Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 710
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 187(11): 2717-2734.e33, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38653239

ABSTRACT

The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as ß-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.


Subject(s)
Akkermansia , Bacteroides , Bile Acids and Salts , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Symbiosis , Animals , Humans , Male , Mice , Akkermansia/metabolism , Bacteroides/metabolism , beta-Lactamases/metabolism , Bile Acids and Salts/metabolism , Biosynthetic Pathways/genetics , Fatty Liver/metabolism , Liver/metabolism , Mice, Inbred C57BL , Verrucomicrobia/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/microbiology
2.
Nature ; 629(8012): 579-585, 2024 May.
Article in English | MEDLINE | ID: mdl-38750235

ABSTRACT

Towards realizing the future quantum internet1,2, a pivotal milestone entails the transition from two-node proof-of-principle experiments conducted in laboratories to comprehensive multi-node set-ups on large scales. Here we report the creation of memory-memory entanglement in a multi-node quantum network over a metropolitan area. We use three independent memory nodes, each of which is equipped with an atomic ensemble quantum memory3 that has telecom conversion, together with a photonic server where detection of a single photon heralds the success of entanglement generation. The memory nodes are maximally separated apart for 12.5 kilometres. We actively stabilize the phase variance owing to fibre links and control lasers. We demonstrate concurrent entanglement generation between any two memory nodes. The memory lifetime is longer than the round-trip communication time. Our work provides a metropolitan-scale testbed for the evaluation and exploration of multi-node quantum network protocols and starts a stage of quantum internet research.

3.
PLoS Pathog ; 20(9): e1012483, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39226326

ABSTRACT

Fibronectin (FN) is an essential component of the extracellular matrix (ECM) that protects the integrity of the microvascular endothelial barrier (MEB). However, Treponema pallidum subsp. pallidum (Tp) breaches this barrier through elusive mechanisms and rapidly disseminates throughout the host. We aimed to understand the impact of Tp on the surrounding FN matrix of MEB and the underlying mechanisms of this effect. In this study, immunofluorescence assays (IF) were conducted to assess the integrity of the FN matrix surrounding human microvascular endothelial cell-1 (HMEC-1) with/without Tp co-culture, revealing that only live Tp exhibited the capability to mediate FN matrix disaggregation in HMEC-1. Western blotting and IF were employed to determine the protein levels associated with the FN matrix during Tp infection, which showed the unaltered protein levels of total FN and its receptor integrin α5ß1, along with reduced insoluble FN and increased soluble FN. Simultaneously, the integrin α5ß1-binding protein-intracellular vimentin maintained a stable total protein level while exhibiting an increase in the soluble form, specifically mediated by the phosphorylation of its 39th residue (pSer39-vimentin). Besides, this process of vimentin phosphorylation, which could be hindered by a serine-to-alanine mutation or inhibition of phosphorylated-AKT1 (pAKT1), promoted intracellular vimentin rearrangement and FN matrix disaggregation. Moreover, within the introduction of additional cellular FN rather than other Tp-adhered ECM protein, in vitro endothelial barrier traversal experiment and in vivo syphilitic infectivity test demonstrated that viable Tp was effectively prevented from penetrating the in vitro MEB or disseminating in Tp-challenged rabbits. This investigation revealed the active pAKT1/pSer39-vimentin signal triggered by live Tp to expedite the disaggregation of the FN matrix and highlighted the importance of FN matrix stability in syphilis, thereby providing a novel perspective on ECM disruption mechanisms that facilitate Tp dissemination across the MEB.


Subject(s)
Endothelial Cells , Fibronectins , Treponema pallidum , Vimentin , Fibronectins/metabolism , Humans , Vimentin/metabolism , Treponema pallidum/metabolism , Animals , Phosphorylation , Endothelial Cells/metabolism , Endothelial Cells/microbiology , Extracellular Matrix/metabolism , Syphilis/metabolism , Syphilis/microbiology , Rabbits , Endothelium, Vascular/metabolism , Endothelium, Vascular/microbiology
4.
Nature ; 578(7794): 240-245, 2020 02.
Article in English | MEDLINE | ID: mdl-32051600

ABSTRACT

A quantum internet that connects remote quantum processors1,2 should enable a number of revolutionary applications such as distributed quantum computing. Its realization will rely on entanglement of remote quantum memories over long distances. Despite enormous progress3-12, at present the maximal physical separation achieved between two nodes is 1.3 kilometres10, and challenges for longer distances remain. Here we demonstrate entanglement of two atomic ensembles in one laboratory via photon transmission through city-scale optical fibres. The atomic ensembles function as quantum memories that store quantum states. We use cavity enhancement to efficiently create atom-photon entanglement13-15 and we use quantum frequency conversion16 to shift the atomic wavelength to telecommunications wavelengths. We realize entanglement over 22 kilometres of field-deployed fibres via two-photon interference17,18 and entanglement over 50 kilometres of coiled fibres via single-photon interference19. Our experiment could be extended to nodes physically separated by similar distances, which would thus form a functional segment of the atomic quantum network, paving the way towards establishing atomic entanglement over many nodes and over much longer distances.

5.
Ann Neurol ; 95(5): 998-1008, 2024 May.
Article in English | MEDLINE | ID: mdl-38400804

ABSTRACT

OBJECTIVE: Ictal central apnea (ICA) is a semiological sign of focal epilepsy, associated with temporal and frontal lobe seizures. In this study, using qualitative and quantitative approaches, we aimed to assess the localizational value of ICA. We also aimed to compare ICA clinical utility in relation to other seizure semiological features of focal epilepsy. METHODS: We analyzed seizures in patients with medically refractory focal epilepsy undergoing intracranial stereotactic electroencephalographic (SEEG) evaluations with simultaneous multimodal cardiorespiratory monitoring. A total of 179 seizures in 72 patients with reliable artifact-free respiratory signal were analyzed. RESULTS: ICA was seen in 55 of 179 (30.7%) seizures. Presence of ICA predicted a mesial temporal seizure onset compared to those without ICA (odds ratio = 3.8, 95% confidence interval = 1.3-11.6, p = 0.01). ICA specificity was 0.82. ICA onset was correlated with increased high-frequency broadband gamma (60-150Hz) activity in specific mesial or basal temporal regions, including amygdala, hippocampus, and fusiform and lingual gyri. Based on our results, ICA has an almost 4-fold greater association with mesial temporal seizure onset zones compared to those without ICA and is highly specific for mesial temporal seizure onset zones. As evidence of symptomatogenic areas, onset-synchronous increase in high gamma activity in mesial or basal temporal structures was seen in early onset ICA, likely representing anatomical substrates for ICA generation. INTERPRETATION: ICA recognition may help anatomoelectroclinical localization of clinical seizure onset to specific mesial and basal temporal brain regions, and the inclusion of these regions in SEEG evaluations may help accurately pinpoint seizure onset zones for resection. ANN NEUROL 2024;95:998-1008.


Subject(s)
Epilepsy, Temporal Lobe , Humans , Male , Female , Adult , Middle Aged , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/diagnosis , Sleep Apnea, Central/physiopathology , Sleep Apnea, Central/diagnosis , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/diagnosis , Seizures/physiopathology , Seizures/diagnosis , Young Adult , Electrocorticography/methods , Electroencephalography/methods , Adolescent , Epilepsies, Partial/physiopathology , Epilepsies, Partial/diagnosis
6.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38306660

ABSTRACT

Using event-related potentials, this study examined how self-esteem affects neural responses to competence (interpersonal) feedback when the need for relatedness (competence) is thwarted or met. Participants with low and high self-esteem acted as advisors who selected one of two options for a putative advisee. Subsequently, they passively observed the advisee, accepted, or rejected their advice (i.e. interpersonal feedback) and received correct or incorrect outcomes (i.e. competence feedback). When interpersonal feedback was followed by competence feedback, high self-esteem participants showed a smaller P3 following incorrect than correct outcomes, irrespective of whether the advice had been accepted or rejected. However, low self-esteem participants showed this P3 effect only when the advice was rejected, and the P3 difference disappeared when the advice was accepted. When competence feedback was followed by interpersonal feedback, both low self-esteem and high self-esteem individuals showed a larger P2 for rejection than for acceptance and a larger late potential component for incorrect than correct outcomes. These findings suggest that when interpersonal feedback is followed by competence feedback, low self-esteem and high self-esteem individuals have a desire for self-positivity. When competence feedback is followed by interpersonal feedback, they may have motives for self-change. Our findings shed light on the motivational mechanisms for self-esteem and feedback.


Subject(s)
Interpersonal Relations , Self Concept , Humans , Motivation
7.
Biophys J ; 123(17): 2815-2829, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38414236

ABSTRACT

In recent years, advancements in retinal image analysis, driven by machine learning and deep learning techniques, have enhanced disease detection and diagnosis through automated feature extraction. However, challenges persist, including limited data set diversity due to privacy concerns and imbalanced sample pairs, hindering effective model training. To address these issues, we introduce the vessel and style guided generative adversarial network (VSG-GAN), an innovative algorithm building upon the foundational concept of GAN. In VSG-GAN, a generator and discriminator engage in an adversarial process to produce realistic retinal images. Our approach decouples retinal image generation into distinct modules: the vascular skeleton and background style. Leveraging style transformation and GAN inversion, our proposed hierarchical variational autoencoder module generates retinal images with diverse morphological traits. In addition, the spatially adaptive denormalization module ensures consistency between input and generated images. We evaluate our model on MESSIDOR and RITE data sets using various metrics, including structural similarity index measure, inception score, Fréchet inception distance, and kernel inception distance. Our results demonstrate the superiority of VSG-GAN, outperforming existing methods across all evaluation assessments. This underscores its effectiveness in addressing data set limitations and imbalances. Our algorithm provides a novel solution to challenges in retinal image analysis by offering diverse and realistic retinal image generation. Implementing the VSG-GAN augmentation approach on downstream diabetic retinopathy classification tasks has shown enhanced disease diagnosis accuracy, further advancing the utility of machine learning in this domain.


Subject(s)
Fundus Oculi , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Retina/diagnostic imaging , Semantics , Algorithms , Deep Learning
8.
J Cell Mol Med ; 28(12): e18440, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38890792

ABSTRACT

Hepatitis B virus (HBV) damages liver cells through abnormal immune responses. Mitochondrial metabolism is necessary for effector functions of white blood cells (WBCs). The aim was to investigate the altered counts and mitochondrial mass (MM) of WBCs by two novel indicators of mitochondrial mass, MM and percentage of low mitochondrial membrane potential, MMPlow%, due to chronic HBV infection. The counts of lymphocytes, neutrophils and monocytes in the HBV infection group were in decline, especially for lymphocyte (p = 0.034) and monocyte counts (p = 0.003). The degraded MM (p = 0.003) and MMPlow% (p = 0.002) of lymphocytes and MM (p = 0.005) of monocytes suggested mitochondrial dysfunction of WBCs. HBV DNA within WBCs showed an extensive effect on mitochondria metabolic potential of lymphocytes, neutrophils and monocytes indicated by MM; hepatitis B e antigen was associated with instant mitochondrial energy supply indicated by MMPlow% of neutrophils; hepatitis B surface antigen, antiviral therapy by nucleos(t)ide analogues and prolonged infection were also vital factors contributing to WBC alterations. Moreover, degraded neutrophils and monocytes could be used to monitor immune responses reflecting chronic liver fibrosis and inflammatory damage. In conclusion, MM combined with cell counts of WBCs could profoundly reflect WBC alterations for monitoring chronic HBV infection. Moreover, HBV DNA within WBCs may be a vital factor in injuring mitochondria metabolic potential.


Subject(s)
Hepatitis B virus , Hepatitis B, Chronic , Mitochondria , Humans , Hepatitis B, Chronic/virology , Hepatitis B, Chronic/pathology , Male , Female , Hepatitis B virus/pathogenicity , Adult , Mitochondria/metabolism , Middle Aged , Leukocyte Count , Leukocytes/metabolism , DNA, Viral/blood , Membrane Potential, Mitochondrial , Monocytes/metabolism , Monocytes/immunology , Monocytes/virology , Monocytes/pathology , Neutrophils/metabolism , Neutrophils/immunology
9.
Mol Med ; 30(1): 23, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317106

ABSTRACT

BACKGROUND: Fluvoxamine is one of the selective serotonin reuptake inhibitors (SSRIs) that are regarded as the first-line drugs to manage mental disorders. It has been also recognized with the potential to treat inflammatory diseases and viral infection. However, the effect of fluvoxamine on autoimmune diseases, particularly type 1 diabetes (T1D) and the related cellular and molecular mechanisms, are yet to be addressed. METHOD: Herein in this report, we treated NOD mice with fluvoxamine for 2 weeks starting from 10-week of age to dissect the impact of fluvoxamine on the prevention of type 1 diabetes. We compared the differences of immune cells between 12-week-old control and fluvoxamine-treated mice by flow cytometry analysis. To study the mechanism involved, we extensively examined the characteristics of CD4+ T cells with fluvoxamine stimulation using RNA-seq analysis, real-time PCR, Western blot, and seahorse assay. Furthermore, we investigated the relevance of our data to human autoimmune diabetes. RESULT: Fluvoxamine not only delayed T1D onset, but also decreased T1D incidence. Moreover, fluvoxamine-treated NOD mice showed significantly attenuated insulitis coupled with well-preserved ß cell function, and decreased Th1 and Th17 cells in the peripheral blood, pancreatic lymph nodes (PLNs), and spleen. Mechanistic studies revealed that fluvoxamine downregulated glycolytic process by inhibiting phosphatidylinositol 3-kinase (PI3K)-AKT signaling, by which it restrained effector T (Teff) cell differentiation and production of proinflammatory cytokines. CONCLUSION: Collectively, our study supports that fluvoxamine could be a viable therapeutic drug against autoimmunity in T1D setting.


Subject(s)
Autoimmune Diseases , Diabetes Mellitus, Type 1 , Mice , Humans , Animals , Diabetes Mellitus, Type 1/drug therapy , Mice, Inbred NOD , Fluvoxamine/pharmacology , Fluvoxamine/therapeutic use , Th17 Cells , Phosphatidylinositol 3-Kinases , Th1 Cells
10.
Plant Biotechnol J ; 22(9): 2624-2628, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38803114

ABSTRACT

Although thousands of genes have been identified or cloned in rice (Oryza sativa) in the last two decades, the majority of them have only been separately characterized in specific varieties or single-gene modified backgrounds, thus limiting their practical application. We developed an optimized multiplex genome editing (MGE) toolbox that can efficiently assemble and stably express up to twelve sgRNA targets in a single plant expression vector. In this study, we established the MGE-based Rapid Directional Improvement (MRDI) strategy for directional improvement of complex agronomic traits in one small-scale rice transformation. This approach provides a rapid and practical procedure, encompassing sgRNA assembly, transgene-free screening and the creation of promising germplasm, by combining the precision of gene editing with phenotype-based field breeding. The MRDI strategy was used to generate the full diversity of twelve main agronomic genes in rice cultivar FXZ for the directional improvement of its growth duration and plant architecture. After applying the MRDI to FXZ, ideal plants with the desired traits of early heading date reduced plant height, and more effective panicles were generated without compromising yield, blast resistance and grain quality. Furthermore, the results of whole-genome sequencing (WGS), including the analysis of structural variations (SVs) and single nucleotide variations (SNVs) in the MGE plants, confirmed the high specificity and low frequency of unwanted mutations associated with this strategy. The MRDI breeding strategy would be a robust approach for exploring and applying crucial agronomic genes, as well as for generating novel elite germplasm in the future.


Subject(s)
Gene Editing , Genome, Plant , Oryza , Oryza/genetics , Oryza/growth & development , Gene Editing/methods , Genome, Plant/genetics , Plant Breeding/methods , Phenotype , CRISPR-Cas Systems/genetics , Plants, Genetically Modified/genetics
11.
J Transl Med ; 22(1): 422, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702814

ABSTRACT

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is a highly malignant neoplasm and characterized by desmoplastic matrix. The heterogeneity and crosstalk of tumor microenvironment remain incompletely understood. METHODS: To address this gap, we performed Weighted Gene Co-expression Network Analysis (WGCNA) to identify and construct a cancer associated fibroblasts (CAFs) infiltration biomarker. We also depicted the intercellular communication network and important receptor-ligand complexes using the single-cell transcriptomics analysis of tumor and Adjacent normal tissue. RESULTS: Through the intersection of TCGA DEGs and WGCNA module genes, 784 differential genes related to CAFs infiltration were obtained. After a series of regression analyses, the CAFs score was generated by integrating the expressions of EVA1A, APBA2, LRRTM4, GOLGA8M, BPIFB2, and their corresponding coefficients. In the TCGA-CHOL, GSE89748, and 107,943 cohorts, the high CAFs score group showed unfavorable survival prognosis (p < 0.001, p = 0.0074, p = 0.028, respectively). Additionally, a series of drugs have been predicted to be more sensitive to the high-risk group (p < 0.05). Subsequent to dimension reduction and clustering, thirteen clusters were identified to construct the single-cell atlas. Cell-cell interaction analysis unveiled significant enhancement of signal transduction in tumor tissues, particularly from fibroblasts to malignant cells via diverse pathways. Moreover, SCENIC analysis indicated that HOXA5, WT1, and LHX2 are fibroblast specific motifs. CONCLUSIONS: This study reveals the key role of fibroblasts - oncocytes interaction in the remodeling of the immunosuppressive microenvironment in intrahepatic cholangiocarcinoma. Subsequently, it may trigger cascade activation of downstream signaling pathways such as PI3K-AKT and Notch in tumor, thus initiating tumorigenesis. Targeted drugs aimed at disrupting fibroblasts-tumor cell interaction, along with associated enrichment pathways, show potential in mitigating the immunosuppressive microenvironment that facilitates tumor progression.


Subject(s)
Bile Duct Neoplasms , Cancer-Associated Fibroblasts , Cholangiocarcinoma , Gene Expression Regulation, Neoplastic , Single-Cell Analysis , Tumor Microenvironment , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Humans , Tumor Microenvironment/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Prognosis , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , Transcriptome/genetics , Gene Expression Profiling , Gene Regulatory Networks , Cell Communication
12.
Int J Med Microbiol ; 316: 151627, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38908301

ABSTRACT

The release of host mitochondrial cardiolipin is believed to be the main factor that contributes to the production of anti-cardiolipin antibodies in syphilis. However, the precise mechanism by which mitochondria release cardiolipin in this context remains elusive. This study aimed to elucidate the mechanisms underlying mitochondrial cardiolipin release in syphilis. We conducted a cardiolipin quantitative assay and immunofluorescence analysis to detect mitochondrial cardiolipin release in human microvascular endothelial cells (HMEC-1), with and without Treponema pallidum (Tp) infection. Furthermore, we explored apoptosis, a key mechanism for mitochondrial cardiolipin release. The potential mediator molecules were then analyzed through RNA-sequence and subsequently validated using in vitro knockout techniques mediated by CRISPR-Cas9 and pathway-specific inhibitors. Our findings confirm that live-Tp is capable of initiating the release of mitochondrial cardiolipin, whereas inactivated-Tp does not exhibit this capability. Additionally, apoptosis detection further supports the notion that the release of mitochondrial cardiolipin occurs independently of apoptosis. The RNA-sequencing results indicated that microtubule-associated protein2 (MAP2), an axonogenesis and dendrite development gene, was up-regulated in HMEC-1 treated with Tp, which was further confirmed in syphilitic lesions by immunofluorescence. Notably, genetic knockout of MAP2 inhibited Tp-induced mitochondrial cardiolipin release in HMEC-1. Mechanically, Tp-infection regulated MAP2 expression via the MEK-ERK-HES1 pathway, and MEK/ERK phosphorylation inhibitors effectively block Tp-induced mitochondrial cardiolipin release. This study demonstrated that the infection of live-Tp enhanced the expression of MAP2 via the MEK-ERK-HES1 pathway, thereby contributing to our understanding of the role of anti-cardiolipin antibodies in the diagnosis of syphilis.


Subject(s)
Apoptosis , Cardiolipins , Endothelial Cells , Mitochondria , Syphilis , Treponema pallidum , Humans , Cardiolipins/metabolism , Mitochondria/metabolism , Syphilis/microbiology , Syphilis/metabolism , Treponema pallidum/metabolism , Endothelial Cells/microbiology , Endothelial Cells/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Cell Line
13.
Plant Physiol ; 193(2): 1016-1035, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37440715

ABSTRACT

Belonging to Rosaceae, red raspberry (Rubus idaeus) and wild strawberry (Fragaria vesca) are closely related species with distinct fruit types. While the numerous ovaries become the juicy drupelet fruits in raspberry, their strawberry counterparts become dry and tasteless achenes. In contrast, while the strawberry receptacle, the stem tip, enlarges to become a red fruit, the raspberry receptacle shrinks and dries. The distinct fruit-forming ability of homologous organs in these 2 species allows us to investigate fruit type determination. We assembled and annotated the genome of red raspberry (R. idaeus) and characterized its fruit development morphologically and physiologically. Subsequently, transcriptomes of dissected and staged raspberry fruit tissues were compared to those of strawberry from a prior study. Class B MADS box gene expression was negatively associated with fruit-forming ability, which suggested a conserved inhibitory role of class B heterodimers, PISTILLATA/TM6 or PISTILLATA/APETALA3, for fruit formation. Additionally, the inability of strawberry ovaries to develop into fruit flesh was associated with highly expressed lignification genes and extensive lignification of the ovary pericarp. Finally, coexpressed gene clusters preferentially expressed in the dry strawberry achenes were enriched in "cell wall biosynthesis" and "ABA signaling," while coexpressed clusters preferentially expressed in the fleshy raspberry drupelets were enriched in "protein translation." Our work provides extensive genomic resources as well as several potential mechanisms underlying fruit type specification. These findings provide the framework for understanding the evolution of different fruit types, a defining feature of angiosperms.


Subject(s)
Fragaria , Rubus , Rubus/genetics , Fruit/metabolism , Transcriptome/genetics , Genomics
14.
Ann Surg Oncol ; 31(8): 5011-5020, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38520581

ABSTRACT

BACKGROUND: Noninvasively and accurately predicting subcarinal lymph node metastasis (SLNM) for patients with non-small cell lung cancer (NSCLC) remains challenging. This study was designed to develop and validate a tumor and subcarinal lymph nodes (tumor-SLNs) dual-region computed tomography (CT) radiomics model for predicting SLNM in NSCLC. METHODS: This retrospective study included NSCLC patients who underwent lung resection and SLNs dissection between January 2017 and December 2020. The radiomic features of the tumor and SLNs were extracted from preoperative CT, respectively. Ninety machine learning (ML) models were developed based on tumor region, SLNs region, and tumor-SLNs dual-region. The model performance was assessed by the area under the curve (AUC) and validated internally by fivefold cross-validation. RESULTS: In total, 202 patients were included in this study. ML models based on dual-region radiomics showed good performance for SLNM prediction, with a median AUC of 0.794 (range, 0.686-0.880), which was superior to those of models based on tumor region (median AUC, 0.746; range, 0.630-0.811) and SLNs region (median AUC, 0.700; range, 0.610-0.842). The ML model, which is developed by using the naive Bayes algorithm and dual-region features, had the highest AUC of 0.880 (range of cross-validation, 0.825-0.937) among all ML models. The optimal logistic regression model was inferior to the optimal ML model for predicting SLNM, with an AUC of 0.727. CONCLUSIONS: The CT radiomics showed the potential for accurately predicting SLNM in NSCLC patients. The ML model with dual-region radiomic features has better performance than the logistic regression or single-region models.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Lymphatic Metastasis , Machine Learning , Tomography, X-Ray Computed , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/surgery , Carcinoma, Non-Small-Cell Lung/secondary , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Male , Female , Retrospective Studies , Tomography, X-Ray Computed/methods , Middle Aged , Aged , Follow-Up Studies , Prognosis , Adult , Lymph Nodes/pathology , Lymph Nodes/diagnostic imaging , Lymph Nodes/surgery , Aged, 80 and over , Lymph Node Excision , Pneumonectomy , Radiomics
15.
Toxicol Appl Pharmacol ; 492: 117098, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39251042

ABSTRACT

Exposure to various chemicals found in the environment and in the context of drug development can cause acute toxicity. To provide an alternative to in vivo animal toxicity testing, the U.S. Tox21 consortium developed in vitro assays to test a library of approximately 10,000 drugs and environmental chemicals (Tox21 10 K compound library) in a quantitative high-throughput screening (qHTS) approach. In this study, we assessed the utility of Tox21 assay data in comparison with chemical structure information in predicting acute systemic toxicity. Prediction models were developed using four machine learning algorithms, namely Random Forest, Naïve Bayes, eXtreme Gradient Boosting, and Support Vector Machine, and their performance was assessed using the area under the receiver operating characteristic curve (AUC-ROC). The chemical structure-based models as well as the Tox21 assay data demonstrated good predictive power for acute toxicity, achieving AUC-ROC values ranging from 0.83 to 0.93 and 0.73 to 0.79, respectively. We applied the models to predict the acute toxicity potential of the compounds in the Tox21 10 K compound library, most of which were found to be non-toxic. In addition, we identified the Tox21 assays that contributed the most to acute toxicity prediction, such as acetylcholinesterase (AChE) inhibition and p53 induction. Chemical features including organophosphates and carbamates were also identified to be significantly associated with acute toxicity. In conclusion, this study underscores the utility of in vitro assay data in predicting acute toxicity.

16.
Phys Rev Lett ; 132(23): 233403, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38905684

ABSTRACT

The momentum space Josephson effect describes the supercurrent flow between weakly coupled Bose-Einstein condensates (BECs) at two discrete momentum states. Here, we experimentally observe this exotic phenomenon using a BEC with Raman-induced spin-orbit coupling, where the tunneling between two local band minima is implemented by the momentum kick of an additional optical lattice. A sudden quench of the Raman detuning induces coherent spin-momentum oscillations of the BEC, which is analogous to the ac Josephson effect. We observe both plasma and regular Josephson oscillations in different parameter regimes. The experimental results agree well with the theoretical model and numerical simulation and showcase the important role of nonlinear interactions. We also show that the measurement of the Josephson plasma frequency gives the Bogoliubov zero quasimomentum gap, which determines the mass of the corresponding pseudo-Goldstone mode, a long-sought phenomenon in particle physics. The observation of momentum space Josephson physics offers an exciting platform for quantum simulation and sensing utilizing momentum states as a synthetic degree.

17.
Epilepsia ; 65(7): 2054-2068, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38738972

ABSTRACT

OBJECTIVE: The aim of this study was to develop a machine learning algorithm using an off-the-shelf digital watch, the Samsung watch (SM-R800), and evaluate its effectiveness for the detection of generalized convulsive seizures (GCS) in persons with epilepsy. METHODS: This multisite epilepsy monitoring unit (EMU) phase 2 study included 36 adult patients. Each patient wore a Samsung watch that contained accelerometer, gyroscope, and photoplethysmographic sensors. Sixty-eight time and frequency domain features were extracted from the sensor data and were used to train a random forest algorithm. A testing framework was developed that would better reflect the EMU setting, consisting of (1) leave-one-patient-out cross-validation (LOPO CV) on GCS patients, (2) false alarm rate (FAR) testing on nonseizure patients, and (3) "fixed-and-frozen" prospective testing on a prospective patient cohort. Balanced accuracy, precision, sensitivity, and FAR were used to quantify the performance of the algorithm. Seizure onsets and offsets were determined by using video-electroencephalographic (EEG) monitoring. Feature importance was calculated as the mean decrease in Gini impurity during the LOPO CV testing. RESULTS: LOPO CV results showed balanced accuracy of .93 (95% confidence interval [CI] = .8-.98), precision of .68 (95% CI = .46-.85), sensitivity of .87 (95% CI = .62-.96), and FAR of .21/24 h (interquartile range [IQR] = 0-.90). Testing the algorithm on patients without seizure resulted in an FAR of .28/24 h (IQR = 0-.61). During the "fixed-and-frozen" prospective testing, two patients had three GCS, which were detected by the algorithm, while generating an FAR of .25/24 h (IQR = 0-.89). Feature importance showed that heart rate-based features outperformed accelerometer/gyroscope-based features. SIGNIFICANCE: Commercially available wearable digital watches that reliably detect GCS, with minimum false alarm rates, may overcome usage adoption and other limitations of custom-built devices. Contingent on the outcomes of a prospective phase 3 study, such devices have the potential to provide non-EEG-based seizure surveillance and forecasting in the clinical setting.


Subject(s)
Electroencephalography , Wearable Electronic Devices , Humans , Male , Female , Adult , Middle Aged , Electroencephalography/methods , Electroencephalography/instrumentation , Seizures/diagnosis , Seizures/physiopathology , Algorithms , Young Adult , Prospective Studies , Machine Learning , Epilepsy, Generalized/diagnosis , Epilepsy, Generalized/physiopathology , Aged , Reproducibility of Results , Photoplethysmography/instrumentation , Photoplethysmography/methods
18.
Arch Microbiol ; 206(7): 321, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907796

ABSTRACT

Vibrio parahaemolyticus possesses two distinct type VI secretion systems (T6SS), namely T6SS1 and T6SS2. T6SS1 is predominantly responsible for adhesion to Caco-2 and HeLa cells and for the antibacterial activity of V. parahaemolyticus, while T6SS2 mainly contributes to HeLa cell adhesion. However, it remains unclear whether the T6SS systems have other physiological roles in V. parahaemolyticus. In this study, we demonstrated that the deletion of icmF2, a structural gene of T6SS2, reduced the biofilm formation capacity of V. parahaemolyticus under low salt conditions, which was also influenced by the incubation time. Nonetheless, the deletion of icmF2 did not affect the biofilm formation capacity in marine-like growth conditions, nor did it impact the flagella-driven swimming and swarming motility of V. parahaemolyticus. IcmF2 was found to promote the production of the main components of the biofilm matrix, including extracellular DNA (eDNA) and extracellular proteins, and cyclic di-GMP (c-di-GMP) in V. parahaemolyticus. Additionally, IcmF2 positively influenced the transcription of cpsA, mfpA, and several genes involved in c-di-GMP metabolism, including scrJ, scrL, vopY, tpdA, gefA, and scrG. Conversely, the transcription of scrA was negatively impacted by IcmF2. Therefore, IcmF2-dependent biofilm formation was mediated through its effects on the production of eDNA, extracellular proteins, and c-di-GMP, as well as its impact on the transcription of cpsA, mfpA, and genes associated with c-di-GMP metabolism. This study confirmed new physiological roles for IcmF2 in promoting biofilm formation and c-di-GMP production in V. parahaemolyticus.


Subject(s)
Bacterial Proteins , Biofilms , Cyclic GMP , Type VI Secretion Systems , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/physiology , Vibrio parahaemolyticus/metabolism , Biofilms/growth & development , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Humans , Gene Expression Regulation, Bacterial , HeLa Cells
19.
BMC Gastroenterol ; 24(1): 307, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261751

ABSTRACT

BACKGROUND: This study aimed to develop a comprehensive model based on five GLIM variables to predict the individual survival and provide more appropriate patient counseling. METHODS: This retrospective cohort study included 301 gastric cancer (GC) patients undergoing radical resection. C-reactive protein (CRP) as an inflammatory marker was included in GLIM criteria and a nomogram for predicting 5-year overall survival (OS) in GC patients was established. The Bootstrap repeated sampling for 1000 times was used for internal validation. RESULTS: Of the total 301 patients, 20 (6.64%) died within 5 years. CRP improved the sensitivity and accuracy of the survival prediction model (AUC = 0.782, 0.694 to 0.869 for the model without CRP; AUC = 0.880, 0.809 to 0.950 for the model adding CRP). Besides, a GLIM-based nomogram was established with an AUC of 0.889. The C-index for predicting OS was 0.878 (95% CI: 0.823 to 0.934), and the calibration curve fitted well. Decision curve analysis (DCA) showed the clinical utility of the nomogram based on GLIM. CONCLUSION: The addition of CRP improved the sensitivity and accuracy of the survival prediction model. The 5-year survival probability of GC patients undergoing radical resection can be reliably predicted by the nomogram presented in this study.


Subject(s)
C-Reactive Protein , Nomograms , Stomach Neoplasms , Humans , Stomach Neoplasms/surgery , Stomach Neoplasms/mortality , Stomach Neoplasms/blood , Male , Female , Retrospective Studies , Middle Aged , C-Reactive Protein/analysis , Aged , Prognosis , Gastrectomy/mortality , Sensitivity and Specificity , Survival Analysis , Adult
20.
Environ Sci Technol ; 58(22): 9636-9645, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38770702

ABSTRACT

Dissemination of antibiotic resistance genes (ARGs) in urban water bodies has become a significant environmental and health concern. Many approaches based on real-time quantitative PCR (qPCR) have been developed to offer rapid and highly specific detection of ARGs in water environments, but the complicated and time-consuming procedures have hindered their widespread use. Herein, we developed a facile one-step approach for rapid detection of ARGs by leveraging the trans-cleavage activity of Cas12a and recombinase polymerase amplification (RPA). This efficient method matches the sensitivity and specificity of qPCR and requires no complex equipment. The results show a strong correlation between the prevalence of four ARG markers (ARGs: sul1, qnrA-1, mcr-1, and class 1 integrons: intl1) in tap water, human urine, farm wastewater, hospital wastewater, municipal wastewater treatment plants (WWTPs), and proximate natural aquatic ecosystems, indicating the circulation of ARGs within the urban water cycle. Through monitoring the ARG markers in 18 WWTPs in 9 cities across China during both peak and declining stages of the COVID epidemic, we found an increased detection frequency of mcr-1 and qnrA-1 in wastewater during peak periods. The ARG detection method developed in this work may offer a useful tool for promoting a sustainable urban water cycle.


Subject(s)
Drug Resistance, Microbial , Drug Resistance, Microbial/genetics , Wastewater , Humans , Environmental Monitoring/methods , Cities , China , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL