Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Biochem Biophys Res Commun ; 671: 87-95, 2023 09 03.
Article in English | MEDLINE | ID: mdl-37300945

ABSTRACT

Stroke is the leading cause of death and long-term disability worldwide. But treatments are not available to promote functional recovery, and efficient therapies need to be investigated. Stem cell-based therapies hold great promise as potential technologies to restore function in brain disorders. Loss of GABAergic interneurons after stroke may result in sensorimotor defects. Here, by transplanting human brain organoids resembling the MGE domain (human MGE organoids, hMGEOs) derived from human induced pluripotent stem cells (hiPSCs) into the infarcted cortex of stroke mice, we found that grafted hMGEOs survived well and primarily differentiated into GABAergic interneurons and significantly restored the sensorimotor deficits of stroke mice for a long time. Our study offers the feasibility of stem cell replacement therapeutics strategy for stroke.


Subject(s)
Induced Pluripotent Stem Cells , Stroke , Humans , Mice , Animals , Induced Pluripotent Stem Cells/physiology , Stroke/therapy , Brain , Interneurons , Cell Differentiation
2.
Acta Pharmacol Sin ; 44(5): 954-968, 2023 May.
Article in English | MEDLINE | ID: mdl-36460834

ABSTRACT

Chronic pain patients often have anxiety disorders, and some of them suffer from anxiety even after analgesic administration. In this study, we investigated the role of AMPAR-mediated synaptic transmission in the ventromedial prefrontal cortex (vmPFC) in chronic pain-induced persistent anxiety in mice and explored potential drug targets. Chronic inflammatory pain was induced in mice by bilateral injection of complete Freund's adjuvant (CFA) into the planta of the hind paws; anxiety-like behaviours were assessed with behavioural tests; S-nitrosylation and AMPAR-mediated synaptic transmission were examined using biochemical assays and electrophysiological recordings, respectively. We found that CFA induced persistent upregulation of AMPAR membrane expression and function in the vmPFC of anxious mice but not in the vmPFC of non-anxious mice. The anxious mice exhibited higher S-nitrosylation of stargazin (an AMPAR-interacting protein) in the vmPFC. Inhibition of S-nitrosylation by bilaterally infusing an exogenous stargazin (C302S) mutant into the vmPFC rescued the surface expression of GluA1 and AMPAR-mediated synaptic transmission as well as the anxiety-like behaviours in CFA-injected mice, even after ibuprofen treatment. Moreover, administration of ZL006, a small molecular inhibitor disrupting the interaction of nNOS and PSD-95 (20 mg·kg-1·d-1, for 5 days, i.p.), significantly reduced nitric oxide production and S-nitrosylation of AMPAR-interacting proteins in the vmPFC, resulting in anxiolytic-like effects in anxious mice after ibuprofen treatment. We conclude that S-nitrosylation is necessary for AMPAR trafficking and function in the vmPFC under chronic inflammatory pain-induced persistent anxiety conditions, and nNOS-PSD-95 inhibitors could be potential anxiolytics specific for chronic inflammatory pain-induced persistent anxiety after analgesic treatment.


Subject(s)
Anxiety , Chronic Pain , Prefrontal Cortex , Receptors, Glutamate , Animals , Mice , Anxiety/etiology , Anxiety/metabolism , Anxiety Disorders , Chronic Pain/complications , Chronic Pain/metabolism , Ibuprofen , Prefrontal Cortex/metabolism , Synaptic Transmission , Receptors, Glutamate/chemistry , Receptors, Glutamate/metabolism , Inflammation/complications , Inflammation/metabolism
3.
J Neurosci ; 41(11): 2523-2539, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33500273

ABSTRACT

Stress-induced depression is common worldwide. NAc, a "reward" center, is recently reported to be critical to confer the susceptibility to chronic social defeat stress (CSDS) and the depression-related outcome. However, the underlying molecular mechanisms have not been well characterized. In this study, we induced depression-like behaviors with CSDS and chronic mild stress in male mice to mimic social and environmental factors, respectively, and observed animal behaviors with social interaction test, tail suspension test, and sucrose preference test. To determine the role of neuronal nitric oxide synthase (nNOS) and its product nitric oxide (NO), we used brain region-specifically nNOS overexpression and stereotaxic injection of NO inhibitor or donor. Moreover, the downstream molecular cyclin-dependent kinase 5 (CDK5) was explored by conditional KO and gene mutation. We demonstrate that nNOS-implicated mechanisms in NAc shell (NAcSh), including increased cell number, increased protein expression levels, and increased specific enzyme activity, contribute the susceptibility to social defeat and the following depression-like behaviors. NAcSh nNOS does not directly respond to chronic mild stress but facilitates the depression-like behaviors. The increased NAcSh nNOS expression after CSDS leads to the social avoidance and depression-like behaviors in defeated mice, which is dependent on the nNOS enzyme activity and NO production. Moreover, we identify the downstream signal in NAcSh. S-nitrosylation of CDK5 by NO contributes to enhanced CDK5 activity, leading to depression-related behaviors in susceptible mice. Therefore, NAcSh nNOS mediates susceptibility to social defeat stress and the depression-like behaviors through CDK5.SIGNIFICANCE STATEMENT Stress-induced depression is common worldwide, and chronic exposure to social and psychological stressors is important cause of human depression. Our study conducted with chronic social defeat stress mice models demonstrates that nNOS in NAcSh is crucial to regulate the susceptibility to social defeat stress and the following depression-like behaviors, indicating NAcSh nNOS as the responding molecule to social factors of depression. Moreover, we discover the downstream mechanism of NAcSh nNOS in mediating the susceptibility is NO and S-nitrosylation of CDK5. Thus, NAcSh nNOS mediates susceptibility to social defeat stress through CDK5 is a potential mechanism for depression, which may interpret how the brain transduces social stress exposure into depression.


Subject(s)
Cyclin-Dependent Kinase 5/metabolism , Nitric Oxide Synthase Type I/metabolism , Nucleus Accumbens/metabolism , Social Defeat , Stress, Psychological/metabolism , Animals , Male , Mice
4.
Mol Psychiatry ; 26(11): 6506-6519, 2021 11.
Article in English | MEDLINE | ID: mdl-33931732

ABSTRACT

Exposure therapy based on the extinction of fear memory is first-line treatment for post-traumatic stress disorder (PTSD). However, fear extinction is relatively easy to learn but difficult to remember, extinguished fear often relapses under a number of circumstances. Here, we report that extinction learning-induced association of neuronal nitric oxide synthase (nNOS) with its carboxy-terminal PDZ ligand (CAPON) in the infralimbic (IL) subregion of medial prefrontal cortex negatively regulates extinction memory and dissociating nNOS-CAPON can prevent the return of extinguished fear in mice. Extinction training significantly increases nNOS-CAPON association in the IL. Disruptors of nNOS-CAPON increase extracellular signal-regulated kinase (ERK) phosphorylation and facilitate the retention of extinction memory in an ERK2-dependent manner. More importantly, dissociating nNOS-CAPON after extinction training enhances long-term potentiation and excitatory synaptic transmission, increases spine density in the IL, and prevents spontaneous recovery, renewal and reinstatement of remote fear of mice. Moreover, nNOS-CAPON disruptors do not affect other types of learning. Thus, nNOS-CAPON can serve as a new target for treating PTSD.


Subject(s)
Extinction, Psychological , Fear , Adaptor Proteins, Signal Transducing/metabolism , Animals , Ligands , Mice , Nitric Oxide Synthase Type I/metabolism
5.
Cereb Cortex ; 31(3): 1707-1718, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33188393

ABSTRACT

Posttraumatic stress disorder subjects usually show impaired recall of extinction memory, leading to extinguished fear relapses. However, little is known about the neural mechanisms underlying the impaired recall of extinction memory. We show here that the activity of dorsal hippocampus (dHPC) to infralimbic (IL) cortex circuit is essential for the recall of fear extinction memory in male mice. There were functional neural projections from the dHPC to IL. Using optogenetic manipulations, we observed that silencing the activity of dHPC-IL circuit inhibited recall of extinction memory while stimulating the activity of dHPC-IL circuit facilitated recall of extinction memory. "Impairment of extinction consolidation caused by" conditional deletion of extracellular signal-regulated kinase 2 (ERK2) in the IL prevented the dHPC-IL circuit-mediated recall of extinction memory. Moreover, silencing the dHPC-IL circuit abolished the effect of intra-IL microinjection of ERK enhancer on the recall of extinction memory. Together, we identify a dHPC to IL circuit that mediates the recall of extinction memory, and our data suggest that the dysfunction of dHPC-IL circuit and/or impaired extinction consolidation may contribute to extinguished fear relapses.


Subject(s)
Extinction, Psychological/physiology , Hippocampus/physiology , Memory/physiology , Neural Pathways/physiology , Prefrontal Cortex/physiology , Animals , Conditioning, Classical , Male , Mice, Inbred C57BL , Stress Disorders, Post-Traumatic/physiopathology
6.
J Neurosci ; 39(29): 5728-5739, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31097621

ABSTRACT

Contextual fear memory becomes less context-specific over time, a phenomenon referred to as contextual fear generalization. Overgeneralization of contextual fear memory is a core symptom of post-traumatic stress disorder (PTSD), but circuit mechanisms underlying the generalization remain unclear. We show here that neural projections from the anterior cingulate cortex (ACC) to ventral hippocampus (vHPC) mediate contextual fear generalization in male mice. Retrieval of contextual fear in a novel context at a remote time point activated cells in the ACC and vHPC, as indicated by significantly increased C-fos+ cells. Using chemogenetic or photogenetic manipulations, we observed that silencing the activity of ACC or vHPC neurons reduced contextual fear generalization at the remote time point, whereas stimulating the activity of ACC or vHPC neurons facilitated contextual fear generalization at a recent time point. We found that ACC neurons projected to the vHPC unidirectionally, and importantly, silencing the activity of projection fibers from the ACC to vHPC inhibited contextual fear generalization at the remote time point. Together, our findings reveal an ACC to vHPC circuit that controls expression of fear generalization and may offer new strategies to prevent or reverse contextual fear generalization in subjects with anxiety disorders, especially in PTSD.SIGNIFICANCE STATEMENT Overgeneralization of contextual fear memory is a cardinal feature of PTSD, but circuit mechanisms underlying it remain unclear. Our study indicates that neural projections from the anterior cingulate cortex to ventral hippocampus control the expression of contextual fear generalization. Thus, manipulating the circuit may prevent or reverse fear overgeneralization in subjects with PTSD.


Subject(s)
Conditioning, Psychological/physiology , Fear/physiology , Fear/psychology , Gyrus Cinguli/physiology , Hippocampus/physiology , Nerve Net/physiology , Animals , Gyrus Cinguli/chemistry , Hippocampus/chemistry , Locomotion/physiology , Male , Mice , Mice, Inbred C57BL , Nerve Net/chemistry
7.
J Neurochem ; 155(6): 679-696, 2020 12.
Article in English | MEDLINE | ID: mdl-32415988

ABSTRACT

Environmental enrichment (EE) is a generally accepted strategy to promote stroke recovery and its beneficial effect is positively correlated with neuroplasticity. However, the mechanisms underlying it remain elusive. Histone deacetylase 2 (HDAC2), a negative regulator of neuroplasticity, is up-regulated after stroke. Thus, we hypothesized that HDAC2 may participate in EE-mediated stroke recovery. In this study, focal stroke was induced by photothrombosis in male mice exposing to EE or standard housing (SH) conditions. Recombinant virus vectors, including Ad-HDAC2-Flag, AAV-CAG-EGFP-Cre, LV-shHDAC2, or their controls were microinjected into the motor cortex at 3 days before stroke. Grid-walking and cylinder tasks were conducted to assess motor function. Western blot and immunostaining were used to uncover the mechanisms underlying EE-mediated stroke recovery. We found that EE exposure reversed stroke-induced HDAC2 up-regulation, implicating HDAC2 in EE-mediated functional recovery. Importantly, EE-dependent stroke recovery was counteracted by over-expressing HDAC2, and HDAC2 knockdown promoted functional recovery from stroke to the similar extent as EE exposure. Moreover, the knockdown of HDAC2 epigenetically enhanced expressions of neurotrophins and neuroplasticity-related proteins, with similar effects as EE, and consequently, whole brain and corticospinal tract (CST) rewiring. Together, our findings indicate that HDAC2 is critical for EE-dependent functional restoration. Precisely targeting HDAC2 may mimic EE and serve as a novel therapeutic strategy for stroke recovery.


Subject(s)
Environment , Histone Deacetylase 2/metabolism , Recovery of Function/physiology , Stroke/enzymology , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Stroke/pathology , Stroke/physiopathology
8.
Stroke ; 50(3): 728-737, 2019 03.
Article in English | MEDLINE | ID: mdl-30727847

ABSTRACT

Background and Purpose- Stroke is a major public health concern worldwide. Although clinical treatments have improved in the acute period after stroke, long-term therapeutics remain limited to physical rehabilitation in the delayed phase. This study is aimed to determine whether nNOS (neuronal NO synthase)-CAPON (carboxy-terminal postsynaptic density-95/discs large/zona occludens-1 ligand of nNOS) interaction may serve as a new therapeutic target in the delayed phase for stroke recovery. Methods- Photothrombotic stroke and transient middle cerebral artery occlusion were induced in mice. Adeno-associated virus (AAV)-cytomegalovirus (CMV)-CAPON-125C-GFP (green fluorescent protein)-3Flag and the other 2 drugs (Tat-CAPON-12C and ZLc-002) were microinjected into the peri-infarct cortex immediately and 4 to 10 days after photothrombotic stroke, respectively. ZLc-002 was also systemically injected 4 to 10 days after transient middle cerebral artery occlusion. Grid-walking task and cylinder task were conducted to assess motor function. Western blotting, immunohistochemistry, Golgi staining, and electrophysiology recordings were performed to uncover the mechanisms. Results- Stroke increased nNOS-CAPON association in the peri-infarct cortex in the delayed period. Inhibiting the ischemia-induced nNOS-CAPON association substantially decreased the number of foot faults in the grid-walking task and forelimb asymmetry in the cylinder task, suggesting the promotion of functional recovery from stroke. Moreover, dissociating nNOS-CAPON significantly facilitated dendritic remodeling and synaptic transmission, indicated by increased dendritic spine density, dendritic branching, and length and miniature excitatory postsynaptic current frequency but did not affect stroke-elicited neuronal loss, infarct size, or cerebral edema, suggesting that nNOS-CAPON interaction may function via regulating structural neuroplasticity, rather than neuroprotection. Furthermore, ZLc-002 reversed the transient middle cerebral artery occlusion-induced impairment of motor function. Conclusions- Our results reveal that nNOS-CAPON coupling can serve as a novel pharmacological target for functional restoration after stroke.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Neuronal Plasticity/genetics , Nitric Oxide Synthase Type I/genetics , Stroke/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Brain Edema/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Dendrites/pathology , Excitatory Postsynaptic Potentials , Infarction, Middle Cerebral Artery/genetics , Mice , Nitric Oxide Synthase Type I/metabolism , Post-Synaptic Density , Psychomotor Performance , Recovery of Function , Synaptic Transmission
9.
Biochem Biophys Res Commun ; 513(1): 248-254, 2019 05 21.
Article in English | MEDLINE | ID: mdl-30954227

ABSTRACT

A typical feature of the contextual fear memory is increased fear generalization with time. Though much attention has been given to the neural structures that underlie the long-term consolidation of a contextual fear memory, the molecular mechanisms regulating fear generalization remain unclear. We observed that retrieval of contextual fear in a novel context at a remote time point increased coupling of neuronal nitric oxide synthase (nNOS) with postsynaptic density-95 (PSD-95) and c-Fos expression in the anterior cingulate cortex (ACC). Disrupting nNOS-PSD-95 coupling in the ACC decreased the expression of Histone deacetylase 2 (HDAC2), and inhibited contextual fear generalization at a remote time point. Together, our findings reveal nNOS-PSD-95 interaction in the ACC could be a promising target to prevent or reverse contextual fear generalization.


Subject(s)
Fear , Guanylate Kinases/metabolism , Gyrus Cinguli/physiology , Membrane Proteins/metabolism , Nitric Oxide Synthase Type I/metabolism , Animals , Fear/physiology , Fear/psychology , Generalization, Psychological , Male , Mice, Inbred C57BL , Protein Interaction Maps
10.
J Pathol ; 244(2): 176-188, 2018 02.
Article in English | MEDLINE | ID: mdl-29053192

ABSTRACT

Mechanisms underlying functional recovery after stroke are little known, and effective drug intervention during the delayed stage is desirable. One potential drug target, the protein-protein interaction between neuronal nitric oxide synthase (nNOS) and postsynaptic density protein 95 (PSD-95), is critical to acute ischaemic damage and neurogenesis. We show that nNOS-PSD-95 dissociation induced by microinjection of a recombinant fusion protein, Tat-nNOS-N1-133 , or systemic administration of a small-molecule, ZL006, from day 4 to day 10 after photothrombotic ischaemia in mice reduced excessive tonic inhibition in the peri-infarct cortex and ameliorated motor functional outcome. We also demonstrated improved neuroplasticity including increased dendrite spine density and synaptogenesis after reducing excessive tonic inhibition by nNOS-PSD-95 dissociation. Levels of gamma-aminobutyric acid (GABA) and GABA transporter-3/4 (GAT-3/4) are increased in the reactive astrocytes in the peri-infarct cortex. The GAT-3/4-selective antagonist SNAP-5114 reduced tonic inhibition and promoted function recovery, suggesting that increased tonic inhibition in the peri-infarct cortex was due to GABA release from reversed GAT-3/4 in reactive astrocytes. Treatments with Tat-nNOS-N1-133 or ZL006 after ischaemia inhibited astrocyte activation and GABA production, prevented the reversal of GAT-3/4, and consequently decreased excessive tonic inhibition and ameliorated functional outcome. The underlying molecular mechanisms were associated with epigenetic inhibition of glutamic acid decarboxylase 67 and monoamine oxidase B expression through reduced NO production. The nNOS-PSD-95 interaction is thus a potential target for functional restoration after stroke and ZL006, a small molecule inhibitor of this interaction, is a promising pharmacological lead compound. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Aminosalicylic Acids/pharmacology , Astrocytes/drug effects , Behavior, Animal/drug effects , Benzylamines/pharmacology , Brain Ischemia/drug therapy , Disks Large Homolog 4 Protein/metabolism , Motor Activity/drug effects , Motor Cortex/drug effects , Neuroprotective Agents/pharmacology , Nitric Oxide Synthase Type I/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Anisoles/pharmacology , Astrocytes/metabolism , Brain Ischemia/enzymology , Brain Ischemia/physiopathology , Brain Ischemia/psychology , Disease Models, Animal , GABA Plasma Membrane Transport Proteins/metabolism , Glutamate Decarboxylase/metabolism , Monoamine Oxidase/metabolism , Motor Cortex/blood supply , Motor Cortex/enzymology , Motor Cortex/physiopathology , Neural Inhibition/drug effects , Neuronal Plasticity/drug effects , Nipecotic Acids/pharmacology , Nitric Oxide/metabolism , Protein Binding , Recombinant Fusion Proteins/pharmacology , Recovery of Function , Secretory Pathway
11.
J Neurosci ; 37(28): 6712-6728, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28592694

ABSTRACT

Narrow therapeutic window limits treatments with thrombolysis and neuroprotection for most stroke patients. Widening therapeutic window remains a critical challenge. Understanding the key mechanisms underlying the pathophysiological events in the peri-infarct area where secondary injury coexists with neuroplasticity over days to weeks may offer an opportunity for expanding the therapeutic window. Here we show that ischemia-induced histone deacetylase 2 (HDAC2) upregulation from 5 to 7 d after stroke plays a crucial role. In this window phase, suppressing HDAC2 in the peri-infarct cortex of rodents by HDAC inhibitors, knockdown or knock-out of Hdac2 promoted recovery of motor function from stroke via epigenetically enhancing cells survival and neuroplasticity of surviving neurons as well as reducing neuroinflammation, whereas overexpressing HDAC2 worsened stroke-induced functional impairment of both WT and Hdac2 conditional knock-out mice. More importantly, inhibiting other isoforms of HDACs had no effect. Thus, the intervention by precisely targeting HDAC2 in this window phase is a novel strategy for the functional recovery of stroke survivors.SIGNIFICANCE STATEMENT Narrow time window phase impedes current therapies for stroke patients. Understanding the key mechanisms underlying secondary injury may open a new window for pharmacological interventions to promote recovery from stroke. Our study indicates that ischemia-induced histone deacetylase 2 upregulation from 5 to 7 d after stroke mediates the secondary functional loss by reducing survival and neuroplasticity of peri-infarct neurons as well as augmenting neuroinflammation. Thus, precisely targeting histone deacetylase 2 in the window phase provides a novel therapeutic strategy for stroke recovery.


Subject(s)
Brain/physiopathology , Histone Deacetylase 2/metabolism , Neurons/enzymology , Stroke/drug therapy , Stroke/physiopathology , Animals , Apoptosis/drug effects , Brain/drug effects , Histone Deacetylase 2/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Molecular Targeted Therapy , Neurons/drug effects , Neuroprotective Agents/pharmacology , Signal Transduction/drug effects , Treatment Outcome , Up-Regulation
12.
Biochem Biophys Res Commun ; 495(2): 1588-1593, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29223397

ABSTRACT

Fear- and anxiety-related psychiatric disorders have been one of the major chronic diseases afflicting patients for decades, and new compounds for treating such disorders remain to be developed. (+)-Borneol, a bicyclic monoterpene found in several species of Artemisia and Dipterocarpaceae, is widely used for anxiety, pain and anesthesia in Chinese medicine. Meanwhile, it can potentiate GABA (γ-aminobutyric acid) activity directly in recombinant GABAA receptors. The present study was to investigate the effects of (+)-Borneol on both contextual and cued fear recall. Interestingly, microinjection of (+)-Borneol into the dorsal hippocampus inhibited 24 h and 7 d contextual fear, whereas its infusion into ventral hippocampus only reduced 24 h cued fear responses. Moreover, microinjection of (+)-Borneol into dorsal but not ventral hippocampus suppressed anxiety-like behaviors in the open field test, light/dark exploration and the elevated plus maze test. As selective GABAA receptor antagonist bicuculline reversed the effect of (+)-Borneol on contextual fear paradigm and the drug potentiated GABA-evoked currents in acute hippocampus slices, modulation of the GABAergic neurotransmission may explain the effects of (+)-Borneol. Our findings suggest that (+)-Borneol can serve as a new therapeutic in fear- and anxiety-related disorders.


Subject(s)
Anxiety/drug therapy , Camphanes/pharmacology , Fear/drug effects , Animals , Anxiety/physiopathology , Anxiety/psychology , Conditioning, Psychological/drug effects , Drugs, Chinese Herbal/pharmacology , Fear/physiology , GABA-A Receptor Agonists/pharmacology , Hippocampus/anatomy & histology , Hippocampus/drug effects , Hippocampus/physiology , Male , Maze Learning/drug effects , Mental Recall/drug effects , Mice , Mice, Inbred C57BL , Plants, Medicinal , Synaptic Transmission/drug effects , gamma-Aminobutyric Acid/metabolism
13.
Biochem Biophys Res Commun ; 493(4): 1560-1566, 2017 12 02.
Article in English | MEDLINE | ID: mdl-28974418

ABSTRACT

Neuronal nitric oxide synthase (nNOS) 1, mainly responsible for NO release in central nervous system (CNS) 2, plays a significant role in multiple physiological functions. However, the function of nNOS+ interneurons in fear learning has not been much explored. Here we focused on the medial ganglionic eminences (MGE) 3-derived nNOS+ interneurons in fear learning. To determine the origin of nNOS+ interneurons, we cultured neurons in vitro from MGE, cortex, lateral ganglionic eminence (LGE) 4, caudal ganglionic eminences (CGE) 5 and preoptic area (POA) 6. The results showed that MGE contained the most abundant precursors of nNOS+ interneurons. Moreover, donor cells from E12.5 embryos demonstrated the highest positive rate of nNOS+ interneurons compared with other embryonic periods (E11.5, E12, E13, E13.5 and E14). Additionally, these cells from E12.5 embryos showed long axonal and abundant dendritic arbors after 10 days culture, indicating the capability to disperse and integrate in host neural circuits after transplantation. To investigate the role of MGE-derived nNOS+ interneurons in fear learning, donor MGE cells were transplanted into dentate gyrus (DG) 7 of nNOS knock-out (nNOS-/-) or wild-type mice. Results showed that the transplantation of MGE cells promoted the acquisition of nNOS-/- but not the wild-type mice, suggesting the importance of nNOS+ neurons in fear acquisition. Moreover, we transplanted MGE cells from nNOS-/- mice or wild-type mice into DG of the nNOS-/- mice and found that only MGE cells from wild-type mice but not the nNOS-/- mice rescued the deficit in acquisition of the nNOS-/- mice, further confirming the positive role of nNOS+ neurons in fear learning.


Subject(s)
Fear/physiology , Interneurons/physiology , Median Eminence/physiology , Nitric Oxide Synthase Type I/physiology , Animals , Behavior, Animal/physiology , Cells, Cultured , Dentate Gyrus/cytology , Dentate Gyrus/physiology , Dentate Gyrus/surgery , Interneurons/cytology , Interneurons/transplantation , Learning/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Neural Stem Cells/transplantation , Nitric Oxide Synthase Type I/deficiency , Nitric Oxide Synthase Type I/genetics , Telencephalon/cytology , Telencephalon/embryology
14.
Biochem Biophys Res Commun ; 493(1): 862-868, 2017 11 04.
Article in English | MEDLINE | ID: mdl-28888982

ABSTRACT

Granule cells in the dentate gyrus regenerate constantly in adult hippocampus and then integrate into neural circuits in the hippocampus thereby providing the neural basis for learning and memory. Promoting the neurogenesis in the hippocampus facilitates learning and memory such as spatial learning, object identification, and extinction learning. The interaction between neuronal nitric oxide synthase (nNOS) and postsynaptic density protein-95 (PSD-95) is reported to negatively regulate neurogenesis in brain, so we hypothesized that disrupting this interaction might facilitate the neurogenesis in the dentate gyrus (DG) and thus enhance the extinction memory retrieval of fear learning. We found that uncoupling the nNOS-PSD-95 complex in remote contextual fear condition promoted both neuronal proliferation and survival in the DG, contributing to an enhanced retrieval of the extinction memory. Moreover, the nNOS-PSD-95 uncoupling-induced neurogenesis may be mediated by the extracellular signal-regulated kinase (ERK) as the phosphorylation level of ERK1/2 was increased after uncoupling. These findings suggest that the nNOS-PSD-95 complex may serve as a novel target for the treatment of post-traumatic stress disorder (PTSD).


Subject(s)
Dentate Gyrus/physiology , Extinction, Psychological/physiology , Fear/physiology , Guanylate Kinases/metabolism , Membrane Proteins/metabolism , Mental Recall/physiology , Nitric Oxide Synthase Type I/metabolism , Animals , Disks Large Homolog 4 Protein , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Net/physiology
15.
J Neurosci Res ; 95(12): 2409-2419, 2017 12.
Article in English | MEDLINE | ID: mdl-28512996

ABSTRACT

New strategies must be developed to resolve the problems of stroke treatment. In recent years, stem cell-based therapy after stroke has come into the public and academic lens. Previously we have shown that uncoupling neuronal nitric oxide synthase (nNOS) from the postsynaptic density protein-95 (PSD-95) by ZL006, a small molecular compound, can ameliorate ischemic damage and promote neuronal differentiation of endogenous neural stem cells (NSCs) in focal cerebral ischemic male rats. In this study, we transplanted exogenous NSCs into the ipsilateral hemisphere of male rats in combination with ZL006 treatment after ischemic stroke. We show that ZL006 treatment facilitates the migration of transplanted NSCs into the ischemia-injured area and promotes neuronal differentiation of these cells, which is not due to a direct effect of ZL006 on exogenous NSCs but is associated with increased phosphorylation of cAMP response element-binding protein (CREB) in neurons and favorable microenvironment. Moreover, improved functional outcome in the ZL006-treated group was also found. Taken together, our data indicate that ZL006, uncoupling nNOS-PSD-95 in neurons, positively regulates the fate of transplanted NSCs and benefits the functional outcome after stroke in male rats.


Subject(s)
Aminosalicylic Acids/pharmacology , Benzylamines/pharmacology , Cell Differentiation/drug effects , Cell Movement/drug effects , Neural Stem Cells/drug effects , Neuroprotective Agents/pharmacology , Stem Cell Transplantation/methods , Stroke/pathology , Animals , Male , Rats , Rats, Sprague-Dawley
16.
J Neurosci ; 34(40): 13535-48, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25274829

ABSTRACT

Stroke is a major public health concern. The lack of effective therapies heightens the need for new therapeutic targets. Mammalian brain has the ability to rewire itself to restore lost functionalities. Promoting regenerative repair, including neurogenesis and dendritic remodeling, may offer a new therapeutic strategy for the treatment of stroke. Here, we report that interaction of neuronal nitric oxide synthase (nNOS) with the protein postsynaptic density-95 (PSD-95) negatively controls regenerative repair after stroke in rats. Dissociating nNOS-PSD-95 coupling in neurons promotes neuronal differentiation of neural stem cells (NSCs), facilitates the migration of newborn cells into the injured area, and enhances neurite growth of newborn neurons and dendritic spine formation of mature neurons in the ischemic brain of rats. More importantly, blocking nNOS-PSD-95 binding during the recovery stage improves stroke outcome via the promotion of regenerative repair in rats. Histone deacetylase 2 in NSCs may mediate the role of nNOS-PSD-95 association. Thus, nNOS-PSD-95 can serve as a target for regenerative repair after stroke.


Subject(s)
Infarction, Middle Cerebral Artery/surgery , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Neural Stem Cells/transplantation , Nitric Oxide Synthase Type I/metabolism , Regeneration/physiology , Animals , Brain/pathology , Brain/ultrastructure , Cell Differentiation/physiology , Cells, Cultured , Cerebral Cortex/cytology , Coculture Techniques , Disease Models, Animal , Disks Large Homolog 4 Protein , Embryo, Mammalian , Glucose/deficiency , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Hypoxia/physiopathology , Infarction, Middle Cerebral Artery/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Stem Cells/physiology , Neurogenesis/physiology , Neurons/metabolism , Neurons/pathology , Neurons/ultrastructure , Nitric Oxide Synthase Type I/genetics , Rats , Rats, Sprague-Dawley
17.
Stroke ; 46(5): 1352-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25851770

ABSTRACT

BACKGROUND AND PURPOSE: Previous studies reported that Tat-NR2B9c, a peptide disrupting the N-methyl-d-aspartate receptor-postsynaptic density protein-95 interaction, reduced ischemic damage in the acute phase after stroke. However, its effect in the subacute phase is unknown. The aim of this study is to determine whether disrupting the N-methyl-d-aspartate receptor-postsynaptic density protein-95 interaction in the subacute phase promotes recovery after stroke. METHODS: Studies were performed on Sprague-Dawley rats or nNOS(-/-) mice, and experimental ischemic stroke was induced by middle cerebral artery occlusion. Animals were treated with drugs starting at day 4 after ischemia. Sensorimotor functions and spatial learning and memory ability were assessed after drug treatment. Then, rats were euthanized for morphological observation and biochemical tests. RESULTS: Disrupting the N-methyl-d-aspartate receptor-postsynaptic density protein-95 interaction with Tat-HA-NR2B9c significantly ameliorated the ischemia-induced impairments of spatial memory and sensorimotor functions in rats during subacute stage but did not improve stroke outcome in nNOS(-/-) mice. Consistent with the functional recovery, Tat-HA-NR2B9c substantially increased neurogenesis in the dentate gyrus and dendritic spine density of mature neurons in the motor cortex of rats, meanwhile, reversed the ischemia-induced formation of S-nitrosylation-cyclin-dependent kinase 5 and increased cyclin-dependent kinase 5 activity in ipsilateral hippocampus. However, directly blocking N-methyl-d-aspartate receptors with MK-801 or Ro 25-6981 did not show the beneficial effects above. CONCLUSIONS: Dissociating N-methyl-d-aspartate receptor-postsynaptic density protein-95 coupling by Tat-HA-NR2B9c in the subacute phase after stroke promotes functional recovery, probably because of that it increases neurogenesis and dendritic spine density of mature neurons via regulating cyclin-dependent kinase 5 in the ischemic brain.


Subject(s)
Neuroprotective Agents/therapeutic use , Peptides/therapeutic use , Stroke/drug therapy , Animals , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Cognition/drug effects , Cyclin-Dependent Kinase 5/metabolism , Dendritic Spines/ultrastructure , Dentate Gyrus/pathology , Disks Large Homolog 4 Protein , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Male , Maze Learning/drug effects , Membrane Proteins/antagonists & inhibitors , Motor Cortex/pathology , Neurogenesis/drug effects , Neuroprotective Agents/administration & dosage , Nitric Oxide Synthase Type I/metabolism , Peptides/administration & dosage , Psychomotor Performance/drug effects , Rats , Rats, Sprague-Dawley , Recovery of Function , Sensation/drug effects , Stroke/prevention & control
18.
Proc Natl Acad Sci U S A ; 109(35): 14224-9, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22891311

ABSTRACT

Mechanisms underlying the female preponderance in affective disorders are poorly understood. Here we show that hippocampal nitric oxide (NO) plays a role in the sex difference of depression-like behaviors in rodents. Female mice had substantially lower NO production in the hippocampus and were significantly more likely to display negative affective behaviors than their male littermates. Eliminating the difference in the basal hippocampal NO level between male and female mice mended the sex gap of affective behaviors. Estradiol exerted a positive control on hippocampal NO production via estrogen receptor-ß-mediated neuronal NO synthase expression. Thus, low estrogen in the female hippocampus accounts for lower local NO than in the male hippocampus. Although estrogen has important significance in modulating affective behaviors, it is not estrogen but NO in the hippocampus that mediates the sex difference of affective behaviors directly, because hippocampal NO was necessary for the behavioral effects of estradiol, and NO was an independent factor in modulating behaviors. Stress promoted hippocampal NO production in males because of glucocorticoid release, thus leading to local NO excess. In contrast, stress suppressed NO production in females because of decreased estrogen, thereby resulting in hippocampal NO shortage. Whereas activating cAMP response element binding protein (CREB) rescued the depression-like effects of the intrahippocampal NO donor diethylenetriamine/nitric oxide adduct (DETA/NONOate), inactivating CREB abolished the antidepressant-like effects of the intrahippocampal NO donor DETA/NONOate. Our findings suggest a molecular mechanism underlying the sex difference of affective behaviors.


Subject(s)
Behavior, Animal/physiology , Hippocampus/physiology , Mood Disorders/physiopathology , Nitric Oxide/physiology , Sex Characteristics , Androgens/pharmacology , Androgens/physiology , Animals , CREB-Binding Protein/physiology , Chronic Disease , Corticosterone/pharmacology , Depressive Disorder/physiopathology , Estradiol/pharmacology , Estradiol/physiology , Estrogens/pharmacology , Estrogens/physiology , Female , Hippocampus/cytology , Male , Mice , Mice, Inbred Strains , Neurons/drug effects , Neurons/physiology , Organ Culture Techniques , Ovariectomy , Stress, Psychological/physiopathology , Testosterone/pharmacology , Testosterone/physiology
19.
NPJ Regen Med ; 8(1): 27, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37253754

ABSTRACT

Stroke usually causes prolonged or lifelong disability, owing to the permanent loss of infarcted tissue. Although a variety of stem cell transplantation has been explored to improve neuronal defect behavior by enhancing neuroplasticity, it remains unknown whether the infarcted tissue can be reconstructed. We here cultured human cerebral organoids derived from human pluripotent stem cells (hPSCs) and transplanted them into the junction of the infarct core and the peri-infarct zone of NOD-SCID mice subjected to stroke. Months later, we found that the grafted organoids survived well in the infarcted core, differentiated into target neurons, repaired infarcted tissue, sent axons to distant brain targets, and integrated into the host neural circuit and thereby eliminated sensorimotor defect behaviors of stroke mice, whereas transplantation of dissociated single cells from organoids failed to repair the infarcted tissue. Our study offers a new strategy for reconstructing infarcted tissue via organoids transplantation thereby reversing stroke-induced disability.

20.
J Affect Disord ; 333: 181-192, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37080493

ABSTRACT

BACKGROUND: The basolateral amygdala (BLA) neurons are primarily glutamatergic and have been associated with emotion regulation. However, little is known about the roles of BLA neurons expressing neuronal nitric oxide synthase (nNOS, Nos1) in the regulation of emotional behaviors. METHODS: Using Nos1-cre mice and chemogenetic and optogenetic manipulations, we specifically silenced or activated Nos1+ or Nos1- neurons in the BLA, or silenced their projections to the anterdorsal bed nucleus of the stria terminalis (adBNST) and ventral hippocampus (vHPC). We measured anxiety behaviors in elevated plus maze (EPM) and open-field test (OFT), and measured depression behaviors in forced swimming test (FST) and tail suspension test (TST). RESULTS: BLA Nos1+ neurons were predominantly glutamatergic, and glutamatergic but not GABAergic Nos1+ neurons were involved in controlling anxiety- and depression-related behaviors. Interestingly, by selectively manipulating the activities of BLA Nos1+ and Nos1- excitatory neurons, we found that they had opposing effects on anxiety- and depression-related behaviors. BLA Nos1+ excitatory neurons projected to the adBNST, this BLA-adBNST circuit controlled the expression of anxiety- and depression-related behaviors, while BLA Nos1- excitatory neurons projected to vHPC, this BLA-vHPC circuit contributed to the expression of anxiety- and depression-related behaviors. Moreover, excitatory vHPC-adBNST circuit antagonized the role of BLA-adBNST circuit in regulating anxiety- and depression-related behaviors. CONCLUSIONS: BLA Nos1+ and Nos1- excitatory neuron subpopulations exert different effects on anxiety- and depression-related behaviors through distinct projection circuits, providing a new insight of BLA excitatory neurons in emotional regulation. LIMITATIONS: We did not perform retrograde labeling from adBNST and vHPC regions.


Subject(s)
Basolateral Nuclear Complex , Mice , Animals , Basolateral Nuclear Complex/metabolism , Depression , Nitric Oxide Synthase Type I/genetics , Nitric Oxide Synthase Type I/metabolism , Anxiety , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL