Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS Pathog ; 19(6): e1011463, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37339156

ABSTRACT

Tomato is cultivated worldwide as a nutrient-rich vegetable crop. Tomato wilt disease caused by Fusarium oxysporum f.sp. Lycopersici (Fol) is one of the most serious fungal diseases posing threats to tomato production. Recently, the development of Spray-Induced Gene Silencing (SIGS) directs a novel plant disease management by generating an efficient and environmental friendly biocontrol agent. Here, we characterized that FolRDR1 (RNA-dependent RNA polymerase 1) mediated the pathogen invasion to the host plant tomato, and played as an essential regulator in pathogen development and pathogenicity. Our fluorescence tracing data further presented that effective uptakes of FolRDR1-dsRNAs were observed in both Fol and tomato tissues. Subsequently, exogenous application of FolRDR1-dsRNAs on pre-Fol-infected tomato leaves resulted in significant alleviation of tomato wilt disease symptoms. Particularly, FolRDR1-RNAi was highly specific without sequence off-target in related plants. Our results of pathogen gene-targeting RNAi have provided a new strategy for tomato wilt disease management by developing an environmentally-friendly biocontrol agent.


Subject(s)
Fusarium , Solanum lycopersicum , RNA Interference , Solanum lycopersicum/genetics , Gene Silencing , Fusarium/genetics , Plant Diseases/genetics , Plant Diseases/prevention & control , Plant Diseases/microbiology
2.
New Phytol ; 232(2): 705-718, 2021 10.
Article in English | MEDLINE | ID: mdl-33960431

ABSTRACT

Although it is well known that miRNAs play crucial roles in multiple biological processes, there is currently no evidence indicating that milRNAs from Fusarium oxysporum f. sp. lycopersici (Fol) interfere with tomato resistance during infection. Here, using sRNA-seq, we demonstrate that Fol-milR1, a trans-kingdom small RNA, is exported into tomato cells after infection. The knockout strain ∆Fol-milR1 displays attenuated pathogenicity to the susceptible tomato cultivar 'Moneymaker'. On the other hand, Fol-milR1 overexpression strains exhibit enhanced virulence against the resistant cultivar 'Motelle'. Several tomato mRNAs are predicted targets of Fol-milR1. Among these genes, Solyc06g007430 (encoding the CBL-interacting protein kinase, SlyFRG4) is regulated at the posttranscriptional level by Fol-milR1. Furthermore, SlyFRG4 loss-of-function alleles created using CRISPR/Cas9 in tomato ('Motelle') exhibit enhanced disease susceptibility to Fol, further supporting the idea that SlyFRG4 is essential for tomato wilt disease resistance. Notably, our results using immunoprecipitation with specific antiserum suggest that Fol-milR1 interferes with the host immunity machinery by binding to tomato ARGONAUTE 4a (SlyAGO4a). Furthermore, virus-induced gene silenced (VIGS) knock-down SlyAGO4a plants exhibit reduced susceptibility to Fol. Together, our findings support a model in which Fol-milR1 is an sRNA fungal effector that suppresses host immunity by silencing a disease resistance gene, thus providing a novel virulence strategy to achieve infection.


Subject(s)
Fusarium , Solanum lycopersicum , Disease Resistance/genetics , Solanum lycopersicum/genetics , Plant Diseases , Virulence Factors
3.
Plant Dis ; 101(3): 428-433, 2017 Mar.
Article in English | MEDLINE | ID: mdl-30677342

ABSTRACT

Cereal cyst nematodes (Heterodera avenae and H. filipjevi) and root lesion nematodes (Pratylenchus spp.) have been found to infect cereals in 16 provinces of China. To develop a nematicide that effectively controls nematodes, two novel chemical products, methylene bis thiocyanate (MBT) and MBT + thiamethoxam (MTT); four common pesticides, fipronil + chlorpyrifos (FIC), emamectin benzoate, imidacloprid, and Bacillus thuringiensis; and one fungicide, iprodione, were tested as seed coatings for the control of cereal cysts and root lesion nematodes from 2013 to 2015. Wheat seeds were treated with these seven seed coatings before sowing, and changes in the numbers of Heterodera spp. and Pratylenchus spp. were recorded during three different growth stages. Wheat yields were also compared after harvest. All treatments reduced the numbers of Pratylenchus in wheat and of cysts and eggs of Heterodera in the soil compared with the untreated control. Among the treatments, application of MTT or FIC was more effective than that of the other treatments for nematode control, and the other treatments had similar effects. The results of this study have demonstrated that MTT and FIC applied as seed treatments effectively reduce the number of cysts, inhibit the reproduction of Heterodera and Pratylenchus, and enhance wheat yields. MTT and FIC are thus suitable for controlling nematodes on wheat under natural field conditions.

SELECTION OF CITATIONS
SEARCH DETAIL