Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 378
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 626(8000): 779-784, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38383626

ABSTRACT

Moiré superlattices formed by twisted stacking in van der Waals materials have emerged as a new platform for exploring the physics of strongly correlated materials and other emergent phenomena1-5. However, there remains a lack of research on the mechanical properties of twisted-layer van der Waals materials, owing to a lack of suitable strategies for making three-dimensional bulk materials. Here we report the successful synthesis of a polycrystalline boron nitride bulk ceramic with high room-temperature deformability and strength. This ceramic, synthesized from an onion-like boron nitride nanoprecursor with conventional spark plasma sintering and hot-pressing sintering, consists of interlocked laminated nanoplates in which parallel laminae are stacked with varying twist angles. The compressive strain of this bulk ceramic can reach 14% before fracture, about one order of magnitude higher compared with traditional ceramics (less than 1% in general), whereas the compressive strength is about six times that of ordinary hexagonal boron nitride layered ceramics. The exceptional mechanical properties are due to a combination of the elevated intrinsic deformability of the twisted layering in the nanoplates and the three-dimensional interlocked architecture that restricts deformation from propagating across individual nanoplates. The advent of this twisted-layer boron nitride bulk ceramic opens a gate to the fabrication of highly deformable bulk ceramics.

2.
Nature ; 626(7997): 79-85, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38172640

ABSTRACT

Grain boundaries (GBs), with their diversity in both structure and structural transitions, play an essential role in tailoring the properties of polycrystalline materials1-5. As a unique GB subset, {112} incoherent twin boundaries (ITBs) are ubiquitous in nanotwinned, face-centred cubic materials6-9. Although multiple ITB configurations and transitions have been reported7,10, their transition mechanisms and impacts on mechanical properties remain largely unexplored, especially in regard to covalent materials. Here we report atomic observations of six ITB configurations and structural transitions in diamond at room temperature, showing a dislocation-mediated mechanism different from metallic systems11,12. The dominant ITBs are asymmetric and less mobile, contributing strongly to continuous hardening in nanotwinned diamond13. The potential driving forces of ITB activities are discussed. Our findings shed new light on GB behaviour in diamond and covalent materials, pointing to a new strategy for development of high-performance, nanotwinned materials.

3.
Nature ; 607(7919): 486-491, 2022 07.
Article in English | MEDLINE | ID: mdl-35794481

ABSTRACT

Understanding the direct transformation from graphite to diamond has been a long-standing challenge with great scientific and practical importance. Previously proposed transformation mechanisms1-3, based on traditional experimental observations that lacked atomistic resolution, cannot account for the complex nanostructures occurring at graphite-diamond interfaces during the transformation4,5. Here we report the identification of coherent graphite-diamond interfaces, which consist of four basic structural motifs, in partially transformed graphite samples recovered from static compression, using high-angle annular dark-field scanning transmission electron microscopy. These observations provide insight into possible pathways of the transformation. Theoretical calculations confirm that transformation through these coherent interfaces is energetically favoured compared with those through other paths previously proposed1-3. The graphite-to-diamond transformation is governed by the formation of nanoscale coherent interfaces (diamond nucleation), which, under static compression, advance to consume the remaining graphite (diamond growth). These results may also shed light on transformation mechanisms of other carbon materials and boron nitride under different synthetic conditions.

4.
Infect Immun ; 92(3): e0042723, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38391207

ABSTRACT

To address the problem of increased antimicrobial resistance, we developed a glycoconjugate vaccine comprised of O-polysaccharides (OPS) of the four most prevalent serotypes of Klebsiella pneumoniae (KP) linked to recombinant flagellin types A and B (rFlaA and rFlaB) of Pseudomonas aeruginosa (PA). Flagellin is the major subunit of the flagellar filament. Flagella A and B, essential virulence factors for PA, are glycosylated with different glycans. We previously reported that while both rFlaA and rFlaB were highly immunogenic, only the rFlaB antisera reduced PA motility and protected mice from lethal PA infection in a mouse model of thermal injury. Since recombinant flagellin is not glycosylated, we examined the possibility that the glycan on native FlaA (nFlaA) might be critical to functional immune responses. We compared the ability of nFlaA to that of native, deglycosylated FlaA (dnFlaA) to induce functionally active antisera. O glycan was removed from nFlaA with trifluoromethanesulfonic acid. Despite the similar high-titered anti-FlaA antibody levels elicited by nFlaA, rFlaA, and dnFlaA, only the nFlaA antisera inhibited PA motility and protected mice following lethal intraperitoneal bacterial challenge. Both the protective efficacy and carrier protein function of nFlaA were retained when conjugated to KP O1 OPS. We conclude that unlike the case with FlaB O glycan, the FlaA glycan is an important epitope for the induction of functionally active anti-FlaA antibodies.


Subject(s)
Flagellin , Pseudomonas aeruginosa , Mice , Animals , Flagellin/metabolism , Antibodies , Klebsiella pneumoniae , Polysaccharides , Flagella/metabolism , Immune Sera
5.
Anal Chem ; 96(12): 5006-5013, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38484040

ABSTRACT

The development of new imaging and treatment nanoprodrug systems is highly demanded for diagnosis and therapy of liver cancer, a severe disease characterized by a high recurrence rate. Currently, available small molecule drugs are not possible for cancer diagnosis because of the fast diffusion of imaging agents and low efficacy in treatment due to poor water solubility and significant toxic side effects. In this study, we report the development of a tumor microenvironment activatable nanoprodrug system for the diagnosis and treatment of liver cancer. This nanoprodrug system can accumulate in the tumor site and be selectively activated by an excess of hydrogen peroxide (H2O2) in the tumor microenvironment, releasing near-infrared solid-state organic fluorescent probe (HPQCY-1) and phenylboronic acid-modified camptothecin (CPT) prodrug. Both HPQCY-1 and CPT prodrugs can be further activated in tumor sites for achieving more precise in situ near-infrared (NIR) fluorescence imaging and treatment while reducing the toxic effects of drugs on normal tissues. Additionally, the incorporation of hydrophilic multivalent chitosan as a carrier effectively improved the water solubility of the system. This research thus provides a practical new approach for the diagnosis and treatment of liver cancer.


Subject(s)
Liver Neoplasms , Nanoparticles , Prodrugs , Humans , Tumor Microenvironment , Hydrogen Peroxide , Prodrugs/pharmacology , Prodrugs/therapeutic use , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Optical Imaging , Water , Cell Line, Tumor , Camptothecin/pharmacology
6.
BMC Med ; 22(1): 44, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38291431

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) have contributed to a significant advancement in the treatment of cancer, leading to improved clinical outcomes in many individuals with advanced disease. Both preclinical and clinical investigations have shown that ICIs are associated with atherosclerosis and other cardiovascular events; however, the exact mechanism underlying this relationship has not been clarified. METHODS: Patients diagnosed with stages III or IV non-small cell lung cancer (NSCLC) at the Wuhan Union Hospital from March 1, 2020, to April 30, 2022, were included in this retrospective study. Coronary artery calcium (CAC) volume and score were assessed in a subset of patients during non-ECG-gated chest CT scans at baseline and 3, 6, and 12 months after treatment. Propensity score matching (PSM) was performed in a 1:1 ratio to balance the baseline characteristics between the two groups. RESULTS: Overall, 1458 patients (487 with ICI therapy and 971 without ICI therapy) were enrolled in this cardiovascular cohort study. After PSM, 446 patients were included in each group. During the entire period of follow-up (median follow-up 23.1 months), 24 atherosclerotic cardiovascular disease (ASCVD) events (4.9%) occurred in the ICI group, and 14 ASCVD events (1.4%) in the non-ICI group, before PSM; 24 ASCVD events (5.4%) occurred in the ICI group and 5 ASCVD events (1.1%) in the non-ICI group after PSM. The CAC imaging study group comprised 113 patients with ICI therapy and 133 patients without ICI therapy. After PSM, each group consisted of 75 patients. In the ICI group, the CAC volume/score increased from 93.4 mm3/96.9 (baseline) to 125.1 mm3/132.8 (at 12 months). In the non-ICI group, the CAC volume/score was increased from 70.1 mm3/68.8 (baseline) to 84.4 mm3/87.9 (at 12 months). After PSM, the CAC volume/score was increased from 85.1 mm3/76.4 (baseline) to 111.8 mm3/121.1 (12 months) in the ICI group and was increased from 74.9 mm3/76.8 (baseline) to 109.3 mm3/98.7 (12 months) in the non-ICI group. Both cardiovascular events and CAC progression were increased after the initiation of ICIs. CONCLUSIONS: Treatment with ICIs was associated with a higher rate of ASCVD events and a noticeable increase in CAC progression.


Subject(s)
Atherosclerosis , Carcinoma, Non-Small-Cell Lung , Cardiovascular Diseases , Coronary Artery Disease , Lung Neoplasms , Humans , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Coronary Artery Disease/complications , Calcium , Immune Checkpoint Inhibitors/adverse effects , Cardiovascular Diseases/complications , Cohort Studies , Risk Factors , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Retrospective Studies , Risk Assessment/methods , Atherosclerosis/diagnostic imaging , Atherosclerosis/epidemiology , Atherosclerosis/complications
7.
Nat Mater ; 22(8): 958-963, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37337072

ABSTRACT

Dislocation motion, an important mechanism underlying crystal plasticity, is critical for the hardening, processing and application of a wide range of structural and functional materials. For decades, the movement of dislocations has been widely observed in crystalline solids under mechanical loading. However, the goal of manipulating dislocation motion via a non-mechanical field alone remains elusive. Here we present real-time observations of dislocation motion controlled solely by using an external electric field in single-crystalline zinc sulfide-the dislocations can move back and forth depending on the direction of the electric field. We reveal the non-stoichiometric nature of dislocation cores and determine their charge characteristics. Both negatively and positively charged dislocations are directly resolved, and their glide barriers decrease under an electric field, explaining the experimental observations. This study provides direct evidence of dislocation dynamics controlled by a non-mechanical stimulus and opens up the possibility of modulating dislocation-related properties.

8.
Nat Mater ; 22(1): 42-49, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36522415

ABSTRACT

Traditional ceramics or metals cannot simultaneously achieve ultrahigh strength and high electrical conductivity. The elemental carbon can form a variety of allotropes with entirely different physical properties, providing versatility for tuning mechanical and electrical properties in a wide range. Here, by precisely controlling the extent of transformation of amorphous carbon into diamond within a narrow temperature-pressure range, we synthesize an in situ composite consisting of ultrafine nanodiamond homogeneously dispersed in disordered multilayer graphene with incoherent interfaces, which demonstrates a Knoop hardness of up to ~53 GPa, a compressive strength of up to ~54 GPa and an electrical conductivity of 670-1,240 S m-1 at room temperature. With atomically resolving interface structures and molecular dynamics simulations, we reveal that amorphous carbon transforms into diamond through a nucleation process via a local rearrangement of carbon atoms and diffusion-driven growth, different from the transformation of graphite into diamond. The complex bonding between the diamond-like and graphite-like components greatly improves the mechanical properties of the composite. This superhard, ultrastrong, conductive elemental carbon composite has comprehensive properties that are superior to those of the known conductive ceramics and C/C composites. The intermediate hybridization state at the interfaces also provides insights into the amorphous-to-crystalline phase transition of carbon.

9.
Analyst ; 149(3): 638-664, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38170876

ABSTRACT

With the increase in people's living standards, the number of patients suffering from liver injury keeps on increasing. Traditional diagnostic methods can no longer meet the needs of early and accurate diagnosis due to their limitations in application. However, fluorescent probes based on different fluorophores and nanomaterials have been gradually lighting up medical research due to their unique properties, such as high specificity and non-invasiveness. In addition, accurate identification of the different types of liver injury biomarkers can significantly improve the level of early diagnosis. Therefore, this review reviews the fluorescent probes used in the detection of biomarkers of liver injury over recent years and briefly summarizes the corresponding biomarkers of different types of liver injury. Impressively, this review also lists the structures and the response mechanisms of the different probes, and concludes with an outlook, suggesting directions in which improvements can be made. Finally, we hope that this review will contribute to the further development of fluorescent probes for the early diagnosis and assessment of liver injury.


Subject(s)
Fluorescent Dyes , Nanostructures , Humans , Fluorescent Dyes/chemistry , Early Diagnosis , Optical Imaging/methods , Biomarkers
10.
Phys Chem Chem Phys ; 26(15): 11582-11588, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38533831

ABSTRACT

The study aimed to investigate the impact of random fluctuations in Schottky barrier formation at polar interfaces between InGaZnO4 (IGZO) and different metals, particularly in the context of device miniaturization. The investigation revealed that different metals can establish various crystalline IGZO interfaces to achieve Ohmic contact, regardless of their work function. Additionally, the study suggests that introducing In doping at the amorphous IGZO interface can effectively reduce the Schottky barrier when in contact with Al metal. These findings provide theoretical guidance for the miniaturization of source-drain contacts in IGZO devices.

11.
Phys Chem Chem Phys ; 26(14): 10932-10939, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38525965

ABSTRACT

Novel materials displaying multiple exceptional properties are the backbone of the advancement of various industries. In the field of carbon materials, the combination of different properties has been extensively developed to satisfy diverse application scenarios, for instance, conductivity paired with exceptional hardness, outstanding toughness coupled with super-hardness, or heat resistance combined with super-hardness. In this work, a new carbon allotrope, bcc-C40 carbon, was predicted and investigated using first-principles calculations based on density functional theory. The allotrope exhibits unique structural features, including a combination of sp3 hybridized diatomic carbon and four-fold carbon chains. The mechanical and dynamic stability of bcc-C40 carbon has been demonstrated by its elastic constants and phonon spectra. Additionally, bcc-C40 carbon exhibits remarkable mechanical properties, such as zero homogeneous Poisson's ratio, superhardness with a value of 58 GPa, and stress-adaptive toughening. The analysis of the electronic properties demonstrates that bcc-C40 carbon is a semiconductor with an indirect band gap of 3.255 eV within the HSE06 functional, which increases with the increase in pressure. At a pressure of 150 GPa, bcc-C40 carbon transforms into a direct band gap material. These findings suggest the prospective use of bcc-C40 carbon as a superhard material and a novel semiconductor.

12.
Biochem Genet ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334875

ABSTRACT

There is a potential link between rheumatoid arthritis (RA) and idiopathic pulmonary fibrosis (IPF). The aim of this study is to investigate the molecular processes that underlie the development of these two conditions by bioinformatics methods. The gene expression samples for RA (GSE77298) and IPF (GSE24206) were retrieved from the Gene Expression Omnibus (GEO) database. After identifying the overlapping differentially expressed genes (DEGs) for RA and IPF, we conducted functional annotation, protein-protein interaction (PPI) network analysis, and hub gene identification. Finally, we used the hub genes to predict potential medications for the treatment of both disorders. We identified 74 common DEGs for further analysis. Functional analysis demonstrated that cellular components, biological processes, and molecular functions all played a role in the emergence and progression of RA and IPF. Using the cytoHubba plugin, we identified 7 important hub genes, namely COL3A1, SDC1, CCL5, CXCL13, MMP1, THY1, and BDNF. As diagnostic indicators for RA, SDC1, CCL5, CXCL13, MMP1, and THY1 showed favorable values. For IPF, COL3A1, SDC1, CCL5, CXCL13, THY1, and BDNF were favorable diagnostic markers. Furthermore, we predicted 61 Chinese and 69 Western medications using the hub genes. Our research findings demonstrate a shared pathophysiology between RA and IPF, which may provide new insights for more mechanistic research and more effective treatments. These common pathways and hub genes identified in our study offer potential opportunities for developing more targeted therapies that can address both disorders.

13.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732180

ABSTRACT

The Pacific white shrimp, Penaeus vannamei, is highly susceptible to white spot syndrome virus (WSSV). Our study explored the transcriptomic responses of P. vannamei from resistant and susceptible families, uncovering distinct expression patterns after WSSV infection. The analysis revealed a higher number of differentially expressed genes (DEGs) in the susceptible family following WSSV infection compared to the resistant family, when both were evaluated against their respective control groups, indicating that the host resistance of the family line influences the transcriptome. The results also showed that subsequent to an identical duration following WSSV infection, there were more DEGs in P. vannamei with a high viral load than in those with a low viral load. To identify common transcriptomic responses, we profiled DEGs across families at 96 and 228 h post-infection (hpi). The analysis yielded 64 up-regulated and 37 down-regulated DEGs at 96 hpi, with 33 up-regulated and 34 down-regulated DEGs at 228 hpi, showcasing the dynamics of the transcriptomic response over time. Real-time RT-PCR assays confirmed significant DEG expression changes post-infection. Our results offer new insights into shrimp's molecular defense mechanisms against WSSV.


Subject(s)
Disease Resistance , Gene Expression Profiling , Penaeidae , Transcriptome , White spot syndrome virus 1 , Animals , Penaeidae/virology , Penaeidae/genetics , Penaeidae/immunology , White spot syndrome virus 1/genetics , Gene Expression Profiling/methods , Disease Resistance/genetics , Viral Load , Gene Expression Regulation
14.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673934

ABSTRACT

The calmodulin-binding protein 60 (CBP60) family is a gene family unique to plants, and its members play a crucial role in plant defense responses to pathogens and growth and development. Considering that cotton is the primary source of natural cotton textile fiber, the functional study of its CBP60 gene family members is critical. In this research, we successfully identified 162 CBP60 members from the genomes of 21 species. Of these, 72 members were found in four cotton species, divided into four clades. To understand the function of GhCBP60B in cotton in depth, we conducted a detailed analysis of its sequence, structure, cis-acting elements, and expression patterns. Research results show that GhCBP60B is located in the nucleus and plays a crucial role in cotton growth and development and response to salt and drought stress. After using VIGS (virus-induced gene silencing) technology to conduct gene silencing experiments, we found that the plants silenced by GhCBP60B showed dwarf plants and shortened stem nodes, and the expression of related immune genes also changed. In further abiotic stress treatment experiments, we found that GhCBP60B-silenced plants were more sensitive to drought and salt stress, and their POD (peroxidase) activity was also significantly reduced. These results imply the vital role of GhCBP60B in cotton, especially in regulating plant responses to drought and salt stress. This study systematically analyzed CBP60 gene family members through bioinformatics methods and explored in depth the biological function of GhCBP60B in cotton. These research results lay a solid foundation for the future use of the GhCBP60B gene to improve cotton plant type and its drought and salt resistance.


Subject(s)
Calmodulin-Binding Proteins , Gene Expression Regulation, Plant , Gossypium , Stress, Physiological , Calmodulin-Binding Proteins/genetics , Calmodulin-Binding Proteins/metabolism , Droughts , Genome, Plant , Gossypium/genetics , Gossypium/metabolism , Multigene Family , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics
15.
J Environ Manage ; 351: 119911, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38150931

ABSTRACT

Salts including NaCl are the most common food flavoring agents so they are often accumulated in food waste (FW) and have potential impact on anaerobic digestion (AD) of FW. In this study, the enhanced biogas production from two-stage anaerobic digestion (TSAD) of FW by microscale zero-valent iron (ZVI) under different salinity (3, 6, 9, and 15 g NaCl/L) was evaluated. Under salinity stress, ZVI becomes a continue-release electron donor due to the enhanced corrosion and dissolution effect and the slow-down surface passivation, further improving the performance of TSAD. Experimental results revealed that the biogas production including H2 and CH4 from TSAD with 10 g/L ZVI addition was promoted under salinity stress. The maximum H2 and CH4 yield (303.38 mL H2/g-VS and 253.84 mL CH4/g-VS) were observed at the salinity 9 g NaCl/L. Compared with that of zero salinity, they increased by 40.94% and 318.46%, respectively. Additionally, Sedimentibacter, an exoelectrogen that can participate in the direct interspecies electron transfer, also exhibited the highest relative abundance (34.96%) at the salinity 9 g NaCl/L. These findings obtained in this study might be of great importance for understanding the influence of salinity on the enhanced AD by ZVI.


Subject(s)
Iron , Refuse Disposal , Biofuels , Food Loss and Waste , Anaerobiosis , Food , Sodium Chloride , Salinity , Methane , Sewage , Bioreactors
16.
J Environ Manage ; 351: 119742, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38109821

ABSTRACT

China plays a crucial role in responding to global climate change. Provinces are the main sources of energy consumption and greenhouse gas emissions in China's economic and social development. However, it is still unclear how to achieve dual-carbon goals by formulating and implementing local policies to adapt to climate change. In this study, we take Zhejiang Province in China as the research object, based on the LEAP (Low Emissions Analysis Platform) model to construct four social scenarios under different policies, comprehensively considering regional economic characteristics, population, and energy consumption patterns. The results show that to achieve Zhejiang Province's goal of carbon peaking by 2030 while maintaining steady economic growth, additional measures are required to reduce energy consumption intensity or improve the power generation structure. Otherwise, energy demand will increase to 228.06 million tonnes of coal equivalent and carbon emissions will be 487.76 million tonnes in 2050. Moreover, developing clean energy and promoting CCUS technology can continuously reduce carbon emissions to 293.59 and 210.76 million tonnes respectively. The economic viability of CCUS power generation is contingent upon the development of carbon taxes in the future. Once the growth rate reaches 7.2%, power cost will be 167.77 billion RMB and CCUS will become economically advantageous in 2050.


Subject(s)
Carbon , Greenhouse Gases , Carbon/analysis , Carbon Dioxide/analysis , China , Coal , Economic Development
17.
J Am Chem Soc ; 145(37): 20511-20520, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37677844

ABSTRACT

While the complex 7 × 7 structure that arises upon annealing the Si(111) surface is well-known, the mechanism underlying this unusual surface reconstruction has remained a mystery. Here, we report molecular dynamics simulations using a machine-learning force field for Si to investigate the Si(111)-7 × 7 surface reconstruction from the melt. We find that there are two possible pathways for the formation of the 7 × 7 structure. The first path arises from the growth of a faulted half domain from the metastable 5 × 5 phase to the final 7 × 7 structure, while the second path involves the direct formation of the 7 × 7 reconstruction. Both pathways involve the creation of dimers and bridged five-membered rings, followed by the formation of additional dimers and the stabilization of the triangular halves of the unit cell. The corner hole is formed from the joining of several five-member rings. The insertion of atoms below the adatoms to form a dumbbell configuration involves extra atom diffusion or rearrangement during the evolution of triangular halves and dimer formation along the unit cell boundary. Our findings may provide insights for manipulating the surface structure by introducing other atomic species.

18.
Anal Chem ; 95(4): 2452-2459, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36657472

ABSTRACT

For the early diagnosis and effective evaluation of treatment effects of inflammation, a de novo bioanalytical method is urgently needed to monitor the metabolite nitric oxide (NO) associated with inflammatory diseases. However, developing a reliable detection method with excellent water solubility, biocompatibility, long retention time, and blood circulation is still challenging. In this work, we reported for the first time a de novo host-guest self-assembled nanosensor CTA for the quantitative detection and visualization of NO levels in inflammatory models. CTA mainly consists of two parts: (i) an adamantyl-labeled guest small-molecule RN-adH containing a classical response moiety o-phenylenediamine for a chemical-specific response toward NO and fluorophore rhodamine B with excellent optical properties as an internal reference for self-calibration and (ii) a remarkable water-soluble and biocompatible supramolecular ß-cyclodextrin polymer (Poly-ß-CD) host. In the presence of NO, the o-phenylenediamine unit was reacted with NO at a low pH value of ∼7.0, accompanied by changes in the intensity of the two emission peaks corrected for each other and the change in fluorescence color of the CTA solution from fuchsia to pink. Furthermore, CTA was an effective tool for NO detection with a fast response time (∼60 s), high selectivity, and sensitivity (LOD: 22.3 nM). Impressively, the CTA nanosensor has successfully achieved the targeted imaging of NO in living inflammatory RAW 264.7 cells and mice models with satisfactory results, which can provide a powerful molecular tool for the visualization and assessment of the occurrence and development of NO-related inflammatory diseases in complex biosystems.


Subject(s)
Fluorescent Dyes , Nitric Oxide , Animals , Mice , Fluorescent Dyes/chemistry , Phenylenediamines , Water/chemistry
19.
BMC Plant Biol ; 23(1): 409, 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37658295

ABSTRACT

BACKGROUND: Cytokinin oxidase/dehydrogenase (CKX) plays a vital role in response to abiotic stress through modulating the antioxidant enzyme activities. Nevertheless, the biological function of the CKX gene family has yet to be reported in cotton. RESULT: In this study, a total of 27 GhCKXs were identified by the genome-wide investigation and distributed across 18 chromosomes. Phylogenetic tree analysis revealed that CKX genes were clustered into four clades, and most gene expansions originated from segmental duplications. The CKXs gene structure and motif analysis displayed remarkably well conserved among the four groups. Moreover, the cis-acting elements related to the abiotic stress, hormones, and light response were identified within the promoter regions of GhCKXs. Transcriptome data and RT-qPCR showed that GhCKX genes demonstrated higher expression levels in various tissues and were involved in cotton's abiotic stress and phytohormone response. The protein-protein interaction network indicates that the CKX family probably participated in redox regulation, including oxidoreduction or ATP levels, to mediate plant growth and development. Functionally identified via virus-induced gene silencing (VIGS) found that the GhCKX14 gene improved drought resistance by modulating the antioxidant-related activitie. CONCLUSIONS: In this study, the CKX gene family members were analyzed by bioinformatics, and validates the response of GhCKX gene to various phytohormone treatment and abiotic stresses. Our findings established the foundation of GhCKXs in responding to abiotic stress and GhCKX14 in regulating drought resistance in cotton.


Subject(s)
Droughts , Gossypium , Gossypium/genetics , Antioxidants , Phylogeny , Plant Growth Regulators
20.
BMC Plant Biol ; 23(1): 599, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38017370

ABSTRACT

BACKGROUND: Phospholipases As (PLAs) are acyl hydrolases that catalyze the release of free fatty acids in phospholipids and play multiple functions in plant growth and development. The three families of PLAs are: PLA1, PLA2 (sPLA), and patatin-related PLA (pPLA). The diverse functions that pPLAs play in the growth and development of a broad range of plants have been demonstrated by prior studies. METHODS: Genome-wide analysis of the pPLA gene family and screening of genes for expression verification and gene silencing verification were conducted. Additionally, pollen vitality testing, analysis of the pollen expression pattern, and the detection of POD, SOD, CAT, MDA, and H2O2 were performed. RESULT: In this study, 294 pPLAs were identified from 13 plant species, including 46 GhpPLAs that were divided into three subfamilies (I-III). Expression patterns showed that the majority of GhpPLAs were preferentially expressed in the petal, pistil, anther, and ovule, among other reproductive organs. Particularly, GhpPLA23 and GhpPLA44, were found to be potentially important for the reproductive development of G. hirsutum. Functional validation was demonstrated by VIGS which showed that reduced expression levels of GhpPLA23 and GhpPLA44 in the silenced plants were associated with a decrease in pollen activity. Moreover, a substantial shift in ROS and ROS scavengers and a considerable increase in POD, CAT, SOD, and other physiological parameters was found out in these silenced plants. Our results provide plausibility to the hypothesis that GhpPLA23 and GhpPLA44 had a major developmental impact on cotton reproductive systems. These results also suggest that pPLAs are important for G. hirsutum's reproductive development and suggest that they could be employed as potential genes for haploid induction. CONCLUSIONS: The findings of the present research indicate that pPLA genes are essential for the development of floral organs and sperm cells in cotton. Consequently, this family might be important for the reproductive development of cotton and possibly for inducing the plant develop haploid progeny.


Subject(s)
Hydrogen Peroxide , Seeds , Hydrogen Peroxide/metabolism , Reactive Oxygen Species/metabolism , Seeds/metabolism , Plants/metabolism , Genitalia/metabolism , Superoxide Dismutase/metabolism , Gossypium/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL