing (snmC-seq3) and multi-omic sequencing (snm3C-seq)1 technologies to generate 301,626 methylomes and 176,003 chromatin conformation-methylome joint profiles from 117 dissected regions throughout the adult mouse brain. Using iterative clustering and integrating with companion whole-brain transcriptome and chromatin accessibility datasets, we constructed a methylation-based cell taxonomy with 4,673 cell groups and 274 cross-modality-annotated subclasses. We identified 2.6 million differentially methylated regions across the genome that represent potential gene regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes and regulatory elements in cell types within and across brain regions. Brain-wide spatial transcriptomics data validated the association of spatial epigenetic diversity with transcription and improved the anatomical mapping of our epigenetic datasets. Furthermore, chromatin conformation diversities occurred in important neuronal genes and were highly associated with DNA methylation and transcription changes. Brain-wide cell-type comparisons enabled the construction of regulatory networks that incorporate transcription factors, regulatory elements and their potential downstream gene targets. Finally, intragenic DNA methylation and chromatin conformation patterns predicted alternative gene isoform expression observed in a whole-brain SMART-seq2 dataset. Our study establishes a brain-wide, single-cell DNA methylome and 3D multi-omic atlas and provides a valuable resource for comprehending the cellular-spatial and regulatory genome diversity of the mouse brain.


Subject(s)
Brain , DNA Methylation , Epigenome , Multiomics , Single-Cell Analysis , Animals , Mice , Brain/cytology , Brain/metabolism , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Cytosine/metabolism , Datasets as Topic , Transcription Factors/metabolism , Transcription, Genetic
2.
Nature ; 611(7936): 532-539, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36323788

ABSTRACT

Neuropsychiatric disorders classically lack defining brain pathologies, but recent work has demonstrated dysregulation at the molecular level, characterized by transcriptomic and epigenetic alterations1-3. In autism spectrum disorder (ASD), this molecular pathology involves the upregulation of microglial, astrocyte and neural-immune genes, the downregulation of synaptic genes, and attenuation of gene-expression gradients in cortex1,2,4-6. However, whether these changes are limited to cortical association regions or are more widespread remains unknown. To address this issue, we performed RNA-sequencing analysis of 725 brain samples spanning 11 cortical areas from 112 post-mortem samples from individuals with ASD and neurotypical controls. We find widespread transcriptomic changes across the cortex in ASD, exhibiting an anterior-to-posterior gradient, with the greatest differences in primary visual cortex, coincident with an attenuation of the typical transcriptomic differences between cortical regions. Single-nucleus RNA-sequencing and methylation profiling demonstrate that this robust molecular signature reflects changes in cell-type-specific gene expression, particularly affecting excitatory neurons and glia. Both rare and common ASD-associated genetic variation converge within a downregulated co-expression module involving synaptic signalling, and common variation alone is enriched within a module of upregulated protein chaperone genes. These results highlight widespread molecular changes across the cerebral cortex in ASD, extending beyond association cortex to broadly involve primary sensory regions.


Subject(s)
Autism Spectrum Disorder , Cerebral Cortex , Genetic Variation , Transcriptome , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Neurons/metabolism , RNA/analysis , RNA/genetics , Transcriptome/genetics , Autopsy , Sequence Analysis, RNA , Primary Visual Cortex/metabolism , Neuroglia/metabolism
3.
Nature ; 598(7879): 120-128, 2021 10.
Article in English | MEDLINE | ID: mdl-34616061

ABSTRACT

Mammalian brain cells show remarkable diversity in gene expression, anatomy and function, yet the regulatory DNA landscape underlying this extensive heterogeneity is poorly understood. Here we carry out a comprehensive assessment of the epigenomes of mouse brain cell types by applying single-nucleus DNA methylation sequencing1,2 to profile 103,982 nuclei (including 95,815 neurons and 8,167 non-neuronal cells) from 45 regions of the mouse cortex, hippocampus, striatum, pallidum and olfactory areas. We identified 161 cell clusters with distinct spatial locations and projection targets. We constructed taxonomies of these epigenetic types, annotated with signature genes, regulatory elements and transcription factors. These features indicate the potential regulatory landscape supporting the assignment of putative cell types and reveal repetitive usage of regulators in excitatory and inhibitory cells for determining subtypes. The DNA methylation landscape of excitatory neurons in the cortex and hippocampus varied continuously along spatial gradients. Using this deep dataset, we constructed an artificial neural network model that precisely predicts single neuron cell-type identity and brain area spatial location. Integration of high-resolution DNA methylomes with single-nucleus chromatin accessibility data3 enabled prediction of high-confidence enhancer-gene interactions for all identified cell types, which were subsequently validated by cell-type-specific chromatin conformation capture experiments4. By combining multi-omic datasets (DNA methylation, chromatin contacts, and open chromatin) from single nuclei and annotating the regulatory genome of hundreds of cell types in the mouse brain, our DNA methylation atlas establishes the epigenetic basis for neuronal diversity and spatial organization throughout the mouse cerebrum.


Subject(s)
Brain/cytology , DNA Methylation , Epigenome , Epigenomics , Neurons/classification , Neurons/metabolism , Single-Cell Analysis , Animals , Atlases as Topic , Brain/metabolism , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Cytosine/chemistry , Cytosine/metabolism , Datasets as Topic , Dentate Gyrus/cytology , Enhancer Elements, Genetic/genetics , Gene Expression Profiling , Hippocampus/cytology , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Biological , Neural Pathways , Neurons/cytology
4.
Nature ; 598(7879): 103-110, 2021 10.
Article in English | MEDLINE | ID: mdl-34616066

ABSTRACT

Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain1-3. With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcriptomes and epigenomes from more than 500,000 individual cells in the mouse primary motor cortex, a structure that has an evolutionarily conserved role in locomotion. We developed computational and statistical methods to integrate multimodal data and quantitatively validate cell-type reproducibility. The resulting reference atlas-containing over 56 neuronal cell types that are highly replicable across analysis methods, sequencing technologies and modalities-is a comprehensive molecular and genomic account of the diverse neuronal and non-neuronal cell types in the mouse primary motor cortex. The atlas includes a population of excitatory neurons that resemble pyramidal cells in layer 4 in other cortical regions4. We further discovered thousands of concordant marker genes and gene regulatory elements for these cell types. Our results highlight the complex molecular regulation of cell types in the brain and will directly enable the design of reagents to target specific cell types in the mouse primary motor cortex for functional analysis.


Subject(s)
Epigenomics , Gene Expression Profiling , Motor Cortex/cytology , Neurons/classification , Single-Cell Analysis , Transcriptome , Animals , Atlases as Topic , Datasets as Topic , Epigenesis, Genetic , Female , Male , Mice , Motor Cortex/anatomy & histology , Neurons/cytology , Neurons/metabolism , Organ Specificity , Reproducibility of Results
5.
Nature ; 583(7818): 752-759, 2020 07.
Article in English | MEDLINE | ID: mdl-32728242

ABSTRACT

Cytosine DNA methylation is essential for mammalian development but understanding of its spatiotemporal distribution in the developing embryo remains limited1,2. Here, as part of the mouse Encyclopedia of DNA Elements (ENCODE) project, we profiled 168 methylomes from 12 mouse tissues or organs at 9 developmental stages from embryogenesis to adulthood. We identified 1,808,810 genomic regions that showed variations in CG methylation by comparing the methylomes of different tissues or organs from different developmental stages. These DNA elements predominantly lose CG methylation during fetal development, whereas the trend is reversed after birth. During late stages of fetal development, non-CG methylation accumulated within the bodies of key developmental transcription factor genes, coinciding with their transcriptional repression. Integration of genome-wide DNA methylation, histone modification and chromatin accessibility data enabled us to predict 461,141 putative developmental tissue-specific enhancers, the human orthologues of which were enriched for disease-associated genetic variants. These spatiotemporal epigenome maps provide a resource for studies of gene regulation during tissue or organ progression, and a starting point for investigating regulatory elements that are involved in human developmental disorders.


Subject(s)
DNA Methylation , Epigenome , Fetus/embryology , Fetus/metabolism , Animals , Animals, Newborn , Chromatin/genetics , Chromatin/metabolism , Disease/genetics , Down-Regulation , Enhancer Elements, Genetic/genetics , Epigenetic Repression , Female , Gene Silencing , Humans , Mice , Mice, Inbred C57BL , Models, Animal , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Spatio-Temporal Analysis
6.
Annu Rev Genomics Hum Genet ; 22: 171-197, 2021 08 31.
Article in English | MEDLINE | ID: mdl-33722077

ABSTRACT

Over the past decade, genomic analyses of single cells-the fundamental units of life-have become possible. Single-cell DNA sequencing has shed light on biological questions that were previously inaccessible across diverse fields of research, including somatic mutagenesis, organismal development, genome function, and microbiology. Single-cell DNA sequencing also promises significant future biomedical and clinical impact, spanning oncology, fertility, and beyond. While single-cell approaches that profile RNA and protein have greatly expanded our understanding of cellular diversity, many fundamental questions in biology and important biomedical applications require analysis of the DNA of single cells. Here, we review the applications and biological questions for which single-cell DNA sequencing is uniquely suited or required. We include a discussion of the fields that will be impacted by single-cell DNA sequencing as the technology continues to advance.


Subject(s)
Genome , Genomics , DNA , Humans , RNA , Sequence Analysis, DNA
7.
BMC Genomics ; 23(1): 260, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35379194

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused global disruption of human health and activity. Being able to trace the early outbreak of SARS-CoV-2 within a locality can inform public health measures and provide insights to contain or prevent viral transmission. Investigation of the transmission history requires efficient sequencing methods and analytic strategies, which can be generally useful in the study of viral outbreaks. METHODS: The County of Los Angeles (hereafter, LA County) sustained a large outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To learn about the transmission history, we carried out surveillance viral genome sequencing to determine 142 viral genomes from unique patients seeking care at the University of California, Los Angeles (UCLA) Health System. 86 of these genomes were from samples collected before April 19, 2020. RESULTS: We found that the early outbreak in LA County, as in other international air travel hubs, was seeded by multiple introductions of strains from Asia and Europe. We identified a USA-specific strain, B.1.43, which was found predominantly in California and Washington State. While samples from LA County carried the ancestral B.1.43 genome, viral genomes from neighboring counties in California and from counties in Washington State carried additional mutations, suggesting a potential origin of B.1.43 in Southern California. We quantified the transmission rate of SARS-CoV-2 over time, and found evidence that the public health measures put in place in LA County to control the virus were effective at preventing transmission, but might have been undermined by the many introductions of SARS-CoV-2 into the region. CONCLUSION: Our work demonstrates that genome sequencing can be a powerful tool for investigating outbreaks and informing the public health response. Our results reinforce the critical need for the USA to have coordinated inter-state responses to the pandemic.


Subject(s)
COVID-19 , COVID-19/epidemiology , Disease Outbreaks , Genomics , Humans , Los Angeles/epidemiology , SARS-CoV-2/genetics
8.
Nat Methods ; 16(10): 999-1006, 2019 10.
Article in English | MEDLINE | ID: mdl-31501549

ABSTRACT

Dynamic three-dimensional chromatin conformation is a critical mechanism for gene regulation during development and disease. Despite this, profiling of three-dimensional genome structure from complex tissues with cell-type specific resolution remains challenging. Recent efforts have demonstrated that cell-type specific epigenomic features can be resolved in complex tissues using single-cell assays. However, it remains unclear whether single-cell chromatin conformation capture (3C) or Hi-C profiles can effectively identify cell types and reconstruct cell-type specific chromatin conformation maps. To address these challenges, we have developed single-nucleus methyl-3C sequencing to capture chromatin organization and DNA methylation information and robustly separate heterogeneous cell types. Applying this method to >4,200 single human brain prefrontal cortex cells, we reconstruct cell-type specific chromatin conformation maps from 14 cortical cell types. These datasets reveal the genome-wide association between cell-type specific chromatin conformation and differential DNA methylation, suggesting pervasive interactions between epigenetic processes regulating gene expression.


Subject(s)
DNA Methylation , Genome, Human , Single-Cell Analysis , Algorithms , Chromatin/metabolism , Datasets as Topic , Epigenesis, Genetic , Gene Expression Regulation , Genome-Wide Association Study , Humans
9.
Nature ; 521(7552): 316-21, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25945737

ABSTRACT

Pluripotency, the ability to generate any cell type of the body, is an evanescent attribute of embryonic cells. Transitory pluripotent cells can be captured at different time points during embryogenesis and maintained as embryonic stem cells or epiblast stem cells in culture. Since ontogenesis is a dynamic process in both space and time, it seems counterintuitive that these two temporal states represent the full spectrum of organismal pluripotency. Here we show that by modulating culture parameters, a stem-cell type with unique spatial characteristics and distinct molecular and functional features, designated as region-selective pluripotent stem cells (rsPSCs), can be efficiently obtained from mouse embryos and primate pluripotent stem cells, including humans. The ease of culturing and editing the genome of human rsPSCs offers advantages for regenerative medicine applications. The unique ability of human rsPSCs to generate post-implantation interspecies chimaeric embryos may facilitate our understanding of early human development and evolution.


Subject(s)
Chimera , Pluripotent Stem Cells/cytology , Animals , Cell Culture Techniques/methods , Cell Line , Embryonic Stem Cells/cytology , Female , Germ Layers/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Male , Mice , Pan troglodytes , Pluripotent Stem Cells/metabolism , Regenerative Medicine , Species Specificity
10.
Nat Methods ; 13(12): 1050-1054, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27749838

ABSTRACT

While genome assembly projects have been successful in many haploid and inbred species, the assembly of noninbred or rearranged heterozygous genomes remains a major challenge. To address this challenge, we introduce the open-source FALCON and FALCON-Unzip algorithms (https://github.com/PacificBiosciences/FALCON/) to assemble long-read sequencing data into highly accurate, contiguous, and correctly phased diploid genomes. We generate new reference sequences for heterozygous samples including an F1 hybrid of Arabidopsis thaliana, the widely cultivated Vitis vinifera cv. Cabernet Sauvignon, and the coral fungus Clavicorona pyxidata, samples that have challenged short-read assembly approaches. The FALCON-based assemblies are substantially more contiguous and complete than alternate short- or long-read approaches. The phased diploid assembly enabled the study of haplotype structure and heterozygosities between homologous chromosomes, including the identification of widespread heterozygous structural variation within coding sequences.


Subject(s)
Diploidy , Genome, Fungal/genetics , Genome, Plant/genetics , Genomics/methods , Polymorphism, Single Nucleotide/genetics , Algorithms , Arabidopsis/genetics , Basidiomycota/genetics , DNA, Fungal/genetics , DNA, Plant/genetics , Haplotypes , Heterozygote , Humans , Sequence Analysis, DNA , Vitis/genetics
11.
Plant J ; 79(1): 67-81, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24779858

ABSTRACT

The moss Physcomitrella patens is an important model organism for evo-devo studies. Here, we determined the genome-wide chromatin landscape of five important histone three (H3) modifications (H3K4me3, H3K27me3, H3K27Ac, H3K9Ac and H3K9me2) and describe the changes to these histone marks in two contrasted situations, developmental transition and abiotic (drought) stress. Integrative analysis of these histone H3 modifications revealed their preferential association into 15 chromatin states (CS) in genic regions of the P. patens genome. Synergistic relationships that influence expression levels were revealed for the three activating marks H3K4me3, H3K27Ac and H3K9Ac, while an antagonistic relationship was found between CS containing the H3K27me3 and H3K27Ac marks, suggesting that H3K27 is a key indexing residue regarding transcriptional output. Concerning the alteration of histone marks in response to developmental transition (juvenile to adult) and drought stress, the three activating marks H3K4me3, H3K27Ac and H3K9Ac show significant changes in both situations. However, changes to H3K27me3 are central only for genes differentially expressed during development. Interestingly, genes induced during drought stress show significant histone mark toggling during developmental transition. This situation suggests that drought induced adult (gametophore expressed) genes are primed to respond to this stress during the juvenile to adult transition.


Subject(s)
Bryopsida/genetics , Chromatin/genetics , Gene Expression Regulation, Developmental , Genome, Plant/genetics , Histones/metabolism , Bryopsida/growth & development , Bryopsida/physiology , Droughts , Gene Expression Profiling , Gene Expression Regulation, Plant , Histones/genetics , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic/genetics , Sequence Analysis, DNA , Stress, Physiological
12.
Plant J ; 73(1): 77-90, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22962860

ABSTRACT

Genome-wide analyses of epigenomic and transcriptomic profiles provide extensive resources for discovering epigenetic regulatory mechanisms. However, the construction of functionally relevant hypotheses from correlative patterns and the rigorous testing of these hypotheses may be challenging. We combined bioinformatics-driven hypothesis building with mutant analyses to identify potential epigenetic mechanisms using the model plant Arabidopsis thaliana. Genome-wide maps of nine histone modifications produced by ChIP-seq were used together with a strand-specific RNA-seq dataset to profile the epigenome and transcriptome of Arabidopsis. Combinatorial chromatin patterns were described by 42 major chromatin states with selected states validated using the re-ChIP assay. The functional relevance of chromatin modifications was analyzed using the ANchored CORrelative Pattern (ANCORP) method and a newly developed state-specific effects analysis (SSEA) method, which interrogates individual chromatin marks in the context of combinatorial chromatin states. Based on results from these approaches, we propose the hypothesis that cytosine methylation (5mC) and histone methylation H3K36me may synergistically repress production of natural antisense transcripts (NATs) in the context of actively expressed genes. Mutant analyses supported this proposed model at a significant proportion of the tested loci. We further identified polymerase-associated factor as a potential repressor for NAT abundance. Although the majority of tested NATs were found to localize to the nucleus, we also found evidence for cytoplasmically partitioned NATs. The significance of the subcellular localization of NATs and their biological functions remain to be defined.


Subject(s)
Arabidopsis/physiology , Chromatin/physiology , Gene Expression Regulation, Plant/physiology , RNA, Antisense/physiology , Arabidopsis/genetics , Chromatin/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Gene Ontology , Oligonucleotide Array Sequence Analysis , RNA, Antisense/genetics , RNA, Plant/genetics , RNA, Plant/physiology
13.
Nucleic Acids Res ; 40(21): e163, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22855559

ABSTRACT

The chromatin structure of eukaryotic telomeres plays an essential role in telomere functions. However, their study might be impaired by the presence of interstitial telomeric sequences (ITSs), which have a widespread distribution in different model systems. We have developed a simple approach to study the chromatin structure of Arabidopsis telomeres independently of ITSs by analyzing ChIP-seq data. This approach could be used to study the chromatin structure of telomeres in some other eukaryotes. The analysis of ChIP-seq experiments revealed that Arabidopsis telomeres have higher density of histone H3 than centromeres, which might reflects their short nucleosomal organization. These experiments also revealed that Arabidopsis telomeres have lower levels of heterochromatic marks than centromeres (H3K9(Me2) and H3K27(Me)), higher levels of some euchromatic marks (H3K4(Me2) and H3K9Ac) and similar or lower levels of other euchromatic marks (H3K4(Me3), H3K36(Me2), H3K36(Me3) and H3K18Ac). Interestingly, the ChIP-seq experiments also revealed that Arabidopsis telomeres exhibit high levels of H3K27(Me3), a repressive mark that associates with many euchromatic genes. The epigenetic profile of Arabidopsis telomeres is closely related to the previously defined chromatin state 2. This chromatin state is found in 23% of Arabidopsis genes, many of which are repressed or lowly expressed. At least, in part, this scenario is similar in rice.


Subject(s)
Chromatin/metabolism , Epigenesis, Genetic , Telomere/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Chromatin/chemistry , Chromatin Immunoprecipitation , Histones/metabolism , Oryza/genetics , Oryza/metabolism , Sequence Analysis, DNA , Telomere/chemistry
14.
Cell Genom ; 4(5): 100545, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38697120

ABSTRACT

Knowing the genes involved in quantitative traits provides an entry point to understanding the biological bases of behavior, but there are very few examples where the pathway from genetic locus to behavioral change is known. To explore the role of specific genes in fear behavior, we mapped three fear-related traits, tested fourteen genes at six quantitative trait loci (QTLs) by quantitative complementation, and identified six genes. Four genes, Lamp, Ptprd, Nptx2, and Sh3gl, have known roles in synapse function; the fifth, Psip1, was not previously implicated in behavior; and the sixth is a long non-coding RNA, 4933413L06Rik, of unknown function. Variation in transcriptome and epigenetic modalities occurred preferentially in excitatory neurons, suggesting that genetic variation is more permissible in excitatory than inhibitory neuronal circuits. Our results relieve a bottleneck in using genetic mapping of QTLs to uncover biology underlying behavior and prompt a reconsideration of expected relationships between genetic and functional variation.


Subject(s)
Fear , Quantitative Trait Loci , Animals , Female , Male , Mice , Behavior, Animal/physiology , Chromosome Mapping , Fear/physiology , Mice, Inbred C57BL , Genetic Complementation Test
15.
bioRxiv ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38260483

ABSTRACT

Knowing the genes involved in quantitative traits provides a critical entry point to understanding the biological bases of behavior, but there are very few examples where the pathway from genetic locus to behavioral change is known. Here we address a key step towards that goal by deploying a test that directly queries whether a gene mediates the effect of a quantitative trait locus (QTL). To explore the role of specific genes in fear behavior, we mapped three fear-related traits, tested fourteen genes at six QTLs, and identified six genes. Four genes, Lsamp, Ptprd, Nptx2 and Sh3gl, have known roles in synapse function; the fifth gene, Psip1, is a transcriptional co-activator not previously implicated in behavior; the sixth is a long non-coding RNA 4933413L06Rik with no known function. Single nucleus transcriptomic and epigenetic analyses implicated excitatory neurons as likely mediating the genetic effects. Surprisingly, variation in transcriptome and epigenetic modalities between inbred strains occurred preferentially in excitatory neurons, suggesting that genetic variation is more permissible in excitatory than inhibitory neuronal circuits. Our results open a bottleneck in using genetic mapping of QTLs to find novel biology underlying behavior and prompt a reconsideration of expected relationships between genetic and functional variation.

16.
bioRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38328094

ABSTRACT

DNA methylation (DNAm), a crucial epigenetic mark, plays a key role in gene regulation, mammalian development, and various human diseases. Single-cell technologies enable the profiling of DNAm states at cytosines within the DNA sequence of individual cells, but they often suffer from limited coverage of CpG sites. In this study, we introduce scMeFormer, a transformer-based deep learning model designed to impute DNAm states for each CpG site in single cells. Through comprehensive evaluations, we demonstrate the superior performance of scMeFormer compared to alternative models across four single-nucleus DNAm datasets generated by distinct technologies. Remarkably, scMeFormer exhibits high-fidelity imputation, even when dealing with significantly reduced coverage, as low as 10% of the original CpG sites. Furthermore, we applied scMeFormer to a single-nucleus DNAm dataset generated from the prefrontal cortex of four schizophrenia patients and four neurotypical controls. This enabled the identification of thousands of differentially methylated regions associated with schizophrenia that would have remained undetectable without imputation and added granularity to our understanding of epigenetic alterations in schizophrenia within specific cell types. Our study highlights the power of deep learning in imputing DNAm states in single cells, and we expect scMeFormer to be a valuable tool for single-cell DNAm studies.

17.
Sci Adv ; 10(21): eadn7655, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781333

ABSTRACT

Few neuropsychiatric disorders have replicable biomarkers, prompting high-resolution and large-scale molecular studies. However, we still lack consensus on a more foundational question: whether quantitative shifts in cell types-the functional unit of life-contribute to neuropsychiatric disorders. Leveraging advances in human brain single-cell methylomics, we deconvolve seven major cell types using bulk DNA methylation profiling across 1270 postmortem brains, including from individuals diagnosed with Alzheimer's disease, schizophrenia, and autism. We observe and replicate cell-type compositional shifts for Alzheimer's disease (endothelial cell loss), autism (increased microglia), and schizophrenia (decreased oligodendrocytes), and find age- and sex-related changes. Multiple layers of evidence indicate that endothelial cell loss contributes to Alzheimer's disease, with comparable effect size to APOE genotype among older people. Genome-wide association identified five genetic loci related to cell-type composition, involving plausible genes for the neurovascular unit (P2RX5 and TRPV3) and excitatory neurons (DPY30 and MEMO1). These results implicate specific cell-type shifts in the pathophysiology of neuropsychiatric disorders.


Subject(s)
Alzheimer Disease , Autistic Disorder , Brain , DNA Methylation , Schizophrenia , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Schizophrenia/genetics , Schizophrenia/pathology , Brain/metabolism , Brain/pathology , Autistic Disorder/genetics , Autistic Disorder/pathology , Male , Female , Genome-Wide Association Study , Aged , Endothelial Cells/metabolism , Endothelial Cells/pathology , Epigenomics/methods , Middle Aged , Aged, 80 and over
18.
Neuron ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838671

ABSTRACT

Altered transcriptional and epigenetic regulation of brain cell types may contribute to cognitive changes with advanced age. Using single-nucleus multi-omic DNA methylation and transcriptome sequencing (snmCT-seq) in frontal cortex from young adult and aged donors, we found widespread age- and sex-related variation in specific neuron types. The proportion of inhibitory SST- and VIP-expressing neurons was reduced in aged donors. Excitatory neurons had more profound age-related changes in their gene expression and DNA methylation than inhibitory cells. Hundreds of genes involved in synaptic activity, including EGR1, were less expressed in aged adults. Genes located in subtelomeric regions increased their expression with age and correlated with reduced telomere length. We further mapped cell-type-specific sex differences in gene expression and X-inactivation escape genes. Multi-omic single-nucleus epigenomes and transcriptomes provide new insight into the effects of age and sex on human neurons.

19.
Cell Genom ; 3(12): 100454, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38116123

ABSTRACT

Relating genetic variants to behavior remains a fundamental challenge. To assess the utility of DNA methylation marks in discovering causative variants, we examined their relationship to genetic variation by generating single-nucleus methylomes from the hippocampus of eight inbred mouse strains. At CpG sequence densities under 40 CpG/Kb, cells compensate for loss of methylated sites by methylating additional sites to maintain methylation levels. At higher CpG sequence densities, the exact location of a methylated site becomes more important, suggesting that variants affecting methylation will have a greater effect when occurring in higher CpG densities than in lower. We found this to be true for a variant's effect on transcript abundance, indicating that candidate variants can be prioritized based on CpG sequence density. Our findings imply that DNA methylation influences the likelihood that mutations occur at specific sites in the genome, supporting the view that the distribution of mutations is not random.

20.
Cell Genom ; 3(7): 100342, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37492103

ABSTRACT

Single-cell sequencing could help to solve the fundamental challenge of linking millions of cell-type-specific enhancers with their target genes. However, this task is confounded by patterns of gene co-expression in much the same way that genetic correlation due to linkage disequilibrium confounds fine-mapping in genome-wide association studies (GWAS). We developed a non-parametric permutation-based procedure to establish stringent statistical criteria to control the risk of false-positive associations in enhancer-gene association studies (EGAS). We applied our procedure to large-scale transcriptome and epigenome data from multiple tissues and species, including the mouse and human brain, to predict enhancer-gene associations genome wide. We tested the functional validity of our predictions by comparing them with chromatin conformation data and causal enhancer perturbation experiments. Our study shows how controlling for gene co-expression enables robust enhancer-gene linkage using single-cell sequencing data.

SELECTION OF CITATIONS
SEARCH DETAIL